CrossMark

Derivations and 2-Local Derivations on Matrix Algebras and Algebras of Locally Measurable Operators

Wenbo Huang1 · Jiankui Li1 · Wenhua Qian²

Received: 8 March 2018 / Revised: 12 September 2018 / Published online: 24 September 2018 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018

Abstract

Let *A* be a unital algebra over $\mathbb C$ and $\mathcal M$ be a unital *A*-bimodule. We show that every derivation $D: M_n(\mathcal{A}) \to M_n(\mathcal{M}), n \geq 2$, can be represented as a sum $D = D_m + \overline{\delta}$, where D_m is an inner derivation and $\overline{\delta}$ is a derivation induced by a derivation δ from *A* into *M*. If *A* commutes with *M*, we prove that every 2-local inner derivation $\Delta: M_n(\mathcal{A}) \to M_n(\mathcal{M}), n \geq 2$, is an inner derivation. In addition, if A is commutative and commutes with *M*, then every 2-local derivation $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{M}), n \geq 2$, is a derivation. Let *R* be a finite von Neumann algebra of type I with center *Z* and $LS(R)$ be the algebra of locally measurable operators affiliated with R . We also prove that if the lattice \mathcal{Z}_P of all projections in $\mathcal Z$ is atomic, then every derivation $D: \mathcal{R} \to LS(\mathcal{R})$ is an inner derivation.

Keywords Derivation · 2-Local derivation · Locally measurable operator · Von Neumann algebra

Mathematics Subject Classification Primary 46L57 · Secondary 47B47 · 47C15 · 16B25

Communicated by Pedro Tradacete.

B Jiankui Li jiankuili@yahoo.com

> Wenbo Huang huangwenbo2015@126.com

Wenhua Qian whqian86@163.com

- ¹ Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
- ² College of Mathematical Sciences, Chongqing Normal University, Shapingba District, Chongqing 401331, China

1 Introduction

Let *A* be an algebra over $\mathbb C$ the field of complex numbers and *M* be an *A*-bimodule. A linear map δ from $\mathcal A$ into $\mathcal M$ is called a *Jordan derivation* if $\delta(a^2) = \delta(a)a + a\delta(a)$ for each *a* in *A*. A linear map δ from *A* into *M* is called a *derivation* if $\delta(ab)$ = $\delta(a)b + a\delta(b)$ for each *a*, *b* in *A*. Let *m* be an element in *M*, the map $\delta_m : A \rightarrow$ M , $a \rightarrow \delta_m(a) := ma - am$, is a derivation. A derivation $\delta : A \rightarrow M$ is said to be an *inner derivation* when it can be written in the form $\delta = \delta_m$ for some *m* in M. A fundamental result, due to Sakai [\[18](#page-13-0)], states that every derivation on a von Neumann algebra is an inner derivation.

An algebra *A* is called *regular* (in the sense of von Neumann) if for each *a* in *A* there exists *b* in A such that $a = aba$. Let R be a von Neumann algebra. We denote $S(R)$ and $LS(R)$, respectively, the algebras of all measurable and locally measurable operators affiliated with R . For a faithful normal semi-finite trace τ on R , we denote the algebra of all τ -measurable operators from $S(\mathcal{R})$ by $S(\mathcal{R}, \tau)$ (cf. [\[1](#page-13-1)[,4](#page-13-2)[,14](#page-13-3)]). If \mathcal{R} is an abelian von Neumann algebra, then it is ∗-isomorphic to the algebra $L^{\infty}(\Omega) = L^{\infty}(\Omega, \Sigma, \mu)$ of all (classes of equivalence of) essentially bounded measurable complex functions on a measurable space (Ω, Σ, μ) , and therefore, $LS(\mathcal{R}) = S(\mathcal{R}) \cong L^0(\Omega)$, where $L^0(\Omega) = L^0(\Omega, \Sigma, \mu)$ is a unital commutative regular algebra of all measurable complex functions on (Ω, Σ, μ) . In this case inner derivations on the algebra $S(\mathcal{R})$ are identically zero, i.e., trivial.

Ber et al. [\[9\]](#page-13-4) obtain necessary and sufficient conditions for existence of non-trivial derivations on commutative regular algebras. In particular, they prove that the algebra $L^0(0, 1)$ of all measurable complex functions on the interval $(0, 1)$ admits non-trivial derivations. Let *R* be a properly infinite von Neumann algebra. Ayupov and Kuday-bergenov [\[4](#page-13-2)] show that every derivation on the algebra $LS(R)$ is an inner derivation.

In 1997, *Semrl* [\[17](#page-13-5)] introduced 2-local derivations and 2-local automorphisms. A map $\Delta : A \rightarrow M$ (not necessarily linear) is called a 2-local derivation if, for every $x, y \in A$, there exists a derivation $D_{x,y}$: $A \to M$ such that $D_{x,y}(x) = \Delta(x)$ and $D_{x,y}(y) = \Delta(y)$. In particular, if, for every *x*, $y \in A$, $D_{x,y}$ is an inner derivation, then we call Δ is a 2-local inner derivation. Niazi and Peralta [\[15\]](#page-13-6) introduce the notion of weak-2-local derivation (respectively, *-derivation) and prove that every weak-2-local [∗]-derivation on *Mn* is a derivation. 2-local derivations and weak-2-local derivations have been investigated by many authors on different algebras and many results have been obtained in [\[3](#page-13-7)[–8](#page-13-8)[,11](#page-13-9)[,13](#page-13-10)[,15](#page-13-6)[–17](#page-13-5)[,19](#page-13-11)].

Let H be a infinite-dimensional separable Hilbert space. In [\[17](#page-13-5)] *Semrl* shows that every 2-local derivation on $\mathcal{B}(\mathcal{H})$ is a derivation. Kim and Kim [\[13](#page-13-10)] give a short proof of that every 2-local derivation on a finite-dimensional complex matrix algebra is a derivation. Ayupov and Kudaybergenov [\[3\]](#page-13-7) extend this result to an arbitrary von Neumann algebra. Ayupov et al. [\[5](#page-13-12)] prove that if R is a finite von Neumann algebra of type I without abelian direct summands, then each 2-local derivation on the algebra $LS(\mathcal{R}) = S(\mathcal{R})$ is a derivation. In the same paper, the authors also show that if \mathcal{R} is an abelian von Neumann algebra such that the lattice of all projections in R is not atomic, then there exists a 2-local derivation on the algebra $S(\mathcal{R})$ which is not a derivation. Zhang and Li [\[19](#page-13-11)] construct an example of a 2-local derivation on the algebra of all triangular complex 2×2 matrices which is not a derivation.

Ayupov et al. [\[5\]](#page-13-12) show that if $\mathcal A$ is a unital commutative regular algebra, then every 2-local derivation on the algebra $M_n(\mathcal{A})$, $n \geq 2$, is a derivation. Ayupov and Arzikulov [\[8](#page-13-8)] show that if *A* is a unital commutative ring, then every 2-local inner derivation on $M_n(\mathcal{A})$, $n \geq 2$, is an inner derivation. Let A be a unital Banach algebra and M be a unital *A*-bimodule. He et al. [\[11](#page-13-9)] prove that if every Jordan derivation from *A* into *M* is an inner derivation then every 2-local derivation from $M_n(\mathcal{A})$ ($n \geq 3$) into $M_n(\mathcal{M})$ is a derivation.

Throughout this paper, A is an algebra with unit 1 over C and M is a unital A bimodule. We say that *A commutes with M* if $am = ma$ for every $a \in A$ and $m \in M$. From now on, $M_n(\mathcal{A})$, for $n \geq 2$, will denote the algebra of all $n \times n$ matrices over \mathcal{A} with the usual operations. By the way, we denote any element in $M_n(\mathcal{A})$ by $(a_{rs})_{n\times n}$, where $r, s \in \{1, 2, \ldots, n\}$; $E_{ij}, i, j \in \{1, 2, \ldots, n\}$, the matrix units in $M_n(\mathbb{C})$; and $x \otimes E_{ij}$, the matrix whose (i, j) -th entry is *x* and zero elsewhere. We use A_{ij} for the (i, j) -th entry of $A \in M_n(\mathcal{A})$ and denote diag (x_1, \ldots, x_n) or diag (x_i) the diagonal matrix with entries $x_i \in A$, $i \in \{1, 2, ..., n\}$, in the diagonal positions. Particularly, we denote diag(x_i) by diag(x), where $x_i = x$ for every $i \in \{1, 2, ..., n\}$.

Let $\delta : A \rightarrow M$ be a derivation. Setting

$$
\delta((a_{ij})_{n \times n}) = (\delta(a_{ij}))_{n \times n},\tag{1.1}
$$

we obtain a well-defined linear operator from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$, where $M_n(\mathcal{M})$ has a natural structure of $M_n(\mathcal{A})$ -bimodule. Moreover, δ is a derivation from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$. If A is a commutative algebra, then the restriction of δ onto the center of the algebra $M_n(\mathcal{A})$ coincides with the given δ .

In this paper we give characterizations of derivations, 2-local inner derivations and 2-local derivations from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$. In Sect. [2,](#page-3-0) we show that a derivation $D: M_n(\mathcal{A}) \to M_n(\mathcal{M})$, $n \geq 2$, can be decomposed as a sum of an inner derivation and a derivation induced by a derivation from A to M as [\(1.1\)](#page-2-0), as follows:

$$
D=D_B+\delta.
$$

In addition, the representation of the above form is unique if and only if *A* commutes with *M*. Let *R* be a finite von Neumann algebra of type I with center $\mathcal Z$ and $LS(\mathcal R)$ be the algebra of locally measurable operators affiliated with *R*. we prove that if the lattice \mathcal{Z}_P of all projections in $\mathcal Z$ is atomic, then every derivation $D : \mathcal R \to LS(\mathcal R)$ is an inner derivation.

In Sect. [3,](#page-8-0) we consider 2-local inner derivations and 2-local derivations from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$. For the case that A commutes with M, we obtain that every inner 2local derivation from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$ is an inner derivation. In addition, if $\mathcal A$ is commutative, we prove that every 2-local derivation $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{M}),$ $n \geq 2$, is a derivation. Let R be an arbitrary von Neumann algebra without abelian direct summands. We also show every 2-local derivation Δ : $\mathcal{R} \rightarrow LS(\mathcal{R})$ is a derivation.

2 Derivations

Let A be an algebra with unit 1 over C and M be a unital A -bimodule. Let D : $M_n(\mathcal{A}) \to M_n(\mathcal{M})$, $n \geq 2$, be a derivation. Firstly, we define a map $D_{rs}^{ij} : \mathcal{A} \to \mathcal{M}$ by

$$
D_{rs}^{ij}(a) = [D(a \otimes E_{rs})]_{ij}, \quad a \in \mathcal{A}, \ i, j, r, s \in \{1, 2, \dots, n\}.
$$

For any $a, b \in A$ and some fixed $m \in \{1, 2, ..., n\}$, we have

$$
D_{rs}^{IJ}(ab) = [D(ab \otimes E_{rs})]_{ij}
$$

= [D((a \otimes E_{rm})(b \otimes E_{ms}))]_{ij}
= [D(a \otimes E_{rm})(b \otimes E_{ms})]_{ij} + [(a \otimes E_{rm})D(b \otimes E_{ms})]_{ij}
= \delta_{js}[D(a \otimes E_{rm})]_{im}b + \delta_{ir}a[D(b \otimes E_{ms})]_{mj},

where δ is the Kronecker's delta. It follows that

$$
D_{rs}^{ij}(ab) = \delta_{js}[D(a \otimes E_{rm})]_{im}b + \delta_{ir}a[D(b \otimes E_{ms})]_{mj}.
$$
 (2.1)

For any $m \in \{1, 2, \ldots, n\}$, we deduce from the equality (2.1) that

$$
D_{mm}^{mm}(ab) = D_{mm}^{mm}(a)b + a D_{mm}^{mm}(b),
$$

thus D_{mm}^{mm} : $A \rightarrow M$ is a derivation. We abbreviate the derivation D_{mm}^{mm} by D^m . Particularly, we denote the derivation D_{11}^{11} by D^1 .

Theorem 2.1 *Every derivation* $D : M_n(\mathcal{A}) \to M_n(\mathcal{M})$, $n \geq 2$, can be represented *as a sum*

$$
D = D_B + \overline{\delta},\tag{2.2}
$$

where D_B *is an inner derivation implemented by an element* $B \in M_n(\mathcal{M})$ *and* $\overline{\delta}$ *is a derivation of the form* [\(1.1\)](#page-2-0) *induced by a derivation* δ *from A into M. Furthermore, if this representation is unique for every derivation D, then A commutes with M* $(i.e., am = ma for every $a \in A$, $m \in M$); and if A commutes with M then this$ *representation is always unique.*

Before the proof of Theorem [2.1,](#page-3-2) we first present the following lemma.

Lemma 2.2 *For every i*, *j*, *r*, *s*, *m* ∈ {1, 2, ..., *n*} *and every* $a \text{ ∈ } A$ *the following equalities hold:*

(i)
$$
D_{rs}^{ij} = 0
$$
, $i \neq r$ and $j \neq s$,

(ii)
$$
D_{rj}^{ij}(a) = D_{rm}^{im}(a) = D_{rm}^{im}(1)a, \text{ if } i \neq r,
$$

(iii) $D_{is}^{ij}(a) = D_{ms}^{mi}(a) = aD_{ms}^{mj}(1), \text{ if } j \neq s,$

 $\sum_{jm}^{i} (1) = -D_{mi}^{mj}(1),$ (v) $D_{ij}^{ij}(a) = D_{im}^{im}(1)a - aD_{jm}^{jm}(1) + D^{m}(a)$.

Proof It obviously follows from (2.1) that statements (i) , (ii) and (iii) hold. We only need to prove (iv) and (v).

(iv): In the case $i = j$, we have

$$
0 = [D(1 \otimes E_{ii})]_{ii} = [D((1 \otimes E_{im})(1 \otimes E_{mi}))]_{ii}
$$

= [D((1 \otimes E_{im}))(1 \otimes E_{mi})]_{ii} + [(1 \otimes E_{im})D((1 \otimes E_{mi}))]_{ii}
= D_{im}^{im}(1) + D_{mi}^{mi}(1),

i.e.,

$$
D_{im}^{im}(1) = -D_{mi}^{mi}(1). \tag{2.3}
$$

For the case $i \neq j$, we have

$$
0 = D(0) = [D((1 \otimes E_{ii})(1 \otimes E_{jj}))]_{ij}
$$

= [D((1 \otimes E_{ii}))(1 \otimes E_{jj})]_{ij} + [(1 \otimes E_{ii})D((1 \otimes E_{jj}))]_{ij}
= [D(1 \otimes E_{ii})]_{ij} + [D(1 \otimes E_{jj})]_{ij}
= D_{ii}^{ij}(1) + D_{jj}^{ij}(1),

i.e.,

$$
D_{jj}^{ij}(1) = -D_{ii}^{ij}(1).
$$

By (ii) , (iii) and equality (2.3) , it follows that

$$
D_{jm}^{im}(1) = -D_{mi}^{mj}(1).
$$

(v): By equality (2.1) , we have

$$
D_{ij}^{ij}(a) = D_{im}^{im}(1)a + D_{mj}^{mj}(a),
$$
\n(2.4)

and

$$
D_{ij}^{ij}(a) = D_{im}^{im}(a) + a D_{mj}^{mj}(1).
$$
 (2.5)

Taking $j = m$ in equality [\(2.4\)](#page-4-1), we obtain that

$$
D_{im}^{im}(a) = D_{im}^{im}(1)a + D^{m}(a).
$$
 (2.6)

By equalities (2.3) , (2.5) and (2.6) , it follows that

$$
D_{ij}^{ij}(a) = D_{im}^{im}(1)a - aD_{jm}^{jm}(1) + D^{m}(a).
$$

² Springer

The proof is complete.

Now we are in position to prove Theorem [2.1.](#page-3-2)

Proof of Theorem [2.1.](#page-3-2) Let $(a_{rs})_{n \times n}$ be an arbitrary element in $M_n(\mathcal{A})$ and D be a derivation from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$. For any $i, j \in \{1, 2, ..., n\}$, it follows from Lemma [2.2](#page-3-3) that

$$
[D((a_{rs})_{n\times n})]_{ij} = \sum_{r,s=1}^{n} D_{rs}^{ij}(a_{rs})
$$

\n
$$
= \sum_{r=1}^{n} D_{rj}^{ij}(a_{rj}) + \sum_{s=1}^{n} D_{is}^{ij}(a_{is}) - D_{ij}^{ij}(a_{ij})
$$

\n
$$
= \sum_{r\neq i} D_{rj}^{ij}(a_{rj}) + \sum_{s\neq j} D_{is}^{ij}(a_{is}) + D_{ij}^{ij}(a_{ij})
$$

\n
$$
= \sum_{r\neq i} D_{r1}^{i1}(1)a_{rj} + \sum_{s\neq j} a_{is} D_{1s}^{1j}(1) + D_{i1}^{i1}(1)a_{ij}
$$

\n
$$
- a_{ij} D_{j1}^{j1}(1) + D^{1}(a_{ij})
$$

\n
$$
= \sum_{r=1}^{n} D_{r1}^{i1}(1)a_{rj} - \sum_{s=1}^{n} a_{is} D_{j1}^{s1}(1) + D^{1}(a_{ij})
$$

\n
$$
= \sum_{k=1}^{n} (D_{k1}^{i1}(1)a_{kj} - a_{ik} D_{j1}^{k1}(1)) + D^{1}(a_{ij})
$$

\n
$$
= [(D_{s1}^{r1}(1))_{n\times n}(a_{rs})_{n\times n} - (a_{rs})_{n\times n}(D_{s1}^{r1}(1))_{n\times n}]_{ij}
$$

\n
$$
+ [\overline{D^{1}}((a_{rs})_{n\times n})]_{ij},
$$

i.e.,

$$
[D((a_{rs})_{n\times n})]_{ij} = \left[\left(D_{s1}^{r1}(1))_{n\times n} (a_{rs})_{n\times n} - (a_{rs})_{n\times n} (D_{s1}^{r1}(1))_{n\times n} \right]_{ij} + \left[\overline{D^{1}}((a_{rs})_{n\times n}) \right]_{ij},
$$
\n(2.7)

where $(D_{s1}^{r1}(1))_{n \times n}$ ∈ $M_n(\mathcal{M})$ and $[(D_{s1}^{r1}(1))_{n \times n}]_{ij} = D_{j1}^{i1}(1)$. By equality [\(2.7\)](#page-5-0), we have

$$
D((a_{rs})_{n\times n}) = \left[(D_{s1}^{r1}(1))_{n\times n}(a_{rs})_{n\times n} - (a_{rs})_{n\times n}(D_{s1}^{r1}(1))_{n\times n} \right] + \left[\overline{D^{1}}((a_{rs})_{n\times n}) \right].
$$

We denote $B = (D_s^r(1))_{n \times n}$ and $\delta = D^1$. Therefore, every derivation $D : M_n(\mathcal{A}) \to$ $M_n(\mathcal{M})$, $n \geq 2$, can be represented as a sum

$$
D=D_B+\overline{\delta}.
$$

Suppose that D_M is an inner derivation from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$ implemented by an element $M \in M_n(\mathcal{M})$, and $\overline{\zeta}$ is a derivation of the form [\(1.1\)](#page-2-0) induced by a derivation *ζ* from *A* into *M*, such that $D_M = \overline{\zeta}$. The first step is to establish the following. following. Ч

Claim 1 If *A* commutes with *M*, then $D_M = \overline{\zeta} = 0$.

Proof of Claim 1 If $i \neq j$, $i, j \in \{1, 2, ..., n\}$, we have

$$
0 = \zeta(E_{ij}) = D_M(E_{ij}) = ME_{ij} - E_{ij}M.
$$

It follows that $M_{ii} = 0$. Thus, M has a diagonal form, i.e., $M = \text{diag}(M_{kk})$. Suppose that $\overline{\zeta} \neq 0$, then there exists an element $a \in \mathcal{A}$ such that $\zeta(a) \neq 0$. Take $A = \text{diag}(a)$, then $\overline{\zeta}(A) \neq 0$. On the other hand,

$$
\zeta(A) = D_M(A) = \text{diag}(M_{kk})\text{diag}(a) - \text{diag}(a)\text{diag}(M_{kk}) = 0.
$$

This is a contradiction. Thus, $\overline{\zeta} = 0$.

Claim 2 If *A* does not commute with *M*, then there exist D_M and $\overline{\zeta}$, such that $D_M = \overline{\zeta} \neq 0.$

Proof of Claim 2 By assumption, we can take $a \in \mathcal{A}$ and $m \in \mathcal{M}$ such that $ma \neq am$. We define a derivation $\zeta : A \to M$ by $\zeta(x) = mx - xm$ for every x in A. We denote $M = \text{diag}(m) \in M_n(\mathcal{M})$, then D_M is an inner derivation from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$. Obviously, $D_M = \overline{\zeta}$ and $\overline{\zeta}$ (diag(*a*)) \neq 0. Thus, $D_M = \overline{\zeta} \neq 0$.

In the following, we show that the representation of the above form is unique if and only if *A* commutes with *M*.

Case 1 If *A* commutes with *M*, we suppose that there exists a derivation *D* : $M_n(\mathcal{A}) \to M_n(\mathcal{M}), n \ge 2$, which can be represented as $D = D_{B_1} + \overline{\delta_1} = D_{B_2} + \overline{\delta_2}$. This means that $D_{B_1} - D_{B_2} = \overline{\delta_2} - \overline{\delta_1}$. Since $D_{B_1} - D_{B_2} = D_{B_1 - B_2}$ and $\overline{\delta_2}$ – $\overline{\delta_1} = \overline{\delta_2 - \delta_1}$, we have $D_{B_1 - B_2} = \overline{\delta_2 - \delta_1}$. It follows from Claim 1 that $D_{B_1 - B_2} =$ $\overline{\delta_2 - \delta_1} = 0$. i.e., $D_{B_1} = D_{B_2}$ and $\overline{\delta_1} = \overline{\delta_2}$.

Case 2 If *A* does not commute with *M*, by Claim 2, there exist derivations *DM* and $\overline{\zeta}$ from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$, $n \geq 2$, such that $D_M = \overline{\zeta} \neq 0$. Let $D : M_n(\mathcal{A}) \to$ $M_n(\mathcal{M})$, $n \geq 2$, be an arbitrary derivation. By hypothesis, *D* can be represented as $D = D_B + \overline{\delta}$. We have $D = D_B + \overline{\delta} = D_B + D_M - \overline{\zeta} + \overline{\delta} = D_{B+M} + \overline{\delta} - \overline{\zeta}$. This means that the derivation *D* can be represented as $D = D_B + \overline{\delta}$, and as $D = D_{B+M} + \overline{\delta - \zeta}$ too. Therefore, the representation of [\(2.2\)](#page-3-4) is not unique for every derivation *D*. It follows from Cases 1 and 2 that the representation of [\(2.2\)](#page-3-4) is unique if and only if *A* commutes with *M*. The proof is complete. \Box

As applications of Theorem [2.1,](#page-3-2) we obtain the following corollaries.

Corollary 2.3 *The following statements are equivalent.*

- (i) *Every derivation* $\delta : A \rightarrow M$ *is an inner derivation.*
- (ii) *Every derivation* $D : M_n(\mathcal{A}) \to M_n(\mathcal{M})$, $n \geq 2$, *is an inner derivation.*

Proof If $\delta : A \to M$ is an inner derivation, by the equality [\(1.1\)](#page-2-0), obviously, δ : $M_n(\mathcal{A}) \to M_n(\mathcal{M}), n > 2$, is an inner derivation.

(i) implies (ii): Let $D : M_n(\mathcal{A}) \to M_n(\mathcal{M})$, $n \geq 2$, be an arbitrary derivation. By Theorem [2.1,](#page-3-2) *D* can be represented as a sum $D = D_M + \overline{\delta}$, where D_M is an inner derivation. By hypothesis, δ is an inner derivation from $\mathcal A$ into $\mathcal M$, and therefore, $\overline{\delta}$ is an inner derivation. We know that the sum of two inner derivations is an inner derivation, this means that $D: M_n(\mathcal{A}) \to M_n(\mathcal{M}), n > 2$, is an inner derivation.

(ii) implies (i): Suppose that δ is a derivation from *A* into *M*, then $\overline{\delta}$: $M_n(\mathcal{A}) \to$ $M_n(\mathcal{M})$, $n \geq 2$, is a derivation. By hypothesis, $\overline{\delta}$ is an inner derivation. then the restriction of $\overline{\delta}$ onto $E_{11}M_n(\mathcal{A})E_{11}$, the subalgebra of $M_n(\mathcal{A})$, is an inner derivation. This means that $\delta : A \rightarrow M$ is an inner derivation. \Box

Corollary 2.4 *Let ^A be a commutative unital algebra over* ^C. *Then every derivation on the matrix algebra* $M_n(\mathcal{A})$ ($n \geq 2$) *is inner if and only if every derivation on* \mathcal{A} *is identically zero, i.e., trivial.*

Let *R* be a von Neumann algebra. Denote by $S(\mathcal{R})$ and $LS(\mathcal{R})$, respectively, the sets of all measurable and locally measurable operators affiliated with *R*. Then the set $LS(\mathcal{R})$ of all locally measurable operators with respect to \mathcal{R} is a unital $*$ -algebra when equipped with the algebraic operations of strong addition and multiplication and taking the adjoint of an operator and $S(R)$ is a solid $*$ -subalgebra in $LS(R)$. If R is a finite von Neumann algebra, then $S(R) = LS(R)$ (see, for example, [\[1](#page-13-1)[,4](#page-13-2)[,14](#page-13-3)]). Let A be a commutative algebra with unit 1 over \mathbb{C} . We denote by ∇ the set $\{e \in \mathcal{A} : e^2 = e\}$ of all idempotents in *A*. For *e*, $f \in \nabla$ we set $e \leq f$ if $ef = e$. Equipped with this partial order, lattice operations $e \vee f = e + f - ef$, $e \wedge f = ef$ and the complement $e^{\perp} = 1 - e$, the set ∇ forms a Boolean algebra. A nonzero element *q* from the Boolean algebra ∇ is called an *atom* if $0 \neq e \leq q$, $e \in \nabla$, imply that $e = q$. If given any nonzero $e \in \nabla$ there exists an atom *q* such that $q \leq e$, then the Boolean algebra ∇ is said to be *atomic*.

Let R be an abelian von Neumann algebra. Theorem 3.4 of [\[9\]](#page-13-4) implies that every derivation on the algebra $S(\mathcal{R})$ is inner if and only if the lattice $\mathcal{R}_{\mathcal{P}}$ of all projections in R is atomic. If R is a properly infinite von Neumann algebra, in [\[4\]](#page-13-2) the authors show that every derivation on the algebra $LS(\mathcal{R})$ is inner (see [\[4](#page-13-2)], Theorem 4.6). In the case of R is a finite von Neumann algebra of type I, Theorem 3.5 of [\[4\]](#page-13-2) shows that a derivation on the algebra $LS(R)$ is an inner derivation if and only if it is identically zero on the center of *R*.

As a direct application of Corollary [2.3,](#page-6-0) we obtain the following result.

Corollary 2.5 *Let R be a finite von Neumann algebra of type I with center Z*. *Then every derivation D on the algebra* $LS(R)$ *is inner if and only if the lattice* $\mathcal{Z}_\mathcal{P}$ *of all projections in Z is atomic.*

Proof Let R be a finite von Neumann algebra of type I with center \mathcal{Z} . There exists a family $\{e_n\}_{n \in \mathcal{F}}$, $\mathcal{F} \subseteq \mathbb{N}$, of central projections from \mathcal{R} with $\bigvee_{n \in \mathcal{F}} e_n = 1$ such that the algebra *R* is ∗-isomorphic with the *C*∗-product of von Neumann algebras *enR* of type I_n , respectively, $n \in \mathcal{F}$, i.e., $\mathcal{R} \cong \bigoplus_{n \in \mathcal{F}} e_n \mathcal{R}$. By Proposition 1.1 of [\[1](#page-13-1)], we have that $LS(\mathcal{R}) \cong \prod_{n \in \mathcal{F}} LS(e_n \mathcal{R}).$

Suppose that *D* is a derivation on $LS(R)$ and δ its restriction onto the center $S(\mathcal{Z})$. Since δ maps each $e_n S(Z)$ into itself, δ generates a derivation δ_n on $e_n S(Z)$ for each *n* ∈ *F*. By Proposition 1.5 of [\[1](#page-13-1)], $LS(e_nR) \cong M_n(e_nS(Z))$. Let δ_n be the derivation on the matrix algebra $M_n(e_nS(\mathcal{Z}))$ defined as in [\(1.1\)](#page-2-0). Put

$$
\overline{\delta}(\{x_n\}_{n \in \mathcal{F}}) = \{\overline{\delta}_n(x_n)\}, \quad \{x_n\}_{n \in \mathcal{F}} \in LS(\mathcal{R}).
$$
\n(2.8)

Then the map $\overline{\delta}$ is a derivation on $LS(\mathcal{R})$. Lemma 2.3 of [\[1](#page-13-1)] implies that each derivation *D* on *LS(R)* can be uniquely represented in the form $D = D_B + \overline{\delta}$, where D_B is an inner derivation and $\overline{\delta}$ is a derivation given as [\(2.8\)](#page-8-1).

If *D* is an arbitrary derivation on $LS(\mathcal{R})$ and δ its restriction onto center $S(\mathcal{Z})$, by Theorem 3.4 of [\[9](#page-13-4)], the lattice $\mathcal{Z}_{\mathcal{P}}$ is atomic if and only if $\delta = 0$. We have $\delta = 0$ if and only if $\delta_n = 0$ for each $n \in \mathcal{F}$. By Corollary [2.3,](#page-6-0) $\delta_n = 0$ if and only if $\overline{\delta_n} = 0$ for each $n \in \mathcal{F}$. By equality [\(2.8\)](#page-8-1), $\delta_n = 0$ for each $n \in \mathcal{F}$ if and only if $\delta = 0$. Therefore, every derivation on the algebra $LS(R)$ is inner derivation if and only if the lattice \mathcal{Z}_p of all projections in Z is atomic. The proof is complete. \Box

Let R be a properly infinite von Neumann algebra and M be a R -bimodule of locally measurable operators. In [\[10](#page-13-13)], the authors show that every derivation $D : \mathcal{R} \to \mathcal{M}$ is an inner derivation. In the case of R is a finite von Neumann algebra of type I, we obtain the following result.

Theorem 2.6 *Let R be a finite von Neumann algebra of type I with center Z*. *If the lattice* $\mathcal{Z}_\mathcal{P}$ *of all projections in* \mathcal{Z} *is atomic, then every derivation* $D : \mathcal{R} \to LS(\mathcal{R})$ *is an inner derivation.*

Proof Choose a central decomposition $\{e_n\}_{n \in \mathcal{F}}$, $\mathcal{F} \subseteq \mathbb{N}$, of the unity 1 such that $e_n \mathcal{R}$ is a type I_n von Neumann algebra for each $n \in \mathcal{F}$. By hypothesis, it is easy to check that $D(e_n \mathcal{R}) \subseteq e_n LS(\mathcal{R})$ for each $n \in \mathcal{F}$. Thus, we only need to show that the derivation *D* restricted to $e_n \mathcal{R}$ is an inner derivation for each $n \in \mathcal{F}$.

Let $e_n \mathcal{R}$ be a type I_n ($n \in \mathcal{F}$) von Neumann algebra with center $e_n \mathcal{Z}$. It is well known that $e_n \mathcal{R} \cong M_n(e_n \mathcal{Z})$. We denote the center of $S(e_n \mathcal{R})$ by $\mathcal{Z}(S(e_n \mathcal{R}))$. By Proposition 1.2 of [\[1](#page-13-1)], we have $\mathcal{Z}(S(e_n \mathcal{R})) = S(e_n \mathcal{Z})$. By Proposition 1.5 of [1], $LS(e_n \mathcal{R}) = S(e_n \mathcal{R}) \cong M_n(S(e_n \mathcal{Z})).$

By assumption, the lattice \mathcal{Z}_p of all projections in $\mathcal Z$ is atomic. This implies that the lattice $e_n \mathcal{Z}_p$ is also atomic for each $n \in \mathcal{F}$. Statements (ii) of Proposition 2.3 and (vi) of Proposition 2.6 of [\[9](#page-13-4)] imply that every derivation δ : $e_n \mathcal{Z} \to S(e_n \mathcal{Z})$ is trivial. By Corollary [2.3,](#page-6-0) we have that every derivation from $M_n(e_n\mathcal{Z})$ into $M_n(S(e_n\mathcal{Z}))$ is inner. The proof is complete. \Box

3 2-Local Derivations

This section is devoted to 2-local inner derivations and 2-local derivations from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})$. Throughout this section, we always assume that $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{M})$ is a 2-local derivation. Firstly, we give the following lemma.

Lemma 3.1 *For every 2-local derivation* Δ : $M_n(\mathcal{A}) \rightarrow M_n(\mathcal{M})$, $n \geq 2$, there *exists a derivation* $D: M_n(\mathcal{A}) \to M_n(\mathcal{M})$ *such that* $\Delta(E_{ij}) = D(E_{ij})$ *for all i*, *j* ∈ $\{1, 2, ..., n\}$. *In particular, if* Δ *is a 2-local inner derivation, then D is an inner derivation.*

Proof Let $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{M}), n \geq 2$, be a 2-local derivation. By Theorem [2.1,](#page-3-2) with the proof similar to the proof of Theorem 3 in $[13]$ $[13]$, it is easy to check that there exists a derivation *D* such that $\Delta(E_{ii}) = D(E_{ii})$ for all *i*, $j \in \{1, 2, ..., n\}$.

Let Δ be an inner 2-local derivation. We define two matrices *S*, *T* in $M_n(\mathcal{A})$ by

$$
S = \sum_{i=1}^{n} i1 \otimes E_{ii}, \quad T = \sum_{i=1}^{n-1} E_{ii+1}.
$$

By assumption, there exists an inner derivation $D : M_n(\mathcal{A}) \to M_n(\mathcal{M})$ such that

$$
\Delta(S) = D(S), \quad \Delta(T) = D(T).
$$

Replacing Δ by $\Delta - D$ if necessary, we may assume that $\Delta(S) = \Delta(T) = 0$. Fixed $i, j \in \{1, 2, \ldots, n\}$, by assumption, we can take two elements *X*, *Y* in $M_n(\mathcal{M})$ such that

$$
\Delta(E_{ij}) = X E_{ij} - E_{ij} X, \quad 0 = \Delta(S) = X S - S X,
$$

and

$$
\Delta(E_{ij}) = Y E_{ij} - E_{ij} Y, \quad 0 = \Delta(T) = YT - TY.
$$

It follows from $XS = SX$ that X is a diagonal matrix. We denote X by diag (x_k) . The equality $YT = TY$ implies that *Y* is of the form

On the one side, we have

$$
\Delta(E_{ij}) = X E_{ij} - E_{ij} X = \text{diag}(x_k) E_{ij} - E_{ij} \text{diag}(x_k) = (x_i - x_j) \otimes E_{ij}.
$$

On the other side, we have

$$
[\Delta(E_{ij})]_{ij} = [YE_{ij} - E_{ij}Y]_{ij} = 0.
$$

Therefore, $\Delta(E_{ij}) = 0$. The proof is complete.

Theorem 3.2 *Suppose that A commutes with M*. *Then every 2-local inner derivation* Δ : $M_n(\mathcal{A}) \to M_n(\mathcal{M})$, $n \geq 2$, is an inner derivation.

Proof By Lemma [3.1,](#page-8-2) we may assume that $\Delta(E_{ij}) = 0$ for all $i, j \in \{1, 2, ..., n\}$. For any $A \in M_n(\mathcal{A})$, we take a pair (j, i) , $j, i \in \{1, 2, ..., n\}$, by assumption, there exists an inner derivation D_B , such that $\Delta(A) = D_B(A)$ and $0 = \Delta(E_{ij}) = D_B(E_{ij})$. We have

$$
E_{ij} \Delta(A) E_{ij} = E_{ij} D_B(A) E_{ij}
$$

= $D_B(E_{ij} A E_{ij}) - D_B(E_{ij}) A E_{ij} - E_{ij} A D_B(E_{ij}) = D_B(E_{ij} A E_{ij})$
= $D_B(A_{ji} \otimes E_{ij}) = D_B(\text{diag}(A_{ji},..., A_{ji}) E_{ij})$
= $D_B(\text{diag}(A_{ji},..., A_{ji})) E_{ij} + \text{diag}(A_{ji},..., A_{ji}) D_B(E_{ij})$
= $(B \text{diag}(A_{ji},..., A_{ji}) - \text{diag}(A_{ji},..., A_{ji}) B) E_{ij}$
= 0,

i.e.,
$$
E_{ij} \Delta(A) E_{ij} = 0.
$$

Therefore,

$$
E_{ji}(E_{ij}\Delta(A)E_{ij})E_{ji}=E_{jj}\Delta(A)E_{ii}=0,
$$

i.e.,
$$
[\Delta(A)]_{ji} = 0,
$$

for every $j, i \in \{1, 2, ..., n\}$. Hence $\Delta(A) = 0$. The proof is complete.

Corollary 3.3 *Suppose that ^A is a unital commutative algebra over* ^C. *Then every 2-local inner derivation* $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{A})$, $n \geq 2$, *is an inner derivation.*

Remark 3.4 The above result is proved in [\[8\]](#page-13-8). By comparison, our proof is more simple.

Suppose that A is an algebra over C and B is a unital subalgebra in A . We denote the commutant of *B* by $B' = \{a \in A : ab = ba, for every b \in B\}$. Let *C* be a submodule in \mathcal{B}' . It follows from Theorem [3.2](#page-10-0) that

Corollary 3.5 *Every 2-local inner derivation* $\Delta : M_n(\mathcal{B}) \to M_n(\mathcal{C}), n \geq 2$ *, is an inner derivation.*

Theorem 3.6 *Suppose that A is a commutative algebra which commutes with M. Then every 2-local derivation* $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{M})$, $n \geq 2$, is a derivation.

Proof The proof is similar to the proof of Theorem 4.3 in [\[5](#page-13-12)]. We leave it to the reader. Ч

Corollary 3.7 *Suppose that ^A is a unital commutative algebra over* ^C. *Then every 2-local derivation* $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{A})$, $n \geq 2$, is a derivation.

 \mathcal{D} Springer

If *A* is a non-commutative algebra, by Theorem [2.1](#page-3-2) every derivation from $M_n(\mathcal{A})$ into $M_n(\mathcal{M})(n \ge 2)$ can be represented as a sum $D = D_B + \overline{\delta}$. In [\[7\]](#page-13-14), the authors apply this representation of derivation to prove the following result.

Theorem 3.8 ([\[7](#page-13-14)], Theorem 2.1) *Let A be a unital Banach algebra and M be a unital A-bimodule. If every Jordan derivation from A into M is a derivation, then every* 2-local derivation $\Delta : M_n(\mathcal{A}) \to M_n(\mathcal{A}), n \geq 3$, is a derivation.

Theorem 3.9 *Let A be a unital Banach algebra and M be a unital A-bimodule. If* $n \geq 6$ *is a positive integer but not a prime number, then every 2-local derivation* $\Delta: M_n(\mathcal{A}) \to M_n(\mathcal{M})$ *is a derivation.*

Proof Suppose that $n = rk$, where $r \geq 3$ and $k \geq 2$. Then $M_n(\mathcal{A}) \cong M_r(M_k(\mathcal{A}))$ and $M_n(\mathcal{M}) \cong M_r(M_k(\mathcal{M}))$. In [\[2](#page-13-15)], the author proves that every Jordan derivation from $M_k(\mathcal{A})$ into $M_k(\mathcal{M})(k \geq 2)$ is a derivation ([\[2](#page-13-15)], Theorem 3.1). By Theorem [3.8,](#page-11-0) the proof is complete. \Box

Let *R* be a type I_n ($n \ge 2$) von Neumann algebra with center *Z* and *τ* be a faithful normal semi-finite trace on \mathcal{R} . We denote the centers of $S(\mathcal{R})$ and $S(\mathcal{R}, \tau)$ by $\mathcal{Z}(S(\mathcal{R}))$ and $\mathcal{Z}(S(\mathcal{R}, \tau))$, respectively. By Proposition 1.2 of [\[1](#page-13-1)], we have $Z(S(\mathcal{R})) = S(\mathcal{Z})$ and $Z(S(\mathcal{R}, \tau)) = S(\mathcal{Z}, \tau_{\mathcal{Z}})$, where $\tau_{\mathcal{Z}}$ is the restriction of the trace τ on \mathcal{Z} . By Propositions 1.4 and 1.5 of [\[1](#page-13-1)], $S(\mathcal{R}) = LS(\mathcal{R}) \cong M_n(S(\mathcal{Z}))$ and $S(\mathcal{R}, \tau) \cong M_n(S(\mathcal{Z}, \tau_{\mathcal{Z}})).$

As a direct application of Theorem [3.6,](#page-10-1) we have the following corollary.

Corollary 3.10 *Suppose that* R *is a type* I_n , $n \geq 2$, *von Neumann algebra and* τ *is a faithful normal semi-finite trace on R*. *Then we have*

- *(1) every 2-local derivation* $\Delta : \mathcal{R} \to LS(\mathcal{R})$ *is a derivation;*
(2) every 2-local derivation $\Delta : \mathcal{R} \to S(\mathcal{R}, \tau)$ *is a derivation*
- *every 2-local derivation* $\Delta : \mathcal{R} \to S(\mathcal{R}, \tau)$ *is a derivation.*

Lemma 3.11 Let $\Delta : A \rightarrow M$ be a 2-local derivation. If there exists a central *idempotent e in A which commutates with M*, *then* $\Delta(ea) = e\Delta(a)$, *for each a in A*.

Proof For any $a \in \mathcal{A}$, by assumption, there exists a derivation $\delta : \mathcal{A} \to \mathcal{M}$ such that: $\Delta(ea) = \delta(ea)$, and $\Delta(a) = \delta(a)$. By assumption, *e* is a central idempotent in *A* which commutes with \mathcal{M} , it follows that $\delta(e) = 0$. Then

$$
\Delta(ea) = \delta(ea) = \delta(e)a + e\delta(a) = e\delta(a) = e\Delta(a).
$$

The proof is complete.

Theorem 3.12 *Suppose that R is a finite von Neumann algebra of type I without abelian direct summands. Then every 2-local derivation* $\Delta : \mathcal{R} \to S(\mathcal{R}) = LS(\mathcal{R})$ *is a derivation.*

Proof By assumption, R is a finite von Neumann algebra of type I without abelian direct summands. Then there exists a family ${P_n}_{n \in F}$, $F \subseteq \mathbb{N} \setminus \mathbb{1}$, of orthogonal central

projections in $\mathcal R$ with $\sum_{n \in F} P_n = 1$, such that the algebra $\mathcal R$ is ∗-isomorphic with the *C*^{*}-product of von Neumann algebras $P_n \mathcal{R}$ of type I_n , respectively, $n \in F$. Then

$$
P_nLS(\mathcal{R})=P_nS(\mathcal{R})=S(P_n\mathcal{R})\cong M_n(P_nZ(\mathcal{R})),\quad n\in F.
$$

By Lemma [3.11,](#page-11-1) we have $\Delta(P_n A) = P_n \Delta(A)$, for all $A \in \mathcal{R}$ and each $n \in F$. This implies that Δ maps each $P_n \mathcal{R}$ into $P_n S(\mathcal{R})$. For each $n \in F$, we define $\Delta_n : P_n \mathcal{R} \to$ $P_n S(\mathcal{R})$ by

$$
\Delta_n(P_n A) = P_n \Delta(A), \quad A \in \mathcal{R}.
$$

By assumption, it follows that Δ_n is a 2-local derivation from $P_n\mathcal{R}$ into $P_nS(\mathcal{R})$ for each $n \in F$. By (1) of Corollary [3.10,](#page-11-2) we have that Δ_n is a derivation for each $n \in F$. Since $\sum_{n \in F} P_n = 1$, it follows that Δ is a linear mapping. For any $A, B \in \mathcal{R}$, it follows Δ_n is a derivation for each $n \in F$ that

$$
P_n \Delta(AB) = \Delta_n(P_n AB) = \Delta_n(P_n A) P_n B + P_n A \Delta_n(P_n B)
$$

= $P_n \Delta(A) B + P_n A \Delta(B)$
= $P_n(\Delta(A) B + A \Delta(B)).$

By assumption, $\sum_{n \in F} P_n = 1$, we get

$$
\Delta(AB) = \Delta(A)B + A\Delta(B).
$$

Therefore, $\Delta : \mathcal{R} \to S(\mathcal{R})$ is a derivation. The proof is complete.

Ayupov et al. [\[7](#page-13-14)] have proved the following result. Now we give a different proof.

Theorem 3.13 ([\[7](#page-13-14)], Theorem 3.1) *Let R be an arbitrary von Neumann algebra without abelian direct summands and L S*(*R*) *be the algebra of all locally measurable operators affiliated with* \mathcal{R} . Then every 2-local derivation $\Delta : \mathcal{R} \to LS(\mathcal{R})$ is a *derivation.*

Proof Let *^R* be an arbitrary von Neumann algebra without abelian direct summands. We know that R can be decomposed along a central projection into the direct sum of von Neumann algebras of finite type I, type I_{∞} , type II and type III. By Lemma [3.11,](#page-11-1) we may consider these cases separately.

If *R* is a von Neumann algebra of finite type I, Theorem [3.12](#page-11-3) shows that every 2-local derivation from R into $LS(R)$ is a derivation.

If R is a von Neumann algebra of types I_{∞} , II or III, then the halving Lemma ([\[12](#page-13-16)], Lemma 6.3.3) for type I_{∞} algebras and ([\[12\]](#page-13-16), Lemma 6.5.6) for types II or III algebras implies that the unit of R can be represented as a sum of mutually equivalent orthogonal projections e_1, e_2, \ldots, e_6 in R . It is well known that R is isomorphic to $M_6(\mathcal{A})$, where $\mathcal{A} = e_1 \mathcal{R}e_1$. Further, the algebra $LS(\mathcal{R})$ is isomorphic to the algebra $M_6(LS(\mathcal{A}))$. Theorem [3.9](#page-11-4) implies that every 2-local derivation from $\mathcal R$ into $LS(\mathcal{R})$ is a derivation. The proof is complete. \Box

Acknowledgements The authors are indebted to the referees for their valuable comments and suggestions. This paper was partially supported by National Natural Science Foundation of China (Grant No. 11371136).

References

- 1. Albeverio, S., Ayupov, S., Kudaybergenov, K.: Structure of derivations on various algebras of measurable operators for type I von Neumann algebras. J. Funct. Anal. **256**, 2917–2943 (2009)
- 2. Alizadeh, R.: Jordan derivations of full matrix algebras. Linear Algebra Appl. **430**(1), 574–578 (2009)
- 3. Ayupov, S., Kudaybergenov, K.: 2-local derivations on von Neumann algebras. Positivity **19**(3), 445– 455 (2015)
- 4. Ayupov, S., Kudaybergenov, K.: Derivations, local and 2-local derivations on algebras of measurable operators, Topics in functional analysis and algebra. In: Contemporary Mathematics, American Mathematics Society, Vol. 672,Providence, RI, pp. 51–72. (2016)
- 5. Ayupov, S., Kudaybergenov, K., Alauadinov, A.: 2-local derivations on matrix algebras over commutative regular algebras. Linear Algebra Appl. **439**(5), 1294–1311 (2013a)
- 6. Ayupov, S., Kudaybergenov, K., Alauadinov, A.: 2-local derivations on algebras of locally measurable operators. Ann. Funct. Anal. **4**(2), 110–117 (2013b)
- 7. Ayupov, S., Kudaybergenov, K., Alauadinov, A.: 2-local derivations on matrix algebras and algebras of measurable operators. Adv. Oper. Theory **2**(4), 494–505 (2017)
- 8. Ayupov, S., Arzikulov, F.: 2-local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra Appl. **522**(1), 28–50 (2017)
- 9. Ber, A., Chilin, V., Sukochev, F.: Non-trivial derivations on commutative regular algebras. Extr. Math. **21**(2), 107–147 (2006)
- 10. Ber, A., Chilin, V., Sukochev, F.: Continuous derivations on algebras of locally measurable operators are inner. Proc. Lond. Math. Soc. **109**(1), 65–89 (2014)
- 11. He, J., Li, J., An, G., Huang, W.: Characterizations of 2-local derivations and 2-local Lie derivations on some algebras. Sib. Math. J. **59** (2018)
- 12. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras, Vol. II, Birkhauser Boston, 1986
- 13. Kim, S., Kim, J.: Local automorphisms and derivations on *Mn*, Proc. Am. Math. Soc. **132**(5), 1389– 1392 (2004)
- 14. Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. **15**, 91–102 (1975)
- 15. Niazi, M., Peralta, A.: Weak-2-local derivations on M*n*. FILOMAT **31**(6), 1687–1708 (2017)
- 16. Niazi, M., Peralta, A.: Weak-2-local ∗-derivations on *B*(*H*) are linear ∗-derivations. Linear Algebra Appl. **487**(15), 276–300 (2015)
- 17. *S*˘emrl, P.: Local automorphisms and derivations on *B*(*H*). Proc. Am. Math. Soc. **125**(9), 2677–2680 (1997)
- 18. Sakai, S.: *C*∗-algebras and *W*∗-algebras. Springer, New York (1971)
- 19. Zhang, J., Li, H.: 2-local derivations on digraph algebras. Acta Math. Sin. (Chin. Ser.) **49**, 1401–1406 (2006)