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Abstract

A single-cone tree (unicyclic graph) is the join of a complete graph K; and a tree
(unicyclic graph). Suppose 7 = (dy,da, ..., d,) and ' = (d/,d;, ..., d,) are two
non-increasing degree sequences. We say 7 is majorizated by 7/, denoted by & <17,
ifandonly if m # 7/, Y7 di = Y/, di/, and Y1, di < Y1, dl./ forall j =
1,2,...,n— 1. We use J to denote the class of single-cone trees (unicyclic graphs)
with degree sequence 7. Suppose that 7 and 7’ are two different non-increasing
degree sequences of single-cone trees (unicyclic graphs). Let p and p’ be the largest
spectral radius of the graphs in J; and J, respectively, u and ' be the largest
signless Laplacian spectral radius of the graphs in J; and J,-, respectively. In this
paper, we prove that if 7 <7/, then p < p’and u < u’.
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1 Introduction

Let G = (V, E) be asimple undirected graph with vertex set V = {vy, v2, ..., v,} and
edgeset E = {e1, ez, ..., e}, 1e,|V|=nand |[E|=m.Ifm =n+c—1,then G is
called a c-cyclic graph. Particularly, if c = 0, 1, 2, 3, then G is called a tree, a unicyclic
graph, a bicyclic graph, a tricyclic graph, respectively. For v € V(G), N(v) denotes
the neighborhood of v in G and d(v) = |N(v)| denotes the degree of vertex v. If

d;i = dg(v;) for 1 <i < n,then we call the sequence & = (dy, da, . . ., d,) the degree
sequence of G. Throughout this paper, we enumerate the degrees in non-increasing
order, i.e., d| > dy > --- > d,. A non-increasing sequence 7 = (d1,da, ..., dy) is

called graphic if there exists a graph G having 7 as its degree sequence. We use C
to denote the class of connected graphs with degree sequence .

For a graph G, A(G) is its adjacency matrix and D(G) is the diagonal matrix
of its degrees. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian
matrix of G. The largest eigenvalue of A(G) (resp., Q(G)) is called the spectral
radius (resp., signless Laplacian spectral radius) of G and denoted by p(G) (resp.,
w(G)). If G is connected, then A(G) (resp., Q(G)) is irreducible and by the Perron—
Frobenius theorem, p (G) (resp., u(G)) has multiplicity one and there exists a unique
positive unit eigenvector corresponding to p(G) (resp., u(G)). In this paper, we use
f=(fo, fw),.... f (vn))T to indicate the unique positive unit eigenvector
corresponding to p(G) (resp., u(G)), and call f the Perron vector of A(G) (resp.,
Q(G)). Furthermore, if p(G) (resp., 1(G)) is greatest in C, then G is called an
extremal greatest graph of C for p(G) (resp., n(G)).

Suppose w = (di, ds, ...,d,) and w" = (d|,d;, ..., d,) are two non-increasing
degree sequences. We say 7 is majorizated by 7, denoted by 7 <1 7, if and only if
mFER Y di =Y d/, and Z{:l d; < Z{:l d/forallj=1,2,...,n—1.

In 2008, Biyikoglu and Leydold connected the majorization of degree sequences
with ordering graphs by their spectral radius, and they obtained the majorization the-
orem of trees as follows.

Theorem 1.1 [1] Let 7w and 7’ be two different non-increasing degree sequences of
trees with 7 < 7w/ Suppose T and T’ are the trees with the greatest spectral radius in
C and C/, respectively. Then, p(T) < p(T").

Almost at the same time, Zhang [15] proved the majorization theorem for the
Laplacian spectral radius of trees. In the sequel, similar problems have been studied
extensively. Liu et al. [9] and Zhang [16] proved the majorization theorems for the
spectral radius and signless Laplacian spectral radius of unicyclic graphs, respectively.
Jiang et al. [6] and Huang et al. [5] proved the majorization theorems for the spectral
radius and signless Laplacian spectral radius of bicyclic graphs, respectively, and Jiang
etal. [6] provided a counterexample to show that the majorization theorem cannot hold
for tricyclic graphs. Liu and Liu et al. [7,9,12,13] proved the majorization theorems
for the spectral radius and signless Laplacian spectral radius of c-cyclic graphs with
additional restrictions, respectively. Recently, Liu et al. [10] proved the majorization
theorems for the spectral radius and signless Laplacian spectral radius of pseudographs.
For more results, one may refer to [8,11].
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Let G1 and G, be graphs with disjoint vertex sets, and G| vV G, denote the join
of G and G,. If G is connected, then K; Vv G is called a single-cone graph. In
particular, if G is a tree (unicyclic graph) of order n — 1, then we call K1 vV G a
single-cone tree (unicyclic graph) of order n. For a non-increasing graphic sequence
7w =, d, ..., dy,),let

Jr = {G : G is asingle-cone graph with degree sequence 7}.

If G € J; and p(G) > p(G') (resp., u(G) > u(G")) for any other G’ € J, then
we call G has the greatest spectral radius (resp., signless Laplacian spectral radius) in
Jr.

In this paper, we give the majorization theorems for the spectral radius and signless
Laplacian spectral radius of single-cone trees and single-cone unicyclic graphs, and
the main results can be stated as follows:

Theorem 1.2 Let and 7w’ be two different non-increasing degree sequences of single-
cone trees with w <\, Suppose G and G’ are the single-cone trees with the greatest
spectral radius (resp., signless Laplacian spectral radius) in J; and J, respectively.

Then, p(G) < p(G') (resp., 1(G) < u(G")).

Theorem 1.3 Let and 7w’ be two different non-increasing degree sequences of single-
cone unicyclic graphs with 1 <A w’. Suppose G and G’ are the single-cone unicyclic
graphs with the greatest spectral radius (resp., signless Laplacian spectral radius) in
Jr and Jy 1, respectively. Then, p(G) < p(G') (resp., u(G) < u(G")).

The rest of the paper is organized as follows. In Sect. 2, we recall some basic notions
and lemmas used further, and prove a new lemma. In Sect. 3, we give the proof of
Theorem 1.2. In Sect. 4, we give the proof of Theorem 1.3.

2 Preliminaries

Given a unit n-vector g = (g1, g2, ..., &) € R", g can be considered as a function
defined on V(G), that is, each vertex v; is mapped to g; = g(v;). The Rayleigh
quotients of the adjacency matrix A(G) and signless Laplacian matrix Q(G) are
defined, respectively, as follows:

Ra)(@) = ) 28gw®) and Ro@)(@) = ) (gw) + ).

uveE uvekE

It follows from the Rayleigh—Ritz theorem that
Lemma 2.1 [3,4] Let S denote the set of unit vectors on V. Then,

p(G) = max Raw)(8) = 2133;( > g v),

uvekE

w(G) = maxRo(q)(g) = max > () + g(w)*.

uvekE
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Moreover,if R4(6)(g) = p(G) (resp., Ro(G)(g) = n(G)) forapositive vector g € S,
then g is an eigenvector corresponding to o (G) (resp., u(G)).

Let f = (f(v1), f(v2),..., f(vn))T be the Perron vector of A(G) (resp., Q(G)).
Then, p(G) (V) = Y ypep [ ) (tesp., u(G) £ (v) = d () f(v) + e £ ) for
v € V(G). We will refer to such an equation as the eigenvalue equation of p(G)
(resp., £(G)). Let G — u denote the graph that arises from G by deleting the vertex
u € V(G) and all the edges incident with u, and G — uv denote the graph that arises
from G by deleting the edge uv € E(G). Similarly, G + uv is the graph that arises
from G by adding an edge uv ¢ E(G), where u, v € V(G).

In order to complete the proof of the theorems, we also need the following definition
and lemmas.

Lemma 2.2 [4,14] Let u, v be two vertices of the connected graph G. Suppose
v, V2,..., Vs € Ng(W\Ng) (1 <5 < dg(v)), and f is the Perron vector of
A(G) (resp., Q(G)). Let G’ be the graph obtained from G by deleting the edges vv;
and a}dding the edges uv; (1 <i < s).If f(u) > f(v), then p(G/) > p(G) (resp.,
w(G ) > u(G)).

Lemma 2.3 [1,15] Let G be a connected graph of order n such that viv3, vav4 € E(G),
vivy, v3v4 ¢ E(G). Let G =G- V1V3 — Va4 + V1V + v3v4. Suppose f is the
Perron vector of A(G) (resp., Q(G)); if f(v1) = f(vq) and f(v2) > f(v3), then
(G = p(G) (tesp., u(G') > wu(G)), where the equalities hold if and only if
f(1) = f(vg) and f(v2) = f(v3).

Lemma 2.4 [8] Let G be a connected graph and f be the Perron vector of A(G) (resp.,
Q(G)). Let G’ be a connected graph obtained from G by deleting 7 (> 1) edges and
adding another 7 new edges such that G 2 G '. Suppose that there exists a vertex v €
V(G) such that Ng(v) C Ng/(v) or Ng/(v) C Ng(v). If RA(G/)(f) > RA(G)(f)
(resp.. RoG 1 (f) = Ro) (/). then p(G”) > p(G) (resp., u(G ') > 11(G)).

Lemma 2.5 [29]Letwr = (dy,d>, ...,d,) beasequence withd; > dp, > --- > d, >
0. Then, 7 is graphic if and only if

n k n
Zdi is even and Zdisk(k—lH- Z min{d;, k} forall k=1,2,....,n—1.
i=1 i=1 i=k+1

Lemma2.6 [12] Let 7 = (d,d>,...,dy) and ' = (d{,d,, ...,d,) be two non-
increasing degree sequences with = < r’. Then, d, > d,..

Lemma 2.7 [2,15] Let = and 7/ be two non-increasing graphic degree sequences. If
7 </, then there exists a series non-increasing graphic degree sequences 71, . . ., Tk
such that (r =) 79 Q7 < -+ <7 < Wt 1(= 7’), and 7; and 7;; differ only at
two positions, where the differences are 1 for 0 <i < k.

Definition 2.8 [6,10] Let 7 = (d,d>,...,d,) and 7’ = (d/,d;,...,d,) be two
different non-increasing degree sequences. We say 7 is star majorizated by 7/, denoted
by 7 <* 7/, if and only if 7 <17/ and only two components of 77 and 7 " are different
by 1, thatis,d; =d/ fori #k,l,1 <k <l <nandd] =di +1,d/ =d; — 1.
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Lemma 2.9 Suppose 7 = (dy,d3, ..., d,) is a non-increasing degree sequence. If G
is an extremal greatest single-cone graph for p(G) (resp., u(G)) in J; with Perron
vector f, then there exists an ordering of the vertices of G such that d(v;) = d; for
l<i=nand f(vi) = f(v2) = = f(vn)

Proof Since G is a single-cone graph, there exists a vertex vy such thatdg(v;) = n—1
and G — vy is a connected graph. Create an ordering of the vertices of G beginning
with v; and appending other vertices after it. We use the notation v; < v; to indicate
that the vertex v; precedes the vertex v; in the ordering of vertices. Clearly, v; < v; for
i =2,3,...,n. The order of other vertices is defined as follows: if dg (v;) > dg(v;),
or dg(v;) = dg(v;) and f(v;) > f(v;), then v; < v;. It is easy to see that this
ordering satisfies dg(v1) > dg(v2) > --- > dg(v,). We will prove that f(vy) >
f2) == f(va).

Firstly, we claim that f(vy) > f(v;) for 2 < i < n. Otherwise, we suppose
that there exists some vertex v; such that f(vy) < f(v;). If dg(vi) = n — 1, then
Ng()\{vi} = Ng(;)\{v1}. By the eigenvalue equation of p(G) (resp., u(G)),
we have f(vy) = f(v;), contradicting f(vi) < f(v;). If dg(vi) < n — 1, then
N\ (N (v;) U {v;}) # 9. Let

G' =G - Z v+ Z ViU,

ueNg () \(Ng (vj)U{vi}) ueNG )\ (Ng (vp)U{vi})

Then, dg:/(v;) = dg(v1), dg'(v1) = dg(v;) and dg'(v) = dg(v) for v €
V(G)\{v1, vi}. Noting that G — v is a connected graph and the neighbors of v;
in G — v; are adjacent to v in G’ — v;, we have G’ — v; which is a connected
graph. This implies that G’ € J,. By Lemma 2.2, we have p(G') > p(G) ( resp.,
(G’ > u(G)), a contradiction because G is an extremal greatest single-cone graph
for p(G) (resp., u(G)) in J. Therefore, f(v1) > f(v;) for2 <i <n.

Secondly, we show that v; < v; implies f(v;) > f(v;) forallv;, v; € V(G)\{v1}.
Otherwise, we suppose that there exist two vertices such that v; < v; but f(v;) >
f(v;). Then, d(v;) > d(v;). Noting that v;, v; € V(G)\{v1}, there exists a shortest
path P;; from v; tov; in G — vy. If dg (v;) > dg(v)), letk = dg(v;) —dg(vj), v €
V(P;;) andvjv; € E(G). Then, there existk verticesuy, ..., ux € Ng(v;)\(Ng(v;)U
{v}). Let

k k
G =G- Zvius +Zvjus.
s=1 s=1

Then, G’ € J,. By Lemma 2.2, we have p(G’) > p(G) (resp., u(G') > u(G)),
a contradiction because G is an extremal greatest single-cone graph for p(G) (resp.,
n(G)) in Jr. If dg(v;) = dg(vj), noting that v; < vj, we have f(v;) > f(v)),
contradicting f(v;) > f(v;).

Combining the above arguments, we have f(v1) > f(v2) > --- > f(vy). ]
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3 The proof of Theorem 1.2

The proof of Theorem 1.2 Since w <17/, it follows from Lemma 2.7 and Definition 2.8
that there exists a series non-increasing graphic degree sequences 1, . . ., 7k such that
(=) 7o <Fp <F - < < (= 7). Let = (dl(i),dz(i), e dn(i)) for
0<i<k Claly,d =d" =...=d" =d/ = n— 1. By Lemma 2.6, we
have d, > d,,(l) > 0> d,,(k) > d,. Noting that 7 and 7 are two different non-
increasing degree sequences of single-cone trees, we have d, = d, = 2. This implies
thatd, =d\" = .. =d® =d! =2.

Since 7 <* 71, without loss of generality, we suppose that dy + 1 = dk(l) ,dj—1=

dl(l), di = dj(l) for j ¢ {k,l},and | < k < I < n. Let f be the Perron vector of
A(G) (resp., @(G)). Then, Lemma 2.9 implies that there exists an ordering of the
vertices of G such that d(v;) = d; for1 <i <nand f(v)) > f(v2) > --- > f(vy).
Particularly, f(vy) > f(vy).

Assume that G — vy is atree and Py is a shortest path from vy to v; in G —vy. Noting
that d; = dl(l) + 1 > 2, there must exist some w € Ng—y, (v1)\NG—y, (V) such that
w ¢ V(Py).Let G| = G—vyw+vew. Then, G —vyisatree, dg, (vk) = dg (ve) +1,
dg,(v;) =dg(v)) — 1, and dg, (v) = dg(v) for v € V(G)\{vk, v;}. This implies that
G is a single-cone tree and G| € Jg,. Noting that f(vx) > f(v;), by Lemma 2.2,
we have p(G) < p(G1) (resp., u(G) < u(Gyp)). Let G’l‘ be the single-cone tree with
the greatest spectral radius (resp., signless Laplacian spectral radius) in J,. Then,
p(G) < p(G1) = p(GY) (resp., u(G) < u(G1) < n(GY)).

By asimilar reasoning as the above, we can obtain that 77; is a non-increasing degree
sequence of a single-cone tree for each 2 < i < k. Let G be a single-cone tree with
the greatest spectral radius (resp., signless Laplacian spectral radius) in J,,. Then, we
have p(G) < p(G}) < -+ < p(G}) < p(G') (resp., w(G) < u(G}) < --- <
w(Gy) < pn(G)). o

4 The proof of Theorem 1.3

Lemma4.1 Letnw = (dy, da, ..., d,) beanon-increasing degree sequence of a single-
cone unicyclic graph, and G be an extremal greatest single-cone unicyclic graph for
p(G) (resp., u(G)) in Jr. Supposen’ = (d|,d;, ...,d,) (d, = 2)isanon-increasing
graphic degree sequence such that & <t* 7w'. Then, there exists a single-cone unicyclic
graph G’ € J: such that p(G) < p(G') (resp., u(G) < u(G")).

Proof Since m <* 7/, without loss of generality, we suppose that dy + 1 = d,
dy—1=d/,and d; = d/ fori # k,I. Since 7 is a non-increasing degree sequence
of a single-cone unicyclic graph, then d; = d{ =n—1,di >2forl <i <n,
and 1 < k <[ < n. Assume that G — v is a unicyclic graph. Let Py; be a shortest
path from vg to v; in G — vy, u € Ng—y, (1) N V(Py) and f be the Perron vector
of A(G) (resp., Q(G)). By Lemma 2.9, there exists an ordering of the vertices of G
such that d(v;) = d; for 1 <i <nand f(vy) > f(v2) > --- > f(vy,). Particularly,
f) = f(u).
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Case 1 NGy, )\(NG—y, (00)U{u}) # B. Assume w € Ng—y, (1) \(NG—v, (vi)
U{u}). Let G’ = G — vjw + vyw. Then, G’ — vy is a unicyclic graph,
dg'(vk) = dg(vk) + 1, dg'(v1) = dg(vp) — 1, and dg'(v) = dg(v)
for v € V(G)\{vk, v}. This implies that G’ is a single-cone unicyclic
graph and G’ € J+. Noting that f (vi) > f(v;), by Lemma 2.2, we have
p(G) < p(G') (resp., u(G) < u(G")).

Case 2 NG—v (V)\(NG—y, (Vi) U {u}) = 0. Noting that G is a single-cone uni-
cyclic graph, we have d; < 3, and so d; < 2. Since d/ > d, > 2,
it follows that d/ = 2,d} = 3,d; = d/ =2forl+1 <i < n.
Let w € Ng—y, (v)\{u}. Then, w € Ng_y, (vr). This implies that
[V (Pu)| < 3.

Subcase 2.1 |V (Py;)| = 2. In this case, C3 = vpwuv;vy is the unique cycle of G — v.
We claim that [ > 5. Otherwise, we suppose [ < 4. Noting that 7’
is a non-increasing degree sequence and d/ = 2, we have d/ = 2 for
4<i<nBym<an',wehave ) | d/ =37 di =22n—-2). It
follows that

3

n n n
dYod!=>"d/-Y d/=m+2>2m=33-1)+) min{d/.3},

i=1 i=1 i=4 i=4

a contradiction to Lemma 2.5. Therefore, / > 5. This implies that there must exist
vertices a, b such that a ¢ {vy, vk, v;, w}, dg(a) > 3, dg(b) = 2,and ab € E(G).
If avy ¢ E(G), noting that dg (v;) = 3 and dg(b) = 2, we have f(v;) > f(b),
av; ¢ E(G), and by ¢ E(G). We claim that f(vr) > f(a). Otherwise, we suppose
f(a) > f(v).Let G* = G —ab—vjvx +av;+bvg. By Lemma 2.3, we have p(G) <
p(G*) (resp., u(G) < u(G*)). Itis easy to see that G* € J, which is a contradiction
because G has the greatest spectral radius (resp., signless Laplacian spectral radius)
in Jy. Therefore, f(vi) > f(a). Noting thatd; = d/ = 2forl + 1 <i < n, we
have a < v;. It follows that f(a) > f(v;). Let G' = G — vrv; — ab + via + vib.
Then, dg/(vy) = dg(vg) + 1, dg'(v;)) = dg(v;) — 1, and dg/(v) = dg(v) for
v € V(G)\{vg, v;}. Itis not difficult to see that G’ — vy is aunicyclic graph, G’ € J,

RaH() =Ra@ () =2 Y fOFOM=2 Y. fOfO)

xyeE(G') xyeE(G)
=2f () f(a) +2f () f(b) —2f(a)f(b) —2f(ve) f(v)
=2f () (f(a) — fu) +2fB)(f(ve) — f(a)) =0,

and

RowH(f) = Roa(HH = Y, (fFO+fON = D (F@+FG)°

xyeE(G') xyeE(G)
= f2(u) — fA) +2f ) (f(@) — ()
+2£(b)(f (x) — f(a)) = 0.
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By Lemma 2.1, we have p(G") > Ra(f) = Ra)(f) = p(G) (resp., n(G') >
RQ(G/)(f) > RQ(G)(f) = 1(G)). Noting that Ng/(v;) C Ng(v;), by Lemma 2.4,
we have p(G') > p(G) (resp., u(G') > u(G)).

If avy € E(G), we can show f(vr) > f(a) similarly. Let G' = G — wv; — ab +
wa + vib. Then, dg/(vi) = dg(vi) + 1,dg/(v)) = dg(v;) — 1, and dg/(v) = dg (v)
for v € V(G)\{vk, v;}. It is not difficult to see that G’ — v; is a unicyclic graph,
G’ e J,,

Ra@n(f) =Rae) () =2 D fOfMN=2 > fOfO)

xyeE(G') xyeE(G)
=2f(w)f(a)+2f(v) f(b) —2f(a)fb) —2f(w)f(v)
=2f(w)(f(a)— f)+2fB)(f(v) — f(a)) =0,

and

Ro@H (/) =Ro@ (N = D (fFO+fGN* = D (F&)+ ()
xyeE(G') xyeE(G)
= f20) — f2) +2f W)(f (@) — f ()
+2f (D) (f () = f@) = 0.

By Lemma 2.1, we have p(G') > RaG)(f) = Ra)(f) = p(G) (tesp., u(G') >
RowH(f) = Row)(f) = 11(G)). Noting that Ng(v;) C N (vr), by Lemma 2.4,
we have p(G') > p(G) (resp., u(G') > u(G)).

Subcase 2.2 |V (Py)| = 3.Inthis case, Py = vkuv; and C4 = vpwvjuvy is the unique
cycle of G — vy. This implies that dg (vy) > 3, dg(w) > 3, dg(u) > 3.
Byd; = di’ =2forl+1 <i < n,wehave w < v; and u < v;. It follows

that f(w) = f(v) and f(u) = f(v).

If f(vg) > f(w),letG' = G—wv; —uv;+vev+wu. Then, dg (vy) = dg (vi)+1,
dg/(v)) = dg(v;) — 1, dg'(v) = dg(v) for v € V(G)\{vg, v;}. This implies that
G’ — vy is a unicyclic graph, G’ € J,

Ra@n(f) =Rae) () =2 D fOFM=2 > fOf)

xyeE(G') xyeE(G)
=2f (i) f () +2f(w) f@) —2f(w)f ) —2f(@w)f(v)
=2f(w)(f (ve) — f(w)) +2f@)(f(w) — f(v)) =0,

and

RowH(f) =Roa(HH = Y, (fFO+fON = D (F@+FG)°

xyeE(G') xyeE(G)
= f2(u) — fR) +2f ) (f () — f(w))
+21 ) (f(w) — f(vp)) > 0.
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By Lemma 2.1, we have p(G') > Ra)(f) = Ra@)(f) = p(G) (resp., n(G') >
RowH(f) = Row)(f) = u(G). Noting that NG (vi) C Ngs(vk), by Lemma 2.4,
we have p(G') > p(G) (resp., u(G') > u(G)).

If f(w) > f(vr),let G’ = G —wv; —uvy +wu+viv;. Itis easy to see that G/ — v
is a unicyclic graph and dg ' (v) = dg (v) for v € V(G). This implies that G' € J;. By
Lemma 2.3, we have p(G') > p(G) (resp., u(G') > u(G)), a contradiction because
G has the greatest spectral radius (resp., signless Laplacian spectral radius) in J,. O

The proof of Theorem 1.3 Since © <7/, it follows from Lemma 2.7 and Definition 2.8
that there exists a series non-increasing graphic degree sequences 71, . . ., i such that
(mr =) mo <*my <F -+ <P <F (= '), Let ;= (dl('),dz('), .., d") for
0 <i <k ByLemma2.6,wehaved, >d\" > .- >d® >d/ >2.

For  and 7y, Lemma 4.1 implies that there exists a single-cone unicyclic graph
G € Jg, suchthat p(G) < p(Gy) (resp., u(G) < u(Gy)). It follows that 7y is a non-
increasing degree sequence of a single-cone unicyclic graph. Let G7 be a single-cone
unicyclic graph with the greatest spectral radius (resp., signless Laplacian spectral
radius) in Jz,. Then, p(G) < p(G1) < p(GY) (resp., u(G) < u(G1) < u(GY)).

By a similar reasoning as the above, we can obtain that ; is a non-increasing
degree sequence of a single-cone unicyclic graph for each 2 < j < k. Let G* be a
single-cone unicyclic graph with the greatest spectral radius (resp., signless Laplacian
spectral radius) in Jr; for 2 < j < k. By Lemma 4.1, we have p(G) < p(GY) <

< p(GY) < p(G) (resp., u(G) < u(GY) < -+ < w(Gy) < u(G"). o
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