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Abstract

In this paper, for the IBVP of a fourth-order nonlinear parabolic equation, which is
related to image analysis, we studied the existence and uniqueness of weak solutions.
Moreover, we also considered the asymptotic behavior and the regularity of solutions
of such problem.
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1 Introduction

In this paper, we investigate the following fourth-order parabolic equation

u,+A(1n (Au+\/1+(Au)2))+x|u|P*2u —0, in Q, (L)

where A > 0,p > 2, Q7 = Q2x(0,T)and Q2 C R? is a bounded domain with smooth
boundary.
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334 C.Liu, M. Jin

On the basis of physical consideration, as usual Eq. (1.1) is supplemented with the
natural boundary value conditions

u=Au=0, xe€d, t>0, (1.2)
and the initial value condition
u(x,0) =up(x), xe. (1.3)

Here, inspired by the ideas described in Wei [11], we give a sketch of the formulation
of Eq. (1.1) from the image restoration. Wei [11] proposed a real-valued, bounded edge
enhancing functional, which leads to a generalized Perona—Malik equation

9
a_L; = div(d(u, |Vu|) Vi) + e(u, |Vu)).

In image systems, the distribution of image pixels can be highly inhomogeneous.
Hence, the generalized Perona—Malik equation can be made more efficient for image
segmentation and noise removing by incorporating an edge sensitive super diffusion
operator [11]

3
a_L: = div(d; (u, |Vu|) Vi) + div(da(u, |Vul, Au)VAu) + e(u, |Vul).  (1.4)

Here di,d> are edge sensitive diffusion functions. The typical cases of d, are
dr(u, |Vu|, Au) = —g(|Vu|) or = —g(Au). The g(s) is a nonincreasing function
satisfying the following ([8])

n

g =1, g()>0, lim —g(s) =0, foreach integer n > 0.
s—o00 ds”

An example typically used in applications is [3,8]

g(s) = 52

— 1 H ; — —
The g(s) = T s reasonable for Eq. (1.4). If taking d; = 0, e(u, |Vu|) =
—AulP2u and &y = —\/ﬁ, we obtain Eq. (1.1). Equation (1.1) is original,

which has not been studied by others so far.
Taking dy = 0, e(u, |Vu|) =0and dr = —m, Eq. (1.4) becomes the fourth-

order Perona—Malik analogue [9]
sy YA\ (1.5)
o T+ au2) = '
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Wang et al. [10] considered the low-curvature equation

u; + A(arctan Au) = 0,
which is exactly the equation of (1.5). They established the existence and uniqueness
of weak solutions.

Wei [11] introduced the following equation by taking d; = 0, e(u, |Vu|) = 0 and
d) = for highly inhomogeneous images,

Ly (YAu 0
u —_— =
! 1+ [Vul?

Other fourth-order partial differential equations are also proposed in image analysis.
You and Kaveh [13] introduced a different form of the fourth-order diffusion,

1
1+|Vul?

ur + Alg(Au)Au] = 0.

This form is derived from a variational formulation. Osher et al. [7] employed a new

model
+ : Al di " =f
Uy ™ iv Yl u,

for image decomposition and image restoration into cartoon and texture. The relevant
fourth-order parabolic equations have also been studied in [1,4,6,12].
Now we give the definition of the solution in a weak sense of problems (1.1)—(1.3).

Definition 1.1 A function u is a weak solution of problems (1.1)—(1.3), if the following
conditions are satisfied

() u € C(0,T1; L2(Q)) N L0, T; H} () N L2(0, T; H*(R)) with In(Au +

V1+(Au)?) € L2(0, T; HH(Q));

(2) For any ¢ € C2(§T) with ¢(x, T) = 0 and ¢(x, t) |3o= 0, we have

T
—/ €0(X,0)M0(X)dx—/ /mptdxdt
Q 0o Ja

T
+/ /m (Au~|—\/1 ~|—(Au)2) Agdxdr
0 Q
T
+)\/ / lu|P"2updxds = 0. (1.6)
0 Q

In this paper, we will study a general equation as described in (1.1). Our method for
investigating the existence of weak solutions is based on the difference and variation
methods to construct an approximate solution. By means of the uniform estimates on
solutions of the time difference equations, we prove the existence of weak solutions.
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Based on a suitable integral equality and the energy techniques, we also obtain the
asymptotic behavior and regularity of solutions.

This paper is organized as follows. We investigate the existence and uniqueness of
weak solutions of problems (1.1)—(1.3) in Sect. 3. Using energy techniques, we also
proved the asymptotic behavior and regularity of solutions subsequently.

2 Existence of solutions

In this section, we are going to prove the existence of weak solutions.

Theorem 2.1 Assumeug € HO1 (R2), problems (1.1)—(1.3) admit a unique weak solution
satisfying Definition 1.1.

To prove Theorem 2.1, we first consider the following elliptic problem

“ _h”(’ +A (sAu +1n (Au +V1+ (Au)2>) + Au)P 2 =0,

ulpgoa =0, Aulpo =0,

2.1)

where h = T /n, ¢ > 0 and ug is the initial value.

Theorem 2.2 Assume ug € Hd (R2), there exists a unique weak solution u| € H(; )N
HZ(Q) with Auy € HO1 (R2) for initial-boundary value problem (2.1).

Proof We will prove the existence of weak solutions by variation methods.
Let us consider the following functional on the space V = HJ () N H*(Q),

v —uol* o|2 elAv)?
J(v) = dx
a 2

Av
+// In s+\/1+s2>dsdx+)» |v| LN 2.2)
QJO

In addition, letting f(t) Jo In(s + v/1+s2)ds, we know that f'(f) = In(t +
V1412, f/(1) = —tz > 0and f(0) = f/(0) = 0. Hence, f(r) > f(0) = 0. Itis

obvious that
Av
// ln(s+ 1+s2>dsdx20.
QJo

Therefore, we see that

e|Av|? lv|P
J(v) > dx + 1 | —dx.
Q 2 Q D

By A > 0, p > 2 and the Poincaré inequality, we know that J(v) — 400, as
lv|| g2 — +o00. Hence, J (v) satisfies the coercive condition. On the other hand, since
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fot In(s + +/1 + s2)ds is a convex function, J (v) is weakly lower semi-continuous on
V. So, it follows from the theory in [2] that there exists u; € V such that

J(uy) = JIEH‘C/ J(v),

which implies that u; € H(} (Q) N H?(R) is a minimizer of the functional J(v) in V.
Now for every ¢ € Cgo andevery ¢ € R, sinceu; +¢c¢ € V, F(0) < F(¢g), where

F(e) = J(uy + £@).

Thus, we get F/(0) = 0, which is

/sz ulh;uo(pdx + /Q A (gAul +In (Abtl + W)) @dx

+ A/ lui|P"2uipdx = 0. (2.3)
Q

Therefore, the function u; is a weak solution of the corresponding Euler—Lagrange
equation of J (v), which is problem (2.1). For every n € C3°(£2), there exists a unique
@ € HI(Q) N H*(Q) such that —Ag = n. Let w € HJ () N H*(S2) be the unique
solution for equation

up —uo

—Aw = + Aut )P 2uy.

By u; — uo, lui|?~2uy € HOl (2), we know that w € HO] (Q) N H3(S2). Hence by
(2.3), we have

[ (—Aw)pdx = [ <8Au1 +1In (Am +V1+ (Aul)z)) ndx.
Q Q

On the other hand, we know that

/(—Aw)wdx:/ w(—Ago)dx:/ wndx.
Q Q Q

Therefore, we derive

fe(Auy) = eAuy +In(Auy ++/1 4+ (Aup)?) = w.

For function f.(¢t) = et + In(t + /1 + t2), we know that

e< fllt)y=¢+ <e+1.

1
V1412
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So its inverse function g.(¢) = fg1 (1) exists and satisfies

1 ') 1
- < —.
1+£_g6 e

Hence, we obtain
Auy = ge(w) € Hy(Q).
So we complete the proof of the existence.

Now we prove the uniqueness. Suppose that there exists another weak solution i
of problem (2.1). Then, it follows from (2.3) that, for every ¢ € HO1 (Q) N H (),

uy — ug ~ ~ ~ 2
/ p pdx +/ A (sAm +1n <Au1 + 4/ 14+ (Auy) )) @pdx
Q Q

+ )\f 7117201 pdx = 0.
Q

So that,

Uy —ui ~ ~ \p—2~ p—2
dex + | eA(uy —up)Aedx + 1 | (Jur|P™"uy — lur|’"“ur)pdx
Q Q Q

n /Q (ln (A;;l 1+ (Am)Z) —In (Aul i (Au1)2)> Agdx = 0.

Choosing ¢ = ] — uy, we have

~ 0
/de-i-/ eAZ() — u1) (AT} — Aup)dx
Q h Q
+/ (1n (Aﬁl +\/1+(Aﬁl)2> —In (Am +\/1+(Au1)2>)(Ai[1 — Aup)dx
Q

+ A/ (@172 — w1 |7~ 2un) @) — up)dx = 0.
Q

Since function In(z ++/1 + 2) is increasing, we know that every term on the left-hand
side is nonnegative. Therefore, we conclude that u; = i a.e. in Q and complete the
proof of the uniqueness. O

Next, we discuss the parabolic problem

ur + AleAu +In(Au 4+ /1 4+ (Au)2) + AulP"2u =0, in Qr,
u=0, Au=0, on 0€2, 2.4)
u(x,0) = up(x),

where ¢ > 0.
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Some Properties of Solutions of a Fourth-Order... 339

Theorem 2.3 Assume ug € HO1 (), problem (2.4) admits a unique weak solu-
tion u, € C([0, TT; L*(Q)) N L™®(0, T; H} () N L*(0, T; H3(Q)) with Au, €
L%(0, T; HO1 (R2)), which satisfies the following estimates

1 t
— / ugdx + / / (8Au5 +In (Aus ++/1+ (Au£)2>> Augdxdr
2 Ja 0 Ja

t 1
+x/ / lug|Pdxdr < -/ uddx, (2.5)
0 Jo 2 Ja
and
/|wg| dx+/ f |V Au,|>dxdt
1+ |Aus|2
+A/ (P — DluelP | Vue|*dx < —/ |Vuo|*dx. (2.6)
Q 2 Jo

Proof By Theorem 2.2, we define ux € Hj () N H*(Q),k = 1,2,...,n to be the
weak solution of the following elliptic problems

Uk 7 M=l 4 A (sAuk +In (Auk v (Auk)2)) Mg P2y =0,

h
urlog =0, Auglsg =0.
2.7
Therefore, for every ¢ € C3°(£2),

/ %(pd}c + / A <8Auk FIn(Aug ++/1+ (Auk)2)> odx
Q Q
+ A/ lug|P 2 ugpdx = 0.
Q

Choosing ¢ = Auy, we have

1 / 1 )
— | (Vup — Vug_1)Vurdx + / e+ —— | |VAu|“dx
hJa Q V14 | Aug|?

+ x/ (p — Dlugl” 2| Vug|*dx = 0,
Q

that is

1 / 2 1 2
— [Vug| dx+/ e+ —— | |VAug|“dx
2h Jo Q V14 | Aug|?

2 2 1 2
+a | (p = Dlul” 2| Vug Pdx < — | [Vug_|dx. 2.8)
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Next, we construct an approximate solution u of problem (2.4) by defining

up(x), t=0,
ui(x), 0<t=<h,

e,

1) = 2.9
D= @, G- k<1< gk, 29
u,(x), m—Dh<t<nh=T
For every ¢ € [0, T'], (2.8) implies
IVun(e, D172y < IVu0l72q)-
From the above inequality, we see that
||Vuh(x, t)||L°°(O,T;L2(Q)) = ”VMOHLZ(Q) (210)
Summing up the inequalities in (2.8), we derive that
IV Aupl*dxdr < [[Vigl]2 - (2.11)
/ / ( 1+ [Au? IAuh|2> L
x/ /(p — Dlun|? 72 Vuy,[Pdxdr < [[Vuol)3. (2.12)
0 Q
Thus,
18wl 20,7,y + 110 (18001 + VT T800P) ll 20 7.3 = -
(2.11) implies that
V Aup|?
f / v ln Auh +V1+ (Auh)2 | dxdr = / / VAU
1+ [Aupl?
<C.

- / / CIVAw* deds
“Jo Ja 14 |Auy?
By Auplyq = 0, we know that

||uh||L00(0’T;H(; @) T ||uh||L2((),T;H3(Q))
/ 2
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Therefore, we may choose a subsequence (we also denote it by the original sequence
for simplicity) such that

up—ug,  weakly-*in L0, T; Hy (Q2)),
Up—ig, weakly in LZ(O, T; H3(§2)),

Aup—Aue, weaklyin L*(0, T; H}(R)), @.13)
In (Auh 1+ (Auh)2> &, weaklyin L2(0,T; HL()),
which follows that ([5], Chapter 2)
”uSHLOO(O,T;HO] @) T ||“s||L2(O,T;H3(S2)) + ||‘§8||L2(O’T;H(}(Q)) =C. (2.14)

For each ¢ € Cl(Q7) with ¢(,T) = 0 and for every k € {1,2,...,n}, taking
¢(x, kh) as a test function in (2.7), we know that

1 1
—/ upe(x, kh)dx — —/ ukflw(x,kh)dx+)L/ |uk|p_2uk<p(x,kh)dx
Q hJa Q

h
- / v (eAuk +ln (Auk +V1+ (Auk)2)) Vo(x, khydx =0.  (2.15)
Q

Summing up all the equalities and using ¢(-, T) = ¢(-, nh) = 0, we deduce

h’i/ up(x, kh)[o(x, kh) — o(x, (k + l)h)]dx
k=1Y¢

— f upe(x, h)dx
h Q

—h i /gz \Y (8Auh +1In (Auh ++1+ (Auh)z)) Vo(x, kh)dx
k=1

n
+hAZ/ lup| P 2upe(x, khydx = 0. (2.16)
k=178

Passing to the limits as # — 0, we obtain from (2.13), (2.14), (2.16) that

T 3(/)
— ue—dxdr — [ wuop(x,0)dx
0o Jo 0t Q

T T
—/ / V(eAu, + &)Vedxdr + A/ / lug|P2ugpdxdr = 0.  (2.17)
0 Q 0 Q
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342 C. Liu, M. Jin

In addition, if ¢ € C§°(27), we obtain
T
0
—/ /us—(pdxdt

0 Q Jat

T T
=/ /V(sAug—i—Eg)chdxdr—)\/ /Iugl”_zus(pdxdr. (2.18)

0 Jo 0o Ja

Noticing that u, € L2(0, T; H*(R)) and & € L*(0, T; H] (2)), we see that

9
”; e L2(0, T: H-' ().

Asu, € L20, T; HO1 (R2)), it follows from the compact imbedding relation
Hy(Q) — L*(Q) — H™ (),
that
ue € C([0, TT; L*(2)).

As the function u, satisfies (2.17), we only need to show that & = In(Au, +
Vv 1+ (Aug)?) ae. in Q7 to prove the existence of weak solutions. Taking u, as a
test function in (2.4), we have

1 1 r
f—|us(T)|2dx—/ —|u0|2dx+[ /(8Au5+$£)Au5dxdr
Q2 Q2 0o Jo
T
+)\f / |ug|Pdxdt = 0. (2.19)
0 Q

Choosing uj as a test function in (2.7), we have
1
Ef u2dx +/ hA (sAuk +1In (Auk +V1+ (Auk)2>) udx
Q Q

1 2
+hr | |uglPdx < = | wuj_,dx.
Q 2 Ja

Summing up the above equalities for k = 1,2, ..., n, we derive that

1 ) r

~ | wE(Tydx + <8Auh +1n (Auh i (Auh)2)> Aupdxdr
Q 0o Ja

2
T 1
+,\/ / lup|Pdxdr < -/ uddx. (2.20)
0 Jo 2 Ja
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Using the fact

(ln($+\/1+$2> —1n(n+,/1+n2))(s — ) =0,
for all £, n € R, we easily know that
T
/ / (ln (Auh V11 (Auh)z) I (Av 1+ (Au)2)) (Aup — Av)dxdr > 0,
0 Q

for every v € L%(0, T; H%(S2)). Thus, from (2.20) we have that

1 2 1 2 ’ 2 ’
= | up(T)dx — = [ ugdx + e|Aup|~dxdt + A |up|Pdxdt
2 Ja 2 Ja 0o Ja 0o Ja

# [ (O (a4 T ) a0+ (n (304 Vi B07)) A anar
- i In(Av+ V14 (Av)?)) Avdxdr < 0.
0 JQ

Passing to limits as 4~ — 0 and noticing

T < lim inf T ,
lue(T)llp2q) = 1h—>0 lun(T)ll 2@

|Auel 20y < liminf [[Augl 20,
we obtain
1 2 1 2 T 2 T
— | u;(T)dx — = [ wuydx + elAug|"dxdt + A lug|Pdxdr
2 Ja 2 Ja 0o Ja o Ja
T T
+ / / £, Avdxdr + / / (ln (Av +V1+ (Av)z)) Augdxdr
0 Q 0 Q
T
- / / <ln (Av 1+ (Av)2>> Avdxdr < 0. 2.21)
0 Q
Combining (2.19) with (2.21), we have, for every v € L?(0, T; H*(Q)),
T T T
/ fSEAugdxdt—/ /EgAvdxdt—i—/ / (ln (Av—}-\/l—i-(Av)z)) Augdxdr
0 Q 0 Q 0 Q
T
— / / <1n (Av +J/1+ (Av)2>) Avdxdr > 0,
0 Q

which is

f / —In Av +V1+ (AU)Z)) (Auy — Av)dxdr > 0.
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Foreachy > 0, € C$°(Qr), we choose v € L*(0, T; H*(Q) N H}(R)) to be
the solution of Av = Au, — Aw in the above inequality to have

T
/ / w (& — In((Aus — yo) + \/1 + (Aug — yw)?))dxdr > 0.
0 Q

Passing to limits as ¥ — 0 and using Lebesgue’s dominated convergence theorem,
we get

T
/ / w(& — In(Aup + V1 + (Aug)?))dxdr > 0,
0 Q

for every w € CgO(QT) and conclude that & = In(Aue + /1 + (Aug)?) a. e. in

Q7. By approximation, we use (2.20) to obtain (2.5) and use (2.8) to obtain (2.6).
Therefore, we finish the proof of the existence of weak solutions.

The proof of the uniqueness of weak solutions is similar to the proof of uniqueness

of problem (2.1), so we omit the details. Thus, we complete the proof of Theorem 2.3.

O

Proof of Theorem 2.1 First, by Theorem 2.3, we know that

||u8||Loc((),T;H(}(Q)) + 5||“8||L2(0,T;H3(§2)) + I In(Au,

+/1+ (Au8)2)||L2((),T;H(}(Q)) =C.

Therefore, we can extract a subsequence from {u.}, denoted also by {u.}, such that

us—u, weakly-*in L0, T; HOI(Q)),
VeVAug—~¢, weaklyin L*(Qr),
£ =In(Aue + 1+ (Aug)2)—&,  weaklyin L*(0, T; Hy (),

which follows that ([5], Chapter 2)
leell oo o, 7: 1t @y + W€ L2y + 18N 20,7 12 (@) = C- (2.22)

Using (2.17), we deduce that

T B
—/ /us—wdxdt—/. upp(x, 0)dx
0o Jo Ot Q

T T
—/ / V(eAug + &)Vedxdr +,\/ / lue|P 2upg(x, 0)dxdr = 0.
0 Q 0 Q
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Letting ¢ — 0, we see that

T 3
—/ /u—¢dxdt—/ upp(x, 0)dx
0o Jo Ot Q

T T
—/ / VEVedxdr +/\/ / lul?2ug(x, 0)dxdr = 0. (2.23)
0 Q 0 Q

Choosing ¢ € C°(Q2r), we get

T 8§0 T
—/ / u—dxdr —/ / VEVedxdr =0,
0o Jo 01 0o Ja

which implies that

9
M e 120, T: H'(Q)).

Asu € L3(0, T; HOl (R2)), it follows from the compact imbedding relation
HH(Q) — L*(Q) — H (),
that
u € C([0, T]; L*()).

On the other hand, (2.6) implies that

/ |Vue[*dx < / |Vuo|*dx, (2.24)
Q Q

1
|V Au, |>dxdr < E/Q|wo|2dx. (2.25)

t
1
/0 /S.2\/1+|Au8|2

Denote
we, = Aug.

Noticing that |V]w,|| < |Vwg|, we conclude that

V|a)s
T+ P 1+ o2

2
dxdr

/OZ/Q|Vln(|wg|+m)|2dxdr //

<// Ve
~Jo \/l—l-la)gl2

1 2
< — [Vug|“dx < C.
2 Ja
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Setting v, = In(Jwe| + +/1 + |we|?) and using ve|yo = 0, we know that v, €
L?(0, T; H} () and

T
2 2
10320710 ) < C/O /Q|Vv€| dxdr < C. (2.26)

By N = 2, we see that H (Q) — L?(Q) with ¢ = expt2 — 1. Then, we have
L%(0,T; H () — L! (0 T; L?(2)), and that there exist two positive numbers

Ci,Cy such that
2
I3
dxdr < C|Q27|.
/ / (C1||Vvs||L2(szT>>

In addition, for every § > 0,

2
M

Choosing # = ve and § = C1[|Vve || 2(q,) in the above inequality, we derive

2
T 2
) 4C Ve
/ /ezvedxdt 5[ exp — ) dxdr + ” HL2(9 Q7|
0 JQ Qr C1||Vve||L2(ng)

= ClQr|,

which further implies that
T
/ f |we |>dxdt =/ |Aug|*dxdr < C|Qr| < C. (2.27)
0 Ja Qr

It follows from u, € L>(0, T; H} () that
Nuellz20.7: 520 < C- (2.28)
Therefore, we can extract a subsequence from {u,}, denoted also by {u.}, such that
ug—u,  weaklyin L>(0,T; H*()), (2.29)
which follows that ([5], Chapter 2)
lull 20,7, 020 < C- (2.30)

We only need to show that € = In(Au++/1 + (Au)?) a.e.in Q7 to prove the existence
of weak solutions of problems (1.1)—(1.3).
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Taking u as a test function in (2.23), we know that

1 1 T T
/ —u2(T)dx—/ —ugdx+/ fSAudxdr+A/ f lu|Pdxdr = 0. (2.31)
Q2 Q2 0 JQ 0 JQ

Passing to limits as ¢ — 0 and noticing

lu (Tl 12y < Hminf [lue(T) |l z2(q).
e—0

lAullz2@p) = liggf Aucliz2@q),
we obtain
1, 1 T
U (T) — _“0 dx + A |u|Pdxdt
Q Q

+/O /Q [gm +1n (Av +V1+ (AU)2> Au
—1In (Av +V1+ (Av)2> Av] dxdr < 0.

Using (2.31), we have
T T T

/ / £ Audxdr —/ / éAvdxdt—i—/ / <ln (Av V1 (Av)z)) Audxdr

0 Q 0 Q 0 Q

T
_ / / <ln (Av +V/1+ (Av)Z)) Avdxdr > 0,
0 Q

which is

/ / —In Av +V1+ (Av)2)) (Au — Av)dxdr > 0.

Foreachy > 0,w € CSO(QT), we choose v € L2(0, T: H3() N H&(Q)) to be the
solution of Av = Au — yw in the above inequality to have

[ (e -y =)o 0

Passing to limits as ¥ — 0 and using Lebesgue’s dominated convergence theorem,
we get

/ / ln Au++/1+ (Au)Z)) dxdr > 0,

for every w € C3°(27) and conclude that £ = In(Au + /1 + (Au)?) a.e.in Qr.
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It follows from (2.23) that u is a weak solution of problems (1.1)—(1.3). Therefore,
we finish the proof of the existence of weak solutions.

The proof of uniqueness of weak solutions is obvious, so we omit the details. The
proof of Theorem 2.1 is complete. O

3 Asymptotic behavior

This section is devoted to the asymptotic behavior of solutions. To this purpose, we
first show that

Theorem 3.1 The weak solution u satisfies that for any 0 < p € C*(SQ),

1f p () |u(x, 1)*d —l/ p(x)|uo<x)|2dx+A// p () |u(x, T)|Pdxdr
2 Jo 2 Ja o
- // In (Au 1+ (AM)Z) Ap()ulx, T))dxde, G.1)

where Q, = Q x (0, t).

Proof In the proof of Theorem 2.3, we have

1 2

f@) =5 | lulx,nl"dx € C([0, T]).

2 Jq

Similarly, we can also easily prove that for any 0 < p(x) € C*(Q),
1
7o =5 [ peolucr. nPdx € C0. 7).
Q

Consider the functional

1
D,[v] = 5f9p<x)|v<x)|2dx.

It is easy to see that ®,[v] is a convex functional on L*(R).
Forany t € (0, T) and & > 0, we have

Qplu(t +h)] — Pplu(r)] = (u(r +h) —u(r), p(Xulx, 7)).

By MZ”U[U] = p(x)v, for any fixed 71,1, € [0,T],t; < tp, integrating the above

inequality with respect to T over (¢, 1) , we have

t+h t+h 15}
[ ®,lu(r)ldr — / ®,lu(r)ldr > / (u(t + h) —u(r), p(x)u)dr.
n

1 1
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Multiplying the both sides of the above inequality by %, and letting 7 — 0, we obtain

t
’ <8_u ,o(x)u> dr.

@plu(rz)] — Pplu(t)] = / ar”

n

Similarly, we have
Dylu(@)] — Pplu(t — h)] < ((u(r) —u(r —h)), p(x)u).

Thus,

I
’ <8_u ,o(x)u> dr,

® [u(12)] — ®,[ut))] < / =3

1

and hence,

D, lu(tr)] — ®plu(ty)] = /

1

2 9u cou)d
—, p(x)u)dr.
ot P

Taking t; = 0, 1 = ¢, we get from the definition of solutions that

Qplu(®)] — @,[u(0)]

t
- / (—A (1n (Au +J/1+ (Au)2)) — Au|P2u, p(x)u(‘r)>dt
0
t t
- _/ (m (Au +V/1+ (Au)z) , A[p(x)u(r)]>dt —f P2, p(x)u())dr.
0 0
The proof is complete. O

Theorem 3.2 Let u be the weak solution of problems (1.1)—(1.3), then

1 2
— , o= 2,C1>O.
(pT|S2|TM+C1)“ p—

f lu(x, 1)[*dx <
Q

Proof Taking p(x) = 1 in equality (3.1), we have

L D 2dy — L 2dx
E/QIM(X, )| —Efgluo(x)l
t
= —/ /m (Au+\/1 +(Au)2) Audxdr —)\// wPdxdr.  (3.2)
0 Q t

Let £(t) = 1 [ lu(x, )|2dx. By (3.2), we have

f(6) = —/ In (Au +V1+ (Au)2) Audx — ,\/ u|Pdx < 0.
Q Q
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Noticing that In(Au + /1 + (Au)?)Au > 0 and using the Holder inequality, we

conclude that
) 2/p
/|u<x,r>|2dxs|sz|"T ([ |u|f’dx) :
Q Q

p—2 2
thatis £(r) < Q17 277 f/()P/P.
2—
Again by f'(r) < 0, we know that f/(r) < —|Q| 7 A f(t)P/?, and hence,

1 2
— , a= 2,C1 > 0.
(5=1Q172 At 4+ Cp)@ pP—

/ lu(x, 1)*dx <
Q

The proof is complete. O

4 Regularity of solutions

In this section, we consider the regularity of solutions for problems (1.1)—(1.3).

Theorem 4.1 If u is weak solution of problems (1.1)—(1.3), for any (x1, t1), (x2, 1) €
O, we have

lu(xy, 1) — u(xa, )| < C(jx1 — xa| + |t1 — 2'/?),

where C is a constant depending only on p.

Proof Let
T
Mg(.x,t):jgu(x,t):/ / j&‘(-x_y7t_s)u(yvs)dydsv
0 [x—yl<e

where j.(x — y, t — s) is the mollifier.
For any x1, xo € 2, we have

ug(x1,1) —ug(x2,1)
T T
=[ / js(x1—y,t—s)u(y,s)dyds—/ / Je(xo =y, t —s)u(y, s)dyds
0 R? 0 R?

r 9 1— —y,t—
_ / / Je(zxi+ 0 —2)x2 —y S)u(y, s)dzdyds
0 JR? 0z

T 1
= / /2/ Vije(zxi + (1 = 2)xp — y, t — 5)(x1 — x2)u(y, s)dzdyds
o Jr2Jo
T 1
= —/ /2/ Vyje(zxr + (1 —2)x2 — y, t —s)(x1 — x2)u(y, s)dzdyds
o Jr2Jo

T 1
=/ f2/ Je(zx1 + (1 —2)x2 — y, t —s)Vyu(y, s)dzdyds (x; — x2).
0 R~ JO
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Therefore,
lug (x1, 1) — ue(x2, 1)

T 1
s/ ff e(ext + (1= D2 — v, — $)[[Vyu(y, $)ldzdyds|x; — xal,
0 R 0

andbyu € L2(0, T: H3(S)), we obtain
lue(x1, 1) — ue(x2, 1)| < Clxp — x2f. 4.1

Set0 <e <tp <th <T.LetAt =1, — 11, By = Bani/2(x0), X0 € €2, choose p
sufficiently small, such that B, C @, ¢ € C%(Bp). Therefore, we can obtain

/ @) (ue(x, 1) —ue(x, 11))dx

By

due(x, Stz-‘r(l s)tl)
=f P(x )f

_mf (x)f// u(y 7)
By [x—yl<e

Jer(x =y, str + (1 —s)fp — v)dydrdsdx

1 ,pT
s [ [ o
B, 0o JO [x—yl<e

< Jer(x — y, 8t + (1 — s)t; — 7)dydrdsdx. “4.2)

Fixed (x,#) € 07, 0 <e <t < T —¢,wehave j.(x —y,t — 1) € Cg(QT), from
definition of weak solution

T
/ / Jer(x =y, st + (1 = s)t; — Du(y, r)dydr
lx—yl<e

T
= In (A u+/14+ (A ,u)2> Ayje(x —y, st + (1 —s)t; — r)dydr
/0 [x—y|<a ? ? e

T
+ / / lul?2uje(x — y, st + (1 — $)ty — 1)dyd,
[x—yl<e
and hence, (4.2) is converted into

/ @(x)(ug(x, 1) — ug(x, t1))dx

By

1 ,pT
= —At In{Ayu+,/14+ (A, 2)
Lp (p(x)v/() /O flxy|<€ n( v ( y”)

Ayje(x —y,str + (1 — s)rp — t)dydrdsdx
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1 T
—mt/ (p(x)/ f / lu|?2u
B, 0o Jo [x—y|<e

s Je(x =y, st + (1 —s)t) — r)dydrdsdx

1 T
= —At A, In{ Ayu+,/1+ (A, 2>
/O /;,J ¢(X)/; /|x—y|<s n( v ( yu)

s Je(x —y, st + (1 —s)f1 — r)dydrdxds

1 T
—mt/ (p(x)/ / f lu|P~2u
B, 0o JO [x—yl<e

s Je(x —y, st + (1 —s)ty — 7)dydrdsdx.

Taking

x (A2 —|y—xo|—2h
P(x) = gn(x) = / / 1 (s)dsdy.

xo—(A1)1/2e h

where e = (1, 1), 8(s) € C3(R); 8(s) = 0; 8(s) =0, as |s| > 1;/, 8(s)ds = 1. For
h > 0, define 8,(s) = +8(3).
Hence,

/B @n(x) (ue(x, 12) — ue(x, 11))dx

1 _
- —At/ f S5 (A2 = x — xo| — 2h) i‘) xl J. (1n (Au +J/1+ (Au)2)> dxds
o Ji, -

lx — xo

1 T
—AAI/ go(x)/ / / lu|”2u
B, 0 JO [x—yl<e

< Je(x —y, st + (1 — s)t; — 7)dydrdsdx.

Noticing that for x € B,, ;inhtph(x) = 1, and if |x — xo| < (AH)Y2 — h, then
—
Sh((ADV2 — |x — xo| —2h) = 0,8, < € and

m(Bo\Bapy12_p) < Ch(A)'2.

By J:(In(Au + /1 + (Au)?)) < Candu € L*®(0, T; H(} (£2)), therefore

‘ / On () (e (x, 1) — ue(x, 1))dx| < C(A1)Y/2.
B/’
Letting » — 0, we obtain

/ (e (x, 1) — us(x, 11))dx| < C(AD>2,

Bﬂ
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Applying the mean value theorem, we see that for some x* € B, such that

lue (x*, 12) — ue (x*, 11)| < C(AD)Y/2.

Taking this into account and using (4.1), it follows that

|u€(-x7 t2) - ué‘(-xa t1)|

< ue(x, 1) —ug(xX*, )| + |ug (xX*, 12) — ue (x*, 1) + lug (x*, 11) — ug(x, 17)]
< c(an',

and letting ¢ — 0, we known that u is Holder continuous. The proof is complete.
(]
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