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Abstract
In this paper, we introduce and study new fixed point results for nonlinear set-valued
θ -contractions. Our results are based on a new approach, which is called set-valued θ -
contraction and they extend and generalize many fixed point theorems in the literature.
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1 Introduction

Banach established themost famous fundamental fixed point result called theBanach’s
contraction principle for metric fixed point theory in 1922. This principle has played
an important role in various fields of applied mathematical analysis and is one of a
very power tests for existence and uniqueness of the solution of considerable problems
arising inmathematics. Subsequently, this principle has been remarkably extended and
generalized in many ways (see [7,8,17,28,40]). The set-valued version of Banach’s
principle has been thoroughly proposed by many authors.

For the sake of completeness, we recall some important concepts and results about
set-valued mappings.
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Let (X , d) be ametric space. It is well known that H :CB(X)×CB(X) → R defined
by

H(A, B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}

is a metric on CB(X), which is called the Pompeiu–Hausdorff metric, where CB(X)

denotes the class of all nonempty, closed and bounded subsets of X and d(x, B) =
inf {d(x, y):y ∈ B}. H also is called generalized Pompeiu–Hausdorff distance on
C(X) , which denotes the family of all nonempty closed subsets of X . We also denote
by K(X) the family of all nonempty compact subsets of X .

A fixed point of a set-valued mapping T :X → P(X), which denotes the class
of all nonempty subsets of X , is an element x ∈ X such that x ∈ T x . A function
f :X → R is lower semi-continuous if for any {xn} ⊆ X and x ∈ X , xn → x implies
f (x) ≤ lim inf

n→∞ f (xn).

Nadler [31] in 1969 initiated the idea for set-valued contraction mapping and
extended the Banach contraction principle to set-valued mappings and proved the
following:

Theorem 1 (Nadler [31]) Let (X , d) be a complete metric space and T : X → CB(X)

set-valued contraction, that is, there exists L ∈ [0, 1) such that

H(T x, T y) ≤ Ld(x, y)

for all x, y ∈ X . Then, T has a fixed point in X.

Later on, several researches were conducted on a variety of generalizations, exten-
sions and applications of this result of Nadler (see [1,5,6,10–14,20–22,25,30,32–39]).
Furthermore, Feng and Liu [15] introduced important generalization of this result and
thereupon Klim and Wardowski [23] generalized their theorem as follows:

Theorem 2 [15] Let (X , d) be a complete metric space and T : X → C(X). If there
exist constants b, c ∈ (0, 1), b < c, such that for any x ∈ X there is y ∈ I xb satisfying

d(y, T y) ≤ cd(x, y),

where
I xb = {y ∈ T x : bd(x, y) ≤ d(x, T x)},

then T has a fixed point in X provided that function x → d(x, T x) is lower semi-
continuous.

Recently, Klim andWardowski [23] generalized Theorem 2 and proved the follow-
ing results.

Theorem 3 [23] Let (X , d) be a complete metric space and T : X → C(X). If there
exist b ∈ (0, 1) and a function ϕ : [0,∞) → [0, b) satisfying

lim sup
t→s+

ϕ(t) < b for all s ∈ [0,∞)
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and for any x ∈ X there is y ∈ I xb satisfying

d(y, T y) ≤ ϕ(d(x, y))d(x, y), (1.1)

then T has a fixed point in X provided that function x → d(x, T x) is lower semi-
continuous.

Theorem 4 [23] Let (X , d) be a complete metric space and T : X → K(X), which
is the family of all nonempty compact subsets of X. If there exists a function ϕ :
[0,∞) → [0, 1) satisfying

lim sup
t→s+

ϕ(t) < 1 for all s ∈ [0,∞)

and for any x ∈ X there is y ∈ I x1 satisfying

d(y, T y) ≤ ϕ(d(x, y))d(x, y), (1.2)

then T has a fixed point in X provided that function x → d(x, T x) is lower semi-
continuous.

In the literature, we can find many interesting results dealing with Feng–Liu’s and
Klim–Wardowski’s fixed point theorems (see [4,9,24,26,27]).

On the other hand, the concept of θ -contraction is introduced by Jleli and Samet
[19] in 2014 and so they introduce a new type of contractive mapping. Following their
work,many authors recently proved various several fixed point theorems for set-valued
mappings (see [2,3,18,29]).

The purpose of this paper is to give some fixed point results for set-valuedmappings
on completemetric spaces using the concept of set-valued θ -contraction. These results
extend and generalizemany fixed point theorems including Theorem 2 and Theorem 3.

2 Preliminaries

We recall basic definitions, relevant notions and related result concerning θ -
contraction.

Let � be the set of all functions θ : (0,∞) → (1,∞) satisfying the following
conditions:

(θ1) θ is nondecreasing;
(θ2) For each sequence {tn} ⊂ (0,∞), limn→∞ θ(tn) = 1 and limn→∞ tn = 0+

are equivalent;
(θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+ θ(t)−1

tr = l.
Let (X , d) be a metric space and θ ∈ �. A mapping T : X → X is said to be a

θ -contraction if there exists k ∈ (0, 1) such that

θ(d(T x, T y)) ≤ [θ(d(x, y))]k (2.1)
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for all x, y ∈ X with d(T x, T y) > 0.
An easy example of such mappings is contraction which can be obtained by taking

θ(t) = e
√
t in inequality (2.1). Also, by choices of mapping θ(t) = e

√
tet in (2.1), we

obtain a contraction-type condition

d(T x, T y)

d(x, y)
ed(T x,T y)−d(x,y) ≤ k2, (2.2)

for all x, y ∈ X with d(T x, T y) > 0.
It is clear that if a mapping T is contraction, then it satisfies inequality (2.2). In

addition, it is easy to see that if T is a θ -contraction, then T is a contractive mapping,
i.e., d(T x, T y) < d(x, y) for all x, y ∈ X with x 	= y. Thus, every θ -contraction
mapping on a metric space is continuous. Jleli and Samet [19] proved the following
fixed point result using concept of θ -contractions on complete metric spaces.

Theorem 5 (Corollary 2.1 of [19]) Let (X , d) be a complete metric space and T :
X → X be a given mapping. If T is a θ -contraction, then T has a unique fixed point
in X.

The concept of θ -contraction extended to set-valued mappings by Han çer et al.
[16]. Let (X , d) be a metric space, T : X → CB(X) and θ ∈ �. Then, we say that T
is a set-valued θ -contraction if there exists k ∈ (0, 1) such that

θ(H(T x, T y)) ≤ [θ(d(x, y))]k (2.3)

for all x, y ∈ X with H(T x, T y) > 0.
Consequently, they established that mappings of this type possess a fixed point on

complete metric spaces as follows:

Theorem 6 [16] Let (X , d) be a complete metric space and T : X → K(X) be a
set-valued θ -contraction. Then, T has a fixed point.

Moreover, Hançer et al. [16] showed the following example that we cannot unfor-
tunately replace CB(X) instead of K(X) in Theorem 6 with the same conditions.

Example 1 Let X = [0, 2]. Define a metric on X by d(x, y) = 0 if x = y and
d(x, y) = 1 + |x − y| if x 	= y. Then, (X , d) is a complete metric space. Define a
mapping T : X → CB(X), by T x = Q if x ∈ X\Q and T x = X\Q if x ∈ Q, where
Q is the set of all rational numbers in X . Then, T is a set-valued θ -contraction with
respect to θ ∈ � defined by θ(t) = e

√
t if t ≤ 1 and θ(t) = 9 if t > 1. However, T

has no fixed point.

However, Hançer et al. [16] proved that we can take CB(X) instead of K(X), by
adding the following condition on θ : (0,∞) → (1,∞):

(θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.
Note that if θ satisfies (θ1), then it satisfies (θ4) if and only if it is right continuous.

Let � be the family of all functions θ satisfying (θ1) -(θ4) .

Theorem 7 [16] Let (X , d) be a complete metric space and T : X → CB(X) be a
set-valued θ -contraction. If θ ∈ �, then T has a fixed point.
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3 Main Results

Let T : X → P(X), θ ∈ � and s ∈ (0, 1]. Define a set θ x
s ⊆ X by

θ x
s = {y ∈ T x : [θ(d(x, y))]s ≤ θ(d(x, T x))},

x ∈ X with d(x, T x) > 0.
For the set θ x

s , we will consider the following three cases (see [3] for more infor-
mation):

Case 1 If T : X → K(X), then we have θ x
s 	= ∅ for all s ∈ (0, 1] and x ∈ X with

d(x, T x) > 0.
Case 2 If T : X → C(X), then θ x

s may be empty for some x ∈ X and s ∈ (0, 1].
Case 3 If T : X → C(X) (even if T : X → P(X)) and θ ∈ �, then we have

θ x
s 	= ∅ for all s ∈ (0, 1) and x ∈ X with d(x, T x) > 0. We reprove this case using
the property of right continuity of θ as different from the paper [3]. Since θ is right
continuous, there exists a real number h > 1 such that

θ(hd(x, T x)) ≤ [θ(d(x, T x))]
1
s .

Since h > 1, there exists y ∈ T x such that d(x, y) ≤ hd(x, T x). Then, from (θ1), we
have

θ(d(x, y)) ≤ θ(hd(x, T x)) ≤ [θ(d(x, T x))]
1
s ,

and so,
[θ(d(x, y))]s ≤ θ(d(x, T x)),

which implies y ∈ θ x
s .

Then, Altun et al. [3] proved the following fixed point theorems. It is easy to see
that Theorem 2 is a special case of Theorem 8.

Theorem 8 Let (X , d) be a complete metric space, T : X → C(X) and θ ∈ �. If
there exists k ∈ (0, 1) such that there is y ∈ θ x

s , s ∈ (0, 1) and k < s, satisfying

θ(d(y, T y)) ≤ [θ(d(x, y))]k ,

for each x ∈ X with d(x, T x) > 0, then T has a fixed point in X provided that function
x → d(x, T x) is lower semi-continuous.

Theorem 9 Let (X , d) be a complete metric space, T : X → K(X) and θ ∈ �. If
there exists k ∈ (0, 1) such that there is y ∈ θ x

1 satisfying

θ(d(y, T y)) ≤ [θ(d(x, y))]k ,

for each x ∈ X with d(x, T x) > 0, then T has a fixed point in X provided that function
x → d(x, T x) is lower semi-continuous.

Inspired with the above results, we give the following theorems, which we called
nonlinear form of Theorem 8 and Theorem 9. Note that Theorem 10 is a proper
generalization of Theorem 3.
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Theorem 10 Let (X , d) be a complete metric space, T : X → C(X) and θ ∈ �. If
there exist s ∈ (0, 1) and a function k : [0,∞) → [0, s) satisfying

lim sup
t→r+

k(t) < s for all r ∈ [0,∞) (3.1)

and for any x ∈ X with d(x, T x) > 0, there exists y ∈ θ x
s satisfying

θ(d(y, T y)) ≤ [θ(d(x, y))]k(d(x,y)), (3.2)

then T has a fixed point in X provided that function x → d(x, T x) is lower semi-
continuous.

Proof Suppose that T has no fixed point. Then, for all x ∈ X we have d(x, T x) > 0.
Since T x ∈ C(X) for every x ∈ X and θ ∈ �, the set θ x

s is nonempty for any s ∈ (0, 1).
Let x0 ∈ X be any initial point, then there exists x1 ∈ θ

x0
s such that

θ(d(x1, T x1)) ≤ [θ(d(x0, x1))]
k(d(x0,x1))

and for x1 ∈ X , there exists x2 ∈ θ
x1
s satisfying

θ(d(x2, T x2)) ≤ [θ(d(x1, x2))]
k(d(x1,x2)) .

Continuing this process, we get an iterative sequence {xn}, where xn+1 ∈ θ
xn
s and

θ(d(xn+1, T xn+1)) ≤ [
θ(d(xn, xn+1))

]k(d(xn ,xn+1)) . (3.3)

We will verify that {xn} is a Cauchy sequence. Since xn+1 ∈ θ
xn
s , we have

[
θ(d(xn, xn+1))

]s ≤ θ(d(xn, T xn)). (3.4)

From (3.3) and (3.4), we have

θ(d(xn+1, T xn+1)) ≤ [θ(d(xn, T xn))]
k(d(xn ,xn+1))

s (3.5)

and

θ(d(xn+1, xn+2)) ≤ [
θ(d(xn, xn+1))

] k(d(xn ,xn+1))

s . (3.6)

From (3.5), (3.6) and (θ1), it follows that the sequences {d(xn, T xn)} and
{d(xn, xn+1)} are decreasing and hence convergent. Now, from (3.1), there exists
w ∈ [0, s) such that

lim sup
n→∞

k(d(xn, xn+1)) = w.

Therefore, there exists b ∈ (w, s) and n0 ∈ N such that k(d(xn, xn+1)) < b for all
n ≥ n0. Thus, using (3.6), we obtain for all n ≥ n0 the following inequalities:

1 < θ(d(xn, xn+1))
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≤ [
θ(d(xn−1, xn))

] k(d(xn−1,xn ))

s

≤ [
θ(d(xn−2, xn−1))

] k(d(xn−1,xn ))

s
k(d(xn−1,xn ))

s

...

≤ [θ(d(x0, x1))]
k(d(x0,x1))

s ··· k(d(xn−1,xn ))

s
k(d(xn−1,xn ))

s

= [θ(d(x0, x1))]
k(d(x0,x1))

s ··· k(d(xn0−1,xn0 ))

s

k(d(xn0 ,xn0+1))

s ··· k(d(xn−1,xn ))

s
k(d(xn−1,xn ))

s

≤ [θ(d(x0, x1))]
k(d(xn0 ,xn0+1))

s ··· k(d(xn−1,xn ))

s
k(d(xn−1,xn ))

s

≤ [θ(d(x0, x1))]
b(n−n0)

s(n−n0) .

Thus, we have

1 < θ(d(xn, xn+1)) ≤ [θ(d(x0, x1))]

(
b
s

)(n−n0)

(3.7)

for all n ≥ n0. Letting n → ∞ in (3.7), since limn→∞
( b
s

)(n−n0) = 0, we obtain

lim
n→∞ θ(d(xn, xn+1)) = 1. (3.8)

From (θ2), limn→∞ d(xn, xn+1) = 0+ (similarly,we canobtain limn→∞ d(xn, T xn+1)

= 0+) and so from (�3), there exist r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

θ(d(xn, xn+1)) − 1[
d(xn, xn+1)

]r = l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit,

there exists n1 ∈ N such that, for all n ≥ n1,

∣∣∣∣∣θ(d(xn, xn+1)) − 1[
d(xn, xn+1)

]r − l

∣∣∣∣∣ ≤ B.

This implies that, for all n ≥ n1,

θ(d(xn, xn+1)) − 1[
d(xn, xn+1)

]r ≥ l − B = B.

Then, for all n ≥ n1,

n
[
d(xn, xn+1)

]r ≤ An
[
θ(d(xn, xn+1)) − 1

]
,

where A = 1/B.
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Suppose now that l = ∞. Let B > 0 be an arbitrary positive number. From the
definition of the limit, there exists n1 ∈ N such that, for all n ≥ n1,

θ(d(xn, xn+1)) − 1[
d(xn, xn+1)

]r ≥ B.

This implies that, for all n ≥ n1,

n
[
d(xn, xn+1)

]r ≤ An
[
θ(d(xn, xn+1)) − 1

]
,

where A = 1/B.

Thus, in all cases, there exist A > 0 and n1 ∈ N such that, for all n ≥ n1,

n
[
d(xn, xn+1)

]r ≤ An
[
θ(d(xn, xn+1)) − 1

]
.

Using (3.7), we obtain, for all n ≥ n2 = max {n0, n1} ,

n
[
d(xn, xn+1)

]r ≤ An

[
[θ(d(x0, x1))]

(
b
s

)(n−n2)

− 1

]
.

Letting n → ∞ in the above inequality, we obtain

lim
n→∞ n

[
d(xn, xn+1)

]r = 0.

Thus, there exits n3 ∈ N such that n
[
d(xn, xn+1)

]r ≤ 1 for all n ≥ n3. So, we have,
for all n ≥ n3

d(xn, xn+1) ≤ 1

n1/r
. (3.9)

In order to show that {xn} is a Cauchy sequence, consider m, n ∈ N such that m >

n ≥ n3. Using the triangular inequality for the metric and from (3.9), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

=
m−1∑
i=n

d(xi , xi+1) ≤
∞∑
i=n

d(xi , xi+1) ≤
∞∑
i=n

1

i1/r
.

By the convergence of the series
∑∞

i=1
1

i1/r
, letting to limit n → ∞, we get

d(xn, xm) → 0. This yields that {xn} is a Cauchy sequence in (X , d). Since (X , d)

is a complete metric space, the sequence {xn} converges to some point z ∈ X , that is,
limn→∞ xn = z. On the other hand, since

lim
n→∞ d(xn, T xn) = 0.
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and x → d(x, T x) is lower semi-continuous, then

0 ≤ d(z, T z) ≤ lim inf
n→∞ d(xn, T xn) = 0.

This is a contradiction. Hence, T has a fixed point. �
Remark 1 If we take K(X) instead of CB(X) in Theorem 10, we can remove the
condition (θ4) on θ . Further, by taking into account Case 1, we can take s = 1.
Therefore, the proof of the following theorem is easy.

Theorem 11 Let (X , d) be a complete metric space, T : X → K(X) and θ ∈ �. If
there exists a function k : [0,∞) → [0, 1) satisfying

lim sup
t→r+

k(t) < 1 for all r ∈ [0,∞)

and for any x ∈ X with d(x, T x) > 0, there exists y ∈ θ x
1 satisfying

θ(d(y, T y)) ≤ [θ(d(x, y))]k(d(x,y)), (3.10)

then T has a fixed point in X provided that function x → d(x, T x) is lower semi-
continuous.

Proof Suppose that T has no fixed point. Then, for all x ∈ X we have d(x, T x) > 0.
Since T x ∈ K(X) for every x ∈ X , the set θ x

1 is nonempty. Hence, there exists y ∈ θ x
1

for all x ∈ X such that x 	= y and d(x, y) = d(x, T x). Let x0 ∈ X be any initial point.
By (3.10), using the analogous method like in the proof of Theorem 10, we obtain the
existence of a Cauchy sequence {xn} such that xn+1 ∈ T xn , xn+1 	= xn , satisfying

d(xn, xn+1) = d(xn, T xn),

θ(d(xn+1, T xn+1)) ≤ [
θ(d(xn, xn+1))

]k(d(xn ,xn+1)) ,

and
lim
n→∞ xn = z.

Since x → d(x, T x) is lower semi-continuous, we get

0 ≤ d(z, T z) ≤ lim inf
n→∞ d(xn, T xn) = 0.

This is a contradiction. Hence, T has a fixed point. �

4 Nontrivial Examples

Now, we give some significant examples showing that there are some multivalued
mappings such that our result (Theorem 10) can be applied but Theorem 3 cannot.
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Example 2 Consider the complete metric space (X , d), where X = [0, 1] ∪ {2, 3, . . .}
and

d(x, y) =
⎧⎨
⎩
0, if x = y
|x − y| , if x, y ∈ [0, 1]
x + y, if one of x, y /∈ [0, 1]

.

Define a mapping T : X → C(X) by

T x =
{{ x

16

}
, x ∈ [0, 1]

{x − 1, x + 1, x + 2, . . .} , x > 1
.

It is easy to see that

D(x, T x) =
⎧⎨
⎩

15x
16 , x ∈ [0, 1]

2x − 1, x > 1

and the function x → D(x, T x) is lower semi-continuous.
Now we show that condition (3.2) of Theorem 10 is satisfied with θ(t) = e

√
tet ,

s ∈ ( 1
e , 1

)
and k : [0,∞) → [0, s) defined by k(t) = 1

e . Inequality (3.2) also turns to

D(y, T y)

d(x, y)
eD(y,T y)−d(x,y) ≤ [k(d(x, y))]2 . (4.1)

We will show that T satisfies (4.1).
Note that if D(x, T x) > 0, then x 	= 0. Therefore, for x ∈ (0, 1], we have

y = x
16 ∈ θ x

s for all s ∈ ( 1
e , 1

)
and

D(y, T y)

d(x, y)
eD(y,T y)−d(x,y) =

15x
256
15x
16

e− 225x
256

≤ 1

16
<

1

e2

=
[
k

(
15x

16

)]2
= [k(d(x, y))]2 ,

and for x > 1, we have y = x − 1 ∈ θ x
s for all s ∈ ( 1

e , 1
)
and

D(y, T y)

d(x, y)
eD(y,T y)−d(x,y) = 2x − 3

2x − 1
e−2

≤ e−2

= [k(2x − 1)]2

= [k(d(x, y))]2 .

Therefore, all the assumptions of Theorem 10 are satisfied and so T has a fixed
point.
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Now we claim that condition (1.1) of Theorem 3 is not satisfied. Indeed, let x > 1,
then T x = {x − 1, x + 1, x + 2, . . .} . In this case, if x + k ∈ I xb where k ∈ N for all
b ∈ (0, 1), then

D(y, T y) = 2x + 2k − 1

> ϕ(2x + k)(2x + k)

= ϕ(d(x, y))d(x, y),

for all ϕ : [0,∞) → [0, b) satisfying

lim sup
t→s+

ϕ(t) < b for all s ≥ 0;

if x − 1 ∈ I xb for all b ∈ (0, 1), then, for all such function ϕ, we get

D(y, T y) = 2x − 3

≤ ϕ(2x − 1)(2x − 1)

= ϕ(d(x, y))(2x − 1)

< b(2x − 1),

that is,
2x − 3

2x − 1
< b,

which this is not possible after a certain value of x ∈ {2, 3, . . .}.
Example 3 Consider the complete metric space (X , d), where X = { 1n : n ∈ N} ∪ {0}
and

d(x, y) =
{
0, x = y
max {x, y} , x 	= y

.

Define a mapping T : X → K(X) by

T x =
{{x} , x ∈ {0, 1}{

1
n+2 ,

1
n+1

}
, x = 1

n , n > 1
.

It is easy to see that

D(x, T x) =
{
0, x ∈ {0, 1}
1
n , x = 1

n , n > 1

and the function x → D(x, T x) is lower semi-continuous.
Now we show that condition (3.10) of Theorem 11 is satisfied with θ(t) = e

√
tet

and k : [0,∞) → [0, 1) defined by

k(t) =
{√

e
1

n+1− 1
n , if t = 1

n for some n ∈ N with n > 1
0, otherwise

.
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Since lim sup
t→a+

k(t) = 0 < 1 for all a ∈ [0,∞) and so k satisfies (3.1). Observe that

taking θ(t) = e
√
tet ,

D(y, T y)

d(x, y)
eD(y,T y)−d(x,y) ≤ [k(d(x, y))]2 .

Note that if D(x, T x) > 0, then x = 1
n for n > 1. In this case, D(x, T x) = 1

n for

n > 1. Therefore, for y = 1
n+1 ∈ T 1

n =
{

1
n+2 ,

1
n+1

}
, we have y ∈ θ x

1 . Then, we get

D(y, T y)

d(x, y)
eD(y,T y)−d(x,y) =

1
n+1
1
n

e
1

n+1− 1
n

= n

n + 1
e

1
n+1− 1

n

≤ e
1

n+1− 1
n

=
[
k

(
1

n

)]2
= [k(d(x, y))]2 .

Therefore, all the assumptions of Theorem 11 are satisfied and so T has a fixed point.
Now we claim that condition (1.2) of Theorem 4 is not satisfied. Indeed, let x = 1

n

for n > 2, then T x =
{

1
n+2 ,

1
n+1

}
. In this case, I x1 =

{
1

n+2 ,
1

n+1

}
. If y = 1

n+1 , since

D(y, T y) = 1

n + 1
and d(x, y) = 1

n
,

we obtain

D(y, T y) ≤ ϕ(d(x, y))d(x, y)

⇔ 1

n + 1
≤ ϕ

(
1

n

)
1

n

⇔ n

n + 1
≤ ϕ

(
1

n

)
.

Taking limit supremum as n → ∞ in above, we have

1 ≤ lim sup
n→∞

ϕ

(
1

n

)
≤ lim sup

t→0+
ϕ(t) < 1,

which is a contradiction. If y = 1
n+2 , since

D(y, T y) = 1

n + 2
and d(x, y) = 1

n
,
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we obtain

d(T x, T y) ≤ ϕ(d(x, y))d(x, y)

⇔ 1

n + 2
≤ ϕ

(
1

n

)
1

n

⇔ n

n + 2
≤ ϕ

(
1

n

)
.

Taking limit supremum as n → ∞ in above, we have

1 ≤ lim sup
n→∞

ϕ

(
1

n

)
≤ lim sup

t→0+
ϕ(t) < 1,

which is a contradiction. Therefore, Theorem 4 cannot be applied to this example.

Acknowledgements The authors would like to thank the referees for their helpful advice which led them
to present this paper.

References

1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with
Applications. Springer, New York (2009)

2. Altun, I., Hançer, H.A., Mınak, G.: On a general class of weakly Picard operators. Miskolc Math.
Notes 16(1), 25–32 (2015)

3. Altun, I., Minak, G.: On fixed point theorems for multivalued mappings of Feng-Liu type. Bull. Korean
Math. Soc. 52(6), 1901–1910 (2015)

4. Amini-Harandi, A., Fakhar, M., Hajisharifi, H.R.: Fixed point theorems for set-valued contractions.
Rend. Circ. Mat. Palermo 62(3), 367–377 (2013)

5. Berinde, M., Berinde, V.: On a general class of multi-valued weakly Picard mappings. J. Math. Anal.
Appl. 326, 772–782 (2007)

6. Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)
7. Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)
8. Ciric, LjB: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273

(1974)
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21. Kadelburg, Z., Radenović, S.: Some results on set-valued contractions in abstract metric spaces. Com-
put. Math. Appl. 62(1), 342–350 (2011)

22. Kamran, T., Kiran, Q.: Fixed point theorems for multi-valued mappings obtained by altering distances.
Math. Comput. Model. 54, 2772–2777 (2011)

23. Klim, D., Wardowski, D.: Fixed point theorems for set-valued contractions in complete metric spaces.
J. Math. Anal. Appl. 334, 132–139 (2007)

24. Khan, A.R., Abbas, M., Nazir, T., Ionescu, C.: Fixed points of multivalued contractive mappings in
partial metric spaces. Abstr. Appl. Anal. (2014). https://doi.org/10.1155/2014/230708

25. Kiran, Q., Kamran, T.: Fixed point theorems for generalized contractive multi-valued maps. Comput.
Math. Appl. 59(12), 3813–3823 (2010)

26. Latif, A., Abdou, A.A.N.: Multivalued generalized nonlinear contractive maps and fixed points. Non-
linear Anal. 74(4), 1436–1444 (2011)

27. Latif, A., Luc, D.T.: A general fixed point theorem for multivalued mappings that are not necessarily
contractions and applications. Abstr. Appl. Anal. (2014). https://doi.org/10.1155/2014/104762

28. Matkowski, J.: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am.Math.
Soc. 62(2), 344–348 (1977)

29. Mınak, G., Altun, I.: Overall approach to Mizoguchi-Takahashi type fixed point results. Turk. J. Math.
40(4), 895–904 (2016)

30. Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric
spaces. J. Math. Anal. Appl. 141, 177–188 (1989)

31. Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)
32. Pathak, H.K., Shahzad, N.: A generalization of Nadler’s fixed point theorem and its application to

nonconvex integral inclusions. Topol. Methods Nonlinear Anal. 41(1), 207–227 (2013)
33. Reich, S.: Fixed points of contractive functions. Boll. Un. Mat. Ital. 4(5), 26–42 (1972)
34. Reich, S.: Some problems and results in fixed point theory. In: Singh, S.P., Thomeier, S., Watson,

B. (eds.) Topological Methods in Nonlinear Functional Analysis (Toronto, Ont., 1982), pp. 179–187,
Contemp. Math., 21, American Mathematical Society, Providence, RI (1983)

35. Reich, S.: Some fixed point problems. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur 57,
194–198 (1974)

36. Romaguera, S.: On Nadler’s fixed point theorem for partial metric spaces. Math. Sci. Appl. E-Notes
1(1), 1–8 (2013)

37. Sintunavarat, W., Kumam, P.: Common fixed point theorem for cyclic generalized multi-valued con-
traction mappings. Appl. Math. Lett. 25(11), 1849–1855 (2012)

38. Suzuki, T.: Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s. J. Math.
Anal. Appl. 340, 752–755 (2008)

39. Usman, M.A., Kamran, T., Sintunavarat, W., Katchang, P.: Mizoguchi-Takahashi’s fixed point theorem
with α, η functions. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/418798

40. Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. (Basel) 23, 292–298 (1972)

123

https://doi.org/10.1155/2015/718074
https://doi.org/10.1155/2014/230708
https://doi.org/10.1155/2014/104762
https://doi.org/10.1155/2013/418798

	On Nonlinear Set-Valued θ-Contractions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Nontrivial Examples
	Acknowledgements
	References




