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Abstract
A single-cone tree (unicyclic graph) is the join of a complete graph K1 and a tree
(unicyclic graph). Suppose π = (d1, d2, . . . , dn) and π ′ = (d ′

1, d
′
2, . . . , d

′
n) are two

non-increasing degree sequences. We say π is majorizated by π ′, denoted by π �π ′,
if and only if π �= π ′,

∑n
i=1 di = ∑n

i=1 d
′
i , and

∑ j
i=1 di ≤ ∑ j

i=1 d
′
i for all j =

1, 2, . . . , n − 1. We use Jπ to denote the class of single-cone trees (unicyclic graphs)
with degree sequence π . Suppose that π and π ′ are two different non-increasing
degree sequences of single-cone trees (unicyclic graphs). Let ρ and ρ ′ be the largest
spectral radius of the graphs in Jπ and Jπ ′ , respectively, μ and μ ′ be the largest
signless Laplacian spectral radius of the graphs in Jπ and Jπ ′ , respectively. In this
paper, we prove that if π � π ′, then ρ < ρ ′ and μ < μ ′.
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1 Introduction

LetG = (V , E) be a simple undirected graphwith vertex set V = {v1, v2, . . . , vn} and
edge set E = {e1, e2, . . . , em}, i.e., |V | = n and |E | = m. Ifm = n+ c−1, then G is
called a c-cyclic graph. Particularly, if c = 0, 1, 2, 3, thenG is called a tree, a unicyclic
graph, a bicyclic graph, a tricyclic graph, respectively. For v ∈ V (G), N (v) denotes
the neighborhood of v in G and d(v) = |N (v)| denotes the degree of vertex v. If
di = dG(vi ) for 1 ≤ i ≤ n, then we call the sequence π = (d1, d2, . . . , dn) the degree
sequence of G. Throughout this paper, we enumerate the degrees in non-increasing
order, i.e., d1 ≥ d2 ≥ · · · ≥ dn . A non-increasing sequence π = (d1, d2, . . . , dn) is
called graphic if there exists a graph G having π as its degree sequence. We use Cπ

to denote the class of connected graphs with degree sequence π .
For a graph G, A(G) is its adjacency matrix and D(G) is the diagonal matrix

of its degrees. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian
matrix of G. The largest eigenvalue of A(G) (resp., Q(G)) is called the spectral
radius (resp., signless Laplacian spectral radius) of G and denoted by ρ(G) (resp.,
μ(G)). If G is connected, then A(G) (resp., Q(G)) is irreducible and by the Perron–
Frobenius theorem, ρ(G) (resp., μ(G)) has multiplicity one and there exists a unique
positive unit eigenvector corresponding to ρ(G) (resp., μ(G)). In this paper, we use
f = (

f (v1), f (v2), . . . , f (vn)
)T to indicate the unique positive unit eigenvector

corresponding to ρ(G) (resp., μ(G)), and call f the Perron vector of A(G) (resp.,
Q(G)). Furthermore, if ρ(G) (resp., μ(G)) is greatest in Cπ , then G is called an
extremal greatest graph of Cπ for ρ(G) (resp., μ(G)).

Suppose π = (d1, d2, . . . , dn) and π ′ = (d ′
1, d

′
2, . . . , d

′
n) are two non-increasing

degree sequences. We say π is majorizated by π ′, denoted by π � π ′, if and only if
π �= π ′,

∑n
i=1 di = ∑n

i=1 d
′
i , and

∑ j
i=1 di ≤ ∑ j

i=1 d
′
i for all j = 1, 2, . . . , n − 1.

In 2008, Bıyıkoğlu and Leydold connected the majorization of degree sequences
with ordering graphs by their spectral radius, and they obtained the majorization the-
orem of trees as follows.

Theorem 1.1 [1] Let π and π ′ be two different non-increasing degree sequences of
trees with π � π ′. Suppose T and T ′ are the trees with the greatest spectral radius in
Cπ and Cπ ′ , respectively. Then, ρ(T ) < ρ(T ′).

Almost at the same time, Zhang [15] proved the majorization theorem for the
Laplacian spectral radius of trees. In the sequel, similar problems have been studied
extensively. Liu et al. [9] and Zhang [16] proved the majorization theorems for the
spectral radius and signless Laplacian spectral radius of unicyclic graphs, respectively.
Jiang et al. [6] and Huang et al. [5] proved the majorization theorems for the spectral
radius and signless Laplacian spectral radius of bicyclic graphs, respectively, and Jiang
et al. [6] provided a counterexample to show that themajorization theorem cannot hold
for tricyclic graphs. Liu and Liu et al. [7,9,12,13] proved the majorization theorems
for the spectral radius and signless Laplacian spectral radius of c-cyclic graphs with
additional restrictions, respectively. Recently, Liu et al. [10] proved the majorization
theorems for the spectral radius and signlessLaplacian spectral radius of pseudographs.
For more results, one may refer to [8,11].
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Let G1 and G2 be graphs with disjoint vertex sets, and G1 ∨ G2 denote the join
of G1 and G2. If G is connected, then K1 ∨ G is called a single-cone graph. In
particular, if G is a tree (unicyclic graph) of order n − 1, then we call K1 ∨ G a
single-cone tree (unicyclic graph) of order n. For a non-increasing graphic sequence
π = (d1, d2, . . . , dn), let

Jπ = {G : G is a single-cone graph with degree sequence π}.
If G ∈ Jπ and ρ(G) ≥ ρ(G ′) (resp., μ(G) ≥ μ(G ′)) for any other G ′ ∈ Jπ , then
we call G has the greatest spectral radius (resp., signless Laplacian spectral radius) in
Jπ .

In this paper, we give the majorization theorems for the spectral radius and signless
Laplacian spectral radius of single-cone trees and single-cone unicyclic graphs, and
the main results can be stated as follows:

Theorem 1.2 Letπ andπ ′ be two different non-increasing degree sequences of single-
cone trees with π � π ′. Suppose G and G ′ are the single-cone trees with the greatest
spectral radius (resp., signless Laplacian spectral radius) in Jπ and Jπ ′ , respectively.
Then, ρ(G) < ρ(G ′) (resp., μ(G) < μ(G ′)).
Theorem 1.3 Letπ andπ ′ be two different non-increasing degree sequences of single-
cone unicyclic graphs with π � π ′. Suppose G and G ′ are the single-cone unicyclic
graphs with the greatest spectral radius (resp., signless Laplacian spectral radius) in
Jπ and Jπ ′ , respectively. Then, ρ(G) < ρ(G ′) (resp., μ(G) < μ(G ′)).

The rest of the paper is organized as follows. In Sect. 2, we recall some basic notions
and lemmas used further, and prove a new lemma. In Sect. 3, we give the proof of
Theorem 1.2. In Sect. 4, we give the proof of Theorem 1.3.

2 Preliminaries

Given a unit n-vector g = (g1, g2, . . . , gn)T ∈ Rn , g can be considered as a function
defined on V (G), that is, each vertex vi is mapped to gi = g(vi ). The Rayleigh
quotients of the adjacency matrix A(G) and signless Laplacian matrix Q(G) are
defined, respectively, as follows:

RA(G)(g) =
∑

uv∈E
2g(u)g(v) and RQ(G)(g) =

∑

uv∈E
(g(u) + g(v))2.

It follows from the Rayleigh–Ritz theorem that

Lemma 2.1 [3,4] Let S denote the set of unit vectors on V . Then,

ρ(G) = max
g∈S RA(G)(g) = 2max

g∈S
∑

uv∈E
g(u)g(v),

μ(G) = max
g∈S RQ(G)(g) = max

g∈S
∑

uv∈E
(g(u) + g(v))2.
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Moreover, ifRA(G)(g) = ρ(G) (resp.,RQ(G)(g) = μ(G)) for a positive vector g ∈ S,
then g is an eigenvector corresponding to ρ(G) (resp., μ(G)).

Let f = ( f (v1), f (v2), . . . , f (vn))T be the Perron vector of A(G) (resp., Q(G)).
Then, ρ(G) f (v) = ∑

uv∈E f (u) (resp., μ(G) f (v) = d(v) f (v) + ∑
uv∈E f (u)) for

v ∈ V (G). We will refer to such an equation as the eigenvalue equation of ρ(G)

(resp., μ(G)). Let G − u denote the graph that arises from G by deleting the vertex
u ∈ V (G) and all the edges incident with u, and G − uv denote the graph that arises
from G by deleting the edge uv ∈ E(G). Similarly, G + uv is the graph that arises
from G by adding an edge uv /∈ E(G), where u, v ∈ V (G).

In order to complete the proof of the theorems, we also need the following definition
and lemmas.

Lemma 2.2 [4,14] Let u, v be two vertices of the connected graph G. Suppose
v1, v2, . . . , vs ∈ NG(v)\NG(u) (1 ≤ s ≤ dG(v)), and f is the Perron vector of
A(G) (resp., Q(G)). Let G

′
be the graph obtained from G by deleting the edges vvi

and adding the edges uvi (1 ≤ i ≤ s). If f (u) ≥ f (v), then ρ(G
′
) > ρ(G) (resp.,

μ(G
′
) > μ(G)).

Lemma 2.3 [1,15] LetG be a connected graph of order n such that v1v3, v2v4 ∈ E(G),
v1v2, v3v4 /∈ E(G). Let G

′ = G − v1v3 − v2v4 + v1v2 + v3v4. Suppose f is the
Perron vector of A(G) (resp., Q(G)); if f (v1) ≥ f (v4) and f (v2) ≥ f (v3), then
ρ(G

′
) ≥ ρ(G) (resp., μ(G

′
) ≥ μ(G)), where the equalities hold if and only if

f (v1) = f (v4) and f (v2) = f (v3).

Lemma 2.4 [8] LetG be a connected graph and f be the Perron vector of A(G) (resp.,
Q(G)). Let G ′ be a connected graph obtained from G by deleting t (≥ 1) edges and
adding another t new edges such that G � G ′. Suppose that there exists a vertex v ∈
V (G) such that NG(v) ⊂ NG ′(v) or NG ′(v) ⊂ NG(v). If RA(G ′)( f ) ≥ RA(G)( f )
(resp.,RQ(G ′)( f ) ≥ RQ(G)( f )), then ρ(G ′) > ρ(G) (resp., μ(G ′) > μ(G)).

Lemma 2.5 [2,9] Let π = (d1, d2, . . . , dn) be a sequence with d1 ≥ d2 ≥ · · · ≥ dn >

0. Then, π is graphic if and only if

n∑

i=1

di is even and
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{di , k} for all k = 1, 2, . . . , n − 1.

Lemma 2.6 [12] Let π = (d1, d2, . . . , dn) and π ′ = (d ′
1, d

′
2, . . . , d

′
n) be two non-

increasing degree sequences with π � π ′. Then, dn ≥ d ′
n .

Lemma 2.7 [2,15] Let π and π ′ be two non-increasing graphic degree sequences. If
π �π ′, then there exists a series non-increasing graphic degree sequences π1, . . . , πk

such that (π =) π0 � π1 � · · · � πk � πk+1(= π ′), and πi and πi+1 differ only at
two positions, where the differences are 1 for 0 ≤ i ≤ k.

Definition 2.8 [6,10] Let π = (d1, d2, . . . , dn) and π ′ = (d ′
1, d

′
2, . . . , d

′
n) be two

different non-increasing degree sequences.We sayπ is starmajorizated byπ ′, denoted
by π �∗ π ′, if and only if π � π ′ and only two components of π and π ′ are different
by 1, that is, di = d ′

i for i �= k, l, 1 ≤ k < l ≤ n and d ′
k = dk + 1, d ′

l = dl − 1.
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Lemma 2.9 Suppose π = (d1, d2, . . . , dn) is a non-increasing degree sequence. If G
is an extremal greatest single-cone graph for ρ(G) (resp., μ(G)) in Jπ with Perron
vector f , then there exists an ordering of the vertices of G such that d(vi ) = di for
1 ≤ i ≤ n and f (v1) ≥ f (v2) ≥ · · · ≥ f (vn).

Proof SinceG is a single-cone graph, there exists a vertex v1 such that dG(v1) = n−1
and G − v1 is a connected graph. Create an ordering of the vertices of G beginning
with v1 and appending other vertices after it. We use the notation vi ≺ v j to indicate
that the vertex vi precedes the vertex v j in the ordering of vertices. Clearly, v1 ≺ vi for
i = 2, 3, . . . , n. The order of other vertices is defined as follows: if dG(vi ) > dG(v j ),
or dG(vi ) = dG(v j ) and f (vi ) ≥ f (v j ), then vi ≺ v j . It is easy to see that this
ordering satisfies dG(v1) ≥ dG(v2) ≥ · · · ≥ dG(vn). We will prove that f (v1) ≥
f (v2) ≥ · · · ≥ f (vn).
Firstly, we claim that f (v1) ≥ f (vi ) for 2 ≤ i ≤ n. Otherwise, we suppose

that there exists some vertex vi such that f (v1) < f (vi ). If dG(vi ) = n − 1, then
NG(v1)\{vi } = NG(vi )\{v1}. By the eigenvalue equation of ρ(G) (resp., μ(G)),
we have f (v1) = f (vi ), contradicting f (v1) < f (vi ). If dG(vi ) < n − 1, then
NG(v1)\(NG(vi ) ∪ {vi }) �= ∅. Let

G ′ = G −
∑

u∈NG (v1)\(NG (vi )∪{vi })
v1u +

∑

u∈NG (v1)\(NG (vi )∪{vi })
vi u.

Then, dG ′(vi ) = dG(v1), dG ′(v1) = dG(vi ) and dG ′(v) = dG(v) for v ∈
V (G)\{v1, vi }. Noting that G − v1 is a connected graph and the neighbors of vi
in G − v1 are adjacent to v1 in G ′ − vi , we have G ′ − vi which is a connected
graph. This implies that G ′ ∈ Jπ . By Lemma 2.2, we have ρ(G ′) > ρ(G) ( resp.,
μ(G ′) > μ(G)), a contradiction because G is an extremal greatest single-cone graph
for ρ(G) (resp., μ(G)) in Jπ . Therefore, f (v1) ≥ f (vi ) for 2 ≤ i ≤ n.

Secondly, we show that vi ≺ v j implies f (vi ) ≥ f (v j ) for all vi , v j ∈ V (G)\{v1}.
Otherwise, we suppose that there exist two vertices such that vi ≺ v j but f (v j ) >

f (vi ). Then, d(vi ) ≥ d(v j ). Noting that vi , v j ∈ V (G)\{v1}, there exists a shortest
path Pi j from vi to v j in G − v1. If dG(vi ) > dG(v j ), let k = dG(vi ) − dG(v j ), vl ∈
V (Pi j ) and vlvi ∈ E(G). Then, there exist k vertices u1, . . . , uk ∈ NG(vi )\(NG(v j )∪
{vl}). Let

G ′ = G −
k∑

s=1

vi us +
k∑

s=1

v j us .

Then, G ′ ∈ Jπ . By Lemma 2.2, we have ρ(G ′) > ρ(G) (resp., μ(G ′) > μ(G)),
a contradiction because G is an extremal greatest single-cone graph for ρ(G) (resp.,
μ(G)) in Jπ . If dG(vi ) = dG(v j ), noting that vi ≺ v j , we have f (vi ) ≥ f (v j ),
contradicting f (v j ) > f (vi ).

Combining the above arguments, we have f (v1) ≥ f (v2) ≥ · · · ≥ f (vn). �
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3 The proof of Theorem 1.2

The proof of Theorem 1.2 Since π �π ′, it follows from Lemma 2.7 and Definition 2.8
that there exists a series non-increasing graphic degree sequences π1, . . . , πk such that
(π =) π0 �∗ π1 �∗ · · · �∗ πk �∗ πk+1(= π ′). Let πi = (d (i)

1 , d (i)
2 , . . . , d (i)

n ) for

0 ≤ i ≤ k. Clearly, d1 = d (1)
1 = · · · = d (k)

1 = d ′
1 = n − 1. By Lemma 2.6, we

have dn ≥ d (1)
n ≥ · · · ≥ d (k)

n ≥ d ′
n . Noting that π and π ′ are two different non-

increasing degree sequences of single-cone trees, we have dn = d ′
n = 2. This implies

that dn = d (1)
n = · · · = d (k)

n = d ′
n = 2.

Since π �∗ π1, without loss of generality, we suppose that dk + 1 = d (1)
k , dl − 1 =

d (1)
l , d j = d (1)

j for j /∈ {k, l}, and 1 < k < l < n. Let f be the Perron vector of
A(G) (resp., Q(G)). Then, Lemma 2.9 implies that there exists an ordering of the
vertices of G such that d(vi ) = di for 1 ≤ i ≤ n and f (v1) ≥ f (v2) ≥ · · · ≥ f (vn).
Particularly, f (vk) ≥ f (vl).

Assume thatG−v1 is a tree and Pkl is a shortest path from vk to vl inG−v1. Noting
that dl = d (1)

l + 1 > 2, there must exist some w ∈ NG−v1(vl)\NG−v1(vk) such that
w /∈ V (Pkl). LetG1 = G−vlw+vkw. Then,G1−v1 is a tree, dG1(vk) = dG(vk)+1,
dG1(vl) = dG(vl) − 1, and dG1(v) = dG(v) for v ∈ V (G)\{vk, vl}. This implies that
G1 is a single-cone tree and G1 ∈ Jπ1 . Noting that f (vk) ≥ f (vl), by Lemma 2.2,
we have ρ(G) < ρ(G1) (resp., μ(G) < μ(G1)). Let G∗

1 be the single-cone tree with
the greatest spectral radius (resp., signless Laplacian spectral radius) in Jπ1 . Then,
ρ(G) < ρ(G1) ≤ ρ(G∗

1) (resp., μ(G) < μ(G1) ≤ μ(G∗
1)).

By a similar reasoning as the above, we can obtain thatπi is a non-increasing degree
sequence of a single-cone tree for each 2 ≤ i ≤ k. Let G∗

i be a single-cone tree with
the greatest spectral radius (resp., signless Laplacian spectral radius) in Jπi . Then, we
have ρ(G) < ρ(G∗

1) < · · · < ρ(G∗
k) < ρ(G ′) (resp., μ(G) < μ(G∗

1) < · · · <

μ(G∗
k) < μ(G ′)). �

4 The proof of Theorem 1.3

Lemma 4.1 Letπ = (d1, d2, . . . , dn) be a non-increasing degree sequence of a single-
cone unicyclic graph, and G be an extremal greatest single-cone unicyclic graph for
ρ(G) (resp.,μ(G)) in Jπ . Supposeπ ′ = (d ′

1, d
′
2, . . . , d

′
n) (d

′
n ≥ 2) is a non-increasing

graphic degree sequence such that π �∗ π ′. Then, there exists a single-cone unicyclic
graph G ′ ∈ Jπ ′ such that ρ(G) < ρ(G ′) (resp., μ(G) < μ(G ′)).

Proof Since π �∗ π ′, without loss of generality, we suppose that dk + 1 = d ′
k ,

dl − 1 = d ′
l , and di = d ′

i for i �= k, l. Since π is a non-increasing degree sequence
of a single-cone unicyclic graph, then d1 = d ′

1 = n − 1, di ≥ 2 for 1 ≤ i ≤ n,
and 1 < k < l ≤ n. Assume that G − v1 is a unicyclic graph. Let Pkl be a shortest
path from vk to vl in G − v1, u ∈ NG−v1(vl) ∩ V (Pkl) and f be the Perron vector
of A(G) (resp., Q(G)). By Lemma 2.9, there exists an ordering of the vertices of G
such that d(vi ) = di for 1 ≤ i ≤ n and f (v1) ≥ f (v2) ≥ · · · ≥ f (vn). Particularly,
f (vk) ≥ f (vl).
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Case 1 NG−v1(vl)\(NG−v1(vk)∪{u}) �= ∅.Assumew ∈ NG−v1(vl)\(NG−v1(vk)

∪ {u}). Let G ′ = G − vlw + vkw. Then, G ′ − v1 is a unicyclic graph,
dG ′(vk) = dG(vk) + 1, dG ′(vl) = dG(vl) − 1, and dG ′(v) = dG(v)

for v ∈ V (G)\{vk, vl}. This implies that G ′ is a single-cone unicyclic
graph and G ′ ∈ Jπ ′ . Noting that f (vk) ≥ f (vl), by Lemma 2.2, we have
ρ(G) < ρ(G ′) (resp., μ(G) < μ(G ′)).

Case 2 NG−v1(vl)\(NG−v1(vk) ∪ {u}) = ∅. Noting that G is a single-cone uni-
cyclic graph, we have dl ≤ 3, and so d ′

l ≤ 2. Since d ′
l ≥ d ′

n ≥ 2,
it follows that d ′

l = 2, dl = 3, di = d ′
i = 2 for l + 1 ≤ i ≤ n.

Let w ∈ NG−v1(vl)\{u}. Then, w ∈ NG−v1(vk). This implies that
|V (Pkl)| ≤ 3.

Subcase 2.1 |V (Pkl)| = 2. In this case, C3 = vkwvlvk is the unique cycle of G − v1.
We claim that l ≥ 5. Otherwise, we suppose l ≤ 4. Noting that π ′
is a non-increasing degree sequence and d ′

l = 2, we have d ′
i = 2 for

4 ≤ i ≤ n. By π � π ′, we have
∑n

i=1 d
′
i = ∑n

i=1 di = 2(2n − 2). It
follows that

3∑

i=1

d ′
i =

n∑

i=1

d ′
i −

n∑

i=4

d ′
i = 2n + 2 > 2n = 3(3 − 1) +

n∑

i=4

min{d ′
i , 3},

a contradiction to Lemma 2.5. Therefore, l ≥ 5. This implies that there must exist
vertices a, b such that a /∈ {v1, vk, vl , w}, dG(a) ≥ 3, dG(b) = 2, and ab ∈ E(G).

If avk /∈ E(G), noting that dG(vl) = 3 and dG(b) = 2, we have f (vl) ≥ f (b),
avl /∈ E(G), and bvk /∈ E(G). We claim that f (vk) ≥ f (a). Otherwise, we suppose
f (a) > f (vk). LetG∗ = G−ab−vlvk +avl +bvk . By Lemma 2.3, we have ρ(G) <

ρ(G∗) (resp.,μ(G) < μ(G∗)). It is easy to see that G∗ ∈ Jπ , which is a contradiction
because G has the greatest spectral radius (resp., signless Laplacian spectral radius)
in Jπ . Therefore, f (vk) ≥ f (a). Noting that di = d ′

i = 2 for l + 1 ≤ i ≤ n, we
have a ≺ vl . It follows that f (a) ≥ f (vl). Let G ′ = G − vkvl − ab + vka + vkb.
Then, dG ′(vk) = dG(vk) + 1, dG ′(vl) = dG(vl) − 1, and dG ′(v) = dG(v) for
v ∈ V (G)\{vk, vl}. It is not difficult to see thatG ′−v1 is a unicyclic graph,G ′ ∈ Jπ ′ ,

RA(G ′)( f ) − RA(G)( f ) = 2
∑

xy∈E(G ′)
f (x) f (y) − 2

∑

xy∈E(G)

f (x) f (y)

= 2 f (vk) f (a) + 2 f (vk) f (b) − 2 f (a) f (b) − 2 f (vk) f (vl)

= 2 f (vk)( f (a) − f (vl)) + 2 f (b)( f (vk) − f (a)) ≥ 0,

and

RQ(G ′)( f ) − RQ(G)( f ) =
∑

xy∈E(G ′)
( f (x) + f (y))2 −

∑

xy∈E(G)

( f (x) + f (y))2

= f 2(vk) − f 2(vl) + 2 f (vk)( f (a) − f (vl))

+2 f (b)( f (vk) − f (a)) ≥ 0.
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By Lemma 2.1, we have ρ(G ′) ≥ RA(G ′)( f ) ≥ RA(G)( f ) = ρ(G) (resp., μ(G ′) ≥
RQ(G ′)( f ) ≥ RQ(G)( f ) = μ(G)). Noting that NG ′(vl) ⊂ NG(vl), by Lemma 2.4,
we have ρ(G ′) > ρ(G) (resp., μ(G ′) > μ(G)).

If avk ∈ E(G), we can show f (vk) ≥ f (a) similarly. Let G ′ = G − wvl − ab +
wa + vkb. Then, dG ′(vk) = dG(vk) + 1, dG ′(vl) = dG(vl) − 1, and dG ′(v) = dG(v)

for v ∈ V (G)\{vk, vl}. It is not difficult to see that G ′ − v1 is a unicyclic graph,
G ′ ∈ Jπ ′ ,

RA(G ′)( f ) − RA(G)( f ) = 2
∑

xy∈E(G ′)
f (x) f (y) − 2

∑

xy∈E(G)

f (x) f (y)

= 2 f (w) f (a) + 2 f (vk) f (b) − 2 f (a) f (b) − 2 f (w) f (vl)

= 2 f (w)( f (a) − f (vl)) + 2 f (b)( f (vk) − f (a)) ≥ 0,

and

RQ(G ′)( f ) − RQ(G)( f ) =
∑

xy∈E(G ′)
( f (x) + f (y))2 −

∑

xy∈E(G)

( f (x) + f (y))2

= f 2(vk) − f 2(vl) + 2 f (w)( f (a) − f (vl))

+ 2 f (b)( f (vk) − f (a)) ≥ 0.

By Lemma 2.1, we have ρ(G ′) ≥ RA(G ′)( f ) ≥ RA(G)( f ) = ρ(G) (resp., μ(G ′) ≥
RQ(G ′)( f ) ≥ RQ(G)( f ) = μ(G)). Noting that NG ′(vl) ⊂ NG(vl), by Lemma 2.4,
we have ρ(G ′) > ρ(G) (resp., μ(G ′) > μ(G)).

Subcase 2.2 |V (Pkl)| = 3. In this case, Pkl = vkuvl andC4 = vkwvluvk is the unique
cycle of G − v1. This implies that dG(vk) ≥ 3, dG(w) ≥ 3, dG(u) ≥ 3.
By di = d ′

i = 2 for l+1 ≤ i ≤ n, we havew ≺ vl and u ≺ vl . It follows
that f (w) ≥ f (vl) and f (u) ≥ f (vl).

If f (vk) ≥ f (w), letG ′ = G−wvl−uvl+vkvl+wu. Then, dG ′(vk) = dG(vk)+1,
dG ′(vl) = dG(vl) − 1, dG ′(v) = dG(v) for v ∈ V (G)\{vk, vl}. This implies that
G ′ − v1 is a unicyclic graph, G ′ ∈ Jπ ′ ,

RA(G ′)( f ) − RA(G)( f ) = 2
∑

xy∈E(G ′)
f (x) f (y) − 2

∑

xy∈E(G)

f (x) f (y)

= 2 f (vk) f (vl) + 2 f (w) f (u) − 2 f (w) f (vl) − 2 f (u) f (vl)

= 2 f (vl)( f (vk) − f (w)) + 2 f (u)( f (w) − f (vl)) ≥ 0,

and

RQ(G ′)( f ) − RQ(G)( f ) =
∑

xy∈E(G ′)
( f (x) + f (y))2 −

∑

xy∈E(G)

( f (x) + f (y))2

= f 2(vk) − f 2(vl) + 2 f (vl)( f (vk) − f (w))

+ 2 f (u)( f (w) − f (vl)) ≥ 0.
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By Lemma 2.1, we have ρ(G ′) ≥ RA(G ′)( f ) ≥ RA(G)( f ) = ρ(G) (resp., μ(G ′) ≥
RQ(G ′)( f ) ≥ RQ(G)( f ) = μ(G). Noting that NG(vk) ⊂ NG ′(vk), by Lemma 2.4,
we have ρ(G ′) > ρ(G) (resp., μ(G ′) > μ(G)).

If f (w) > f (vk), letG ′ = G−wvl −uvk +wu+vkvl . It is easy to see thatG ′−v1
is a unicyclic graph and dG ′(v) = dG(v) for v ∈ V (G). This implies thatG ′ ∈ Jπ . By
Lemma 2.3, we have ρ(G ′) > ρ(G) (resp., μ(G ′) > μ(G)), a contradiction because
G has the greatest spectral radius (resp., signless Laplacian spectral radius) in Jπ . �

The proof of Theorem 1.3 Since π �π ′, it follows from Lemma 2.7 and Definition 2.8
that there exists a series non-increasing graphic degree sequences π1, . . . , πk such that
(π =) π0 �∗ π1 �∗ · · · �∗ πk �∗ πk+1(= π ′). Let πi = (d (i)

1 , d (i)
2 , . . . , d (i)

n ) for

0 ≤ i ≤ k. By Lemma 2.6, we have dn ≥ d (1)
n ≥ · · · ≥ d (k)

n ≥ d ′
n ≥ 2.

For π and π1, Lemma 4.1 implies that there exists a single-cone unicyclic graph
G1 ∈ Jπ1 such that ρ(G) < ρ(G1) (resp.,μ(G) < μ(G1)). It follows that π1 is a non-
increasing degree sequence of a single-cone unicyclic graph. Let G∗

1 be a single-cone
unicyclic graph with the greatest spectral radius (resp., signless Laplacian spectral
radius) in Jπ1 . Then, ρ(G) < ρ(G1) ≤ ρ(G∗

1) (resp., μ(G) < μ(G1) ≤ μ(G∗
1)).

By a similar reasoning as the above, we can obtain that π j is a non-increasing
degree sequence of a single-cone unicyclic graph for each 2 ≤ j ≤ k. Let G∗

j be a
single-cone unicyclic graph with the greatest spectral radius (resp., signless Laplacian
spectral radius) in Jπ j for 2 ≤ j ≤ k. By Lemma 4.1, we have ρ(G) < ρ(G∗

1) <

· · · < ρ(G∗
k) < ρ(G ′) (resp., μ(G) < μ(G∗

1) < · · · < μ(G∗
k) < μ(G ′)). �
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