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Abstract
Let A be a unital algebra over C andM be a unital A-bimodule. We show that every
derivation D : Mn(A) → Mn(M), n ≥ 2, can be represented as a sum D = Dm + δ,

where Dm is an inner derivation and δ is a derivation induced by a derivation δ from
A into M. If A commutes with M, we prove that every 2-local inner derivation
� : Mn(A) → Mn(M), n ≥ 2, is an inner derivation. In addition, ifA is commutative
and commutes withM, then every 2-local derivation � : Mn(A) → Mn(M), n ≥ 2,
is a derivation. Let R be a finite von Neumann algebra of type I with center Z and
LS(R) be the algebra of locally measurable operators affiliated with R. We also
prove that if the lattice ZP of all projections in Z is atomic, then every derivation
D : R → LS(R) is an inner derivation.
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1 Introduction

Let A be an algebra over C the field of complex numbers and M be an A-bimodule.
A linear map δ fromA intoM is called a Jordan derivation if δ(a2) = δ(a)a+aδ(a)

for each a in A. A linear map δ from A into M is called a derivation if δ(ab) =
δ(a)b + aδ(b) for each a, b in A. Let m be an element in M, the map δm : A →
M, a → δm(a) := ma − am, is a derivation. A derivation δ : A → M is said to be
an inner derivation when it can be written in the form δ = δm for some m in M. A
fundamental result, due to Sakai [18], states that every derivation on a von Neumann
algebra is an inner derivation.

An algebraA is called regular (in the sense of vonNeumann) if for each a inA there
exists b inA such that a = aba.LetR be a vonNeumann algebra.Wedenote S(R) and
LS(R), respectively, the algebras of all measurable and locally measurable operators
affiliated withR. For a faithful normal semi-finite trace τ onR,we denote the algebra
of all τ -measurable operators from S(R) by S(R, τ ) (cf. [1,4,14]). IfR is an abelian
von Neumann algebra, then it is ∗-isomorphic to the algebra L∞(�) = L∞(�,�,μ)

of all (classes of equivalence of) essentially bounded measurable complex functions
on a measurable space (�,�,μ), and therefore, LS(R) = S(R) ∼= L0(�), where
L0(�) = L0(�,�,μ) is a unital commutative regular algebra of all measurable
complex functions on (�,�,μ). In this case inner derivations on the algebra S(R)

are identically zero, i.e., trivial.
Ber et al. [9] obtain necessary and sufficient conditions for existence of non-trivial

derivations on commutative regular algebras. In particular, they prove that the algebra
L0(0, 1) of all measurable complex functions on the interval (0, 1) admits non-trivial
derivations. Let R be a properly infinite von Neumann algebra. Ayupov and Kuday-
bergenov [4] show that every derivation on the algebra LS(R) is an inner derivation.

In 1997, S̆emrl [17] introduced 2-local derivations and 2-local automorphisms. A
map � : A → M (not necessarily linear) is called a 2-local derivation if, for every
x, y ∈ A, there exists a derivation Dx,y : A → M such that Dx,y(x) = �(x) and
Dx,y(y) = �(y). In particular, if, for every x, y ∈ A, Dx,y is an inner derivation, then
we call � is a 2-local inner derivation. Niazi and Peralta [15] introduce the notion of
weak-2-local derivation (respectively, ∗-derivation) and prove that every weak-2-local
∗-derivation on Mn is a derivation. 2-local derivations and weak-2-local derivations
have been investigated by many authors on different algebras and many results have
been obtained in [3–8,11,13,15–17,19].

Let H be a infinite-dimensional separable Hilbert space. In [17] S̆emrl shows that
every 2-local derivation on B(H) is a derivation. Kim and Kim [13] give a short proof
of that every 2-local derivation on a finite-dimensional complex matrix algebra is
a derivation. Ayupov and Kudaybergenov [3] extend this result to an arbitrary von
Neumann algebra. Ayupov et al. [5] prove that if R is a finite von Neumann algebra
of type I without abelian direct summands, then each 2-local derivation on the algebra
LS(R) = S(R) is a derivation. In the same paper, the authors also show that ifR is an
abelian von Neumann algebra such that the lattice of all projections inR is not atomic,
then there exists a 2-local derivation on the algebra S(R) which is not a derivation.
Zhang and Li [19] construct an example of a 2-local derivation on the algebra of all
triangular complex 2 × 2 matrices which is not a derivation.
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Derivations and 2-Local Derivations on Matrix Algebras and… 229

Ayupov et al. [5] show that ifA is a unital commutative regular algebra, then every
2-local derivation on the algebraMn(A), n ≥ 2, is a derivation. Ayupov andArzikulov
[8] show that ifA is a unital commutative ring, then every 2-local inner derivation on
Mn(A), n ≥ 2, is an inner derivation. Let A be a unital Banach algebra and M be a
unitalA-bimodule. He et al. [11] prove that if every Jordan derivation fromA intoM
is an inner derivation then every 2-local derivation from Mn(A) (n ≥ 3) into Mn(M)

is a derivation.
Throughout this paper, A is an algebra with unit 1 over C and M is a unital A-

bimodule.We say thatA commutes withM if am = ma for every a ∈ A andm ∈ M.
From now on, Mn(A), for n ≥ 2, will denote the algebra of all n × n matrices overA
with the usual operations. By the way, we denote any element in Mn(A) by (ars)n×n,

where r , s ∈ {1, 2, . . . , n}; Ei j , i, j ∈ {1, 2, . . . , n}, the matrix units in Mn(C); and
x ⊗ Ei j , the matrix whose (i, j)-th entry is x and zero elsewhere. We use Ai j for the
(i, j)-th entry of A ∈ Mn(A) and denote diag(x1, . . . , xn) or diag(xi ) the diagonal
matrix with entries xi ∈ A, i ∈ {1, 2, . . . , n}, in the diagonal positions. Particularly,
we denote diag(xi ) by diag(x), where xi = x for every i ∈ {1, 2, . . . , n}.

Let δ : A → M be a derivation. Setting

δ((ai j )n×n) = (δ(ai j ))n×n, (1.1)

we obtain a well-defined linear operator from Mn(A) into Mn(M), where Mn(M)

has a natural structure of Mn(A)-bimodule. Moreover, δ is a derivation from Mn(A)

into Mn(M). If A is a commutative algebra, then the restriction of δ onto the center
of the algebra Mn(A) coincides with the given δ.

In this paper we give characterizations of derivations, 2-local inner derivations and
2-local derivations from Mn(A) into Mn(M). In Sect. 2, we show that a derivation
D : Mn(A) → Mn(M), n ≥ 2, can be decomposed as a sum of an inner derivation
and a derivation induced by a derivation from A toM as (1.1), as follows:

D = DB + δ.

In addition, the representation of the above form is unique if and only ifA commutes
with M. Let R be a finite von Neumann algebra of type I with center Z and LS(R)

be the algebra of locally measurable operators affiliated with R. we prove that if the
lattice ZP of all projections in Z is atomic, then every derivation D : R → LS(R)

is an inner derivation.
In Sect. 3, we consider 2-local inner derivations and 2-local derivations fromMn(A)

into Mn(M). For the case that A commutes with M, we obtain that every inner 2-
local derivation from Mn(A) into Mn(M) is an inner derivation. In addition, if A
is commutative, we prove that every 2-local derivation � : Mn(A) → Mn(M),
n ≥ 2, is a derivation. Let R be an arbitrary von Neumann algebra without abelian
direct summands. We also show every 2-local derivation � : R → LS(R) is a
derivation.
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230 W. Huang et al.

2 Derivations

Let A be an algebra with unit 1 over C and M be a unital A-bimodule. Let D :
Mn(A) → Mn(M), n ≥ 2, be a derivation. Firstly, we define a map Di j

rs : A → M
by

Di j
rs(a) = [D(a ⊗ Ers)]i j , a ∈ A, i, j, r , s ∈ {1, 2, . . . , n}.

For any a, b ∈ A and some fixed m ∈ {1, 2, . . . , n}, we have

Di j
rs(ab) = [D(ab ⊗ Ers)]i j

= [D((a ⊗ Erm)(b ⊗ Ems))]i j
= [D(a ⊗ Erm)(b ⊗ Ems)]i j + [(a ⊗ Erm)D(b ⊗ Ems)]i j
= δ js[D(a ⊗ Erm)]imb + δir a[D(b ⊗ Ems)]mj ,

where δ is the Kronecker’s delta. It follows that

Di j
rs(ab) = δ js[D(a ⊗ Erm)]imb + δir a[D(b ⊗ Ems)]mj . (2.1)

For any m ∈ {1, 2, . . . , n}, we deduce from the equality (2.1) that

Dmm
mm (ab) = Dmm

mm (a)b + aDmm
mm (b),

thus Dmm
mm : A → M is a derivation. We abbreviate the derivation Dmm

mm by Dm .

Particularly, we denote the derivation D11
11 by D1.

Theorem 2.1 Every derivation D : Mn(A) → Mn(M), n ≥ 2, can be represented
as a sum

D = DB + δ, (2.2)

where DB is an inner derivation implemented by an element B ∈ Mn(M) and δ is a
derivation of the form (1.1) induced by a derivation δ from A into M. Furthermore,
if this representation is unique for every derivation D, then A commutes with M
(i.e., am = ma for every a ∈ A, m ∈ M); and if A commutes with M then this
representation is always unique.

Before the proof of Theorem 2.1, we first present the following lemma.

Lemma 2.2 For every i, j, r , s,m ∈ {1, 2, . . . , n} and every a ∈ A the following
equalities hold:

(i) Di j
rs = 0, i 	= r and j 	= s,

(ii) Di j
r j (a) = Dim

rm(a) = Dim
rm(1)a, if i 	= r ,

(iii) Di j
is (a) = Dmi

ms(a) = aDmj
ms (1), if j 	= s,
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(iv) Dim
jm(1) = −Dmj

mi (1),

(v) Di j
i j (a) = Dim

im (1)a − aD jm
jm (1) + Dm(a).

Proof It obviously follows from (2.1) that statements (i), (ii) and (iii) hold. We only
need to prove (iv) and (v).

(iv): In the case i = j, we have

0 = [D(1 ⊗ Eii )]i i = [D((1 ⊗ Eim)(1 ⊗ Emi ))]i i
= [D((1 ⊗ Eim))(1 ⊗ Emi )]i i + [(1 ⊗ Eim)D((1 ⊗ Emi ))]i i
= Dim

im (1) + Dmi
mi (1),

i.e.,

Dim
im (1) = −Dmi

mi (1). (2.3)

For the case i 	= j, we have

0 = D(0) = [D((1 ⊗ Eii )(1 ⊗ E j j ))]i j
= [D((1 ⊗ Eii ))(1 ⊗ E j j )]i j + [(1 ⊗ Eii )D((1 ⊗ E j j ))]i j
= [D(1 ⊗ Eii )]i j + [D(1 ⊗ E j j )]i j
= Di j

ii (1) + Di j
j j (1),

i.e.,

Di j
j j (1) = −Di j

ii (1).

By (ii), (iii) and equality (2.3), it follows that

Dim
jm(1) = −Dmj

mi (1).

(v): By equality (2.1), we have

Di j
i j (a) = Dim

im (1)a + Dmj
mj (a), (2.4)

and

Di j
i j (a) = Dim

im (a) + aDmj
mj (1). (2.5)

Taking j = m in equality (2.4), we obtain that

Dim
im (a) = Dim

im (1)a + Dm(a). (2.6)

By equalities (2.3), (2.5) and (2.6), it follows that

Di j
i j (a) = Dim

im (1)a − aD jm
jm (1) + Dm(a).
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232 W. Huang et al.

The proof is complete. 
�
Now we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. Let (ars)n×n be an arbitrary element in Mn(A) and D be a
derivation from Mn(A) into Mn(M). For any i, j ∈ {1, 2, . . . , n}, it follows from
Lemma 2.2 that

[D((ars)n×n)]i j =
n∑

r ,s=1

Di j
rs(ars)

=
n∑

r=1

Di j
r j (ar j ) +

n∑

s=1

Di j
is (ais) − Di j

i j (ai j )

=
∑

r 	=i

Di j
r j (ar j ) +

∑

s 	= j

Di j
is (ais) + Di j

i j (ai j )

=
∑

r 	=i

Di1
r1(1)ar j +

∑

s 	= j

ais D
1 j
1s (1) + Di1

i1(1)ai j

− ai j D
j1
j1(1) + D1(ai j )

=
n∑

r=1

Di1
r1(1)ar j −

n∑

s=1

ais D
s1
j1(1) + D1(ai j )

=
n∑

k=1

(
Di1
k1(1)akj − aik D

k1
j1(1)

)
+ D1(ai j )

=
[
(Dr1

s1(1))n×n(ars)n×n − (ars)n×n(D
r1
s1(1))n×n

]

i j

+
[
D1((ars)n×n)

]

i j
,

i.e.,

[D((ars)n×n)]i j =
[(

Dr1
s1(1))n×n(ars)n×n − (ars)n×n(D

r1
s1(1)

)

n×n

]

i j

+
[
D1((ars)n×n)

]

i j
, (2.7)

where (Dr1
s1(1))n×n ∈ Mn(M) and [(Dr1

s1(1))n×n]i j = Di1
j1(1). By equality (2.7), we

have

D((ars)n×n) =
[
(Dr1

s1(1))n×n(ars)n×n − (ars)n×n(D
r1
s1(1))n×n

]
+

[
D1((ars)n×n)

]
.

We denote B = (Dr1
s1(1))n×n and δ = D1. Therefore, every derivation D : Mn(A) →

Mn(M), n ≥ 2, can be represented as a sum

D = DB + δ.
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Suppose that DM is an inner derivation from Mn(A) into Mn(M) implemented
by an element M ∈ Mn(M), and ζ is a derivation of the form (1.1) induced by a
derivation ζ from A into M, such that DM = ζ . The first step is to establish the
following. 
�

Claim 1 If A commutes withM, then DM = ζ = 0.

Proof of Claim 1 If i 	= j, i, j ∈ {1, 2, . . . , n}, we have

0 = ζ (Ei j ) = DM (Ei j ) = MEi j − Ei j M .

It follows that Mji = 0. Thus, M has a diagonal form, i.e., M = diag(Mkk). Suppose
that ζ 	= 0, then there exists an element a ∈ A such that ζ(a) 	= 0. Take A = diag(a),

then ζ (A) 	= 0. On the other hand,

ζ (A) = DM (A) = diag(Mkk)diag(a) − diag(a)diag(Mkk) = 0.

This is a contradiction. Thus, ζ = 0. 
�
Claim 2 If A does not commute with M, then there exist DM and ζ , such that

DM = ζ 	= 0.

Proof of Claim 2 By assumption, we can take a ∈ A and m ∈ M such that ma 	= am.

We define a derivation ζ : A → M by ζ(x) = mx − xm for every x inA. We denote
M = diag(m) ∈ Mn(M), then DM is an inner derivation from Mn(A) into Mn(M).

Obviously, DM = ζ and ζ (diag(a)) 	= 0. Thus, DM = ζ 	= 0.
In the following, we show that the representation of the above form is unique if and

only if A commutes withM.

Case 1 If A commutes with M, we suppose that there exists a derivation D :
Mn(A) → Mn(M), n ≥ 2, which can be represented as D = DB1 + δ1 = DB2 + δ2.

This means that DB1 − DB2 = δ2 − δ1. Since DB1 − DB2 = DB1−B2 and δ2 −
δ1 = δ2 − δ1, we have DB1−B2 = δ2 − δ1. It follows from Claim 1 that DB1−B2 =
δ2 − δ1 = 0. i.e., DB1 = DB2 and δ1 = δ2.

Case 2 If A does not commute with M, by Claim 2, there exist derivations DM

and ζ from Mn(A) into Mn(M), n ≥ 2, such that DM = ζ 	= 0. Let D : Mn(A) →
Mn(M), n ≥ 2, be an arbitrary derivation. By hypothesis, D can be represented as
D = DB+δ.Wehave D = DB+δ = DB+DM−ζ +δ = DB+M+δ − ζ .Thismeans
that the derivation D can be represented as D = DB + δ, and as D = DB+M + δ − ζ

too. Therefore, the representation of (2.2) is not unique for every derivation D. It
follows from Cases 1 and 2 that the representation of (2.2) is unique if and only if A
commutes withM. The proof is complete. 
�

As applications of Theorem 2.1, we obtain the following corollaries.

Corollary 2.3 The following statements are equivalent.

(i) Every derivation δ : A → M is an inner derivation.
(ii) Every derivation D : Mn(A) → Mn(M), n ≥ 2, is an inner derivation.
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234 W. Huang et al.

Proof If δ : A → M is an inner derivation, by the equality (1.1), obviously, δ :
Mn(A) → Mn(M), n ≥ 2, is an inner derivation.

(i) implies (ii): Let D : Mn(A) → Mn(M), n ≥ 2, be an arbitrary derivation. By
Theorem 2.1, D can be represented as a sum D = DM + δ, where DM is an inner
derivation. By hypothesis, δ is an inner derivation from A into M, and therefore,
δ is an inner derivation. We know that the sum of two inner derivations is an inner
derivation, this means that D : Mn(A) → Mn(M), n ≥ 2, is an inner derivation.

(ii) implies (i): Suppose that δ is a derivation from A into M, then δ : Mn(A) →
Mn(M), n ≥ 2, is a derivation. By hypothesis, δ is an inner derivation. then the
restriction of δ onto E11Mn(A)E11, the subalgebra of Mn(A), is an inner derivation.
This means that δ : A → M is an inner derivation. 
�
Corollary 2.4 Let A be a commutative unital algebra over C. Then every derivation
on the matrix algebra Mn(A) (n ≥ 2) is inner if and only if every derivation on A is
identically zero, i.e., trivial.

Let R be a von Neumann algebra. Denote by S(R) and LS(R), respectively, the
sets of all measurable and locally measurable operators affiliated with R. Then the
set LS(R) of all locally measurable operators with respect to R is a unital ∗-algebra
when equipped with the algebraic operations of strong addition and multiplication and
taking the adjoint of an operator and S(R) is a solid ∗-subalgebra in LS(R). IfR is a
finite von Neumann algebra, then S(R) = LS(R) (see, for example, [1,4,14]). LetA
be a commutative algebra with unit 1 overC.We denote by∇ the set {e ∈ A : e2 = e}
of all idempotents in A. For e, f ∈ ∇ we set e ≤ f if e f = e. Equipped with this
partial order, lattice operations e∨ f = e+ f − e f , e∧ f = e f and the complement
e⊥ = 1−e, the set∇ forms a Boolean algebra. A nonzero element q from the Boolean
algebra ∇ is called an atom if 0 	= e ≤ q, e ∈ ∇, imply that e = q. If given any
nonzero e ∈ ∇ there exists an atom q such that q ≤ e, then the Boolean algebra ∇ is
said to be atomic.

Let R be an abelian von Neumann algebra. Theorem 3.4 of [9] implies that every
derivation on the algebra S(R) is inner if and only if the latticeRP of all projections
in R is atomic. If R is a properly infinite von Neumann algebra, in [4] the authors
show that every derivation on the algebra LS(R) is inner (see [4], Theorem 4.6). In
the case ofR is a finite von Neumann algebra of type I, Theorem 3.5 of [4] shows that
a derivation on the algebra LS(R) is an inner derivation if and only if it is identically
zero on the center of R.

As a direct application of Corollary 2.3, we obtain the following result.

Corollary 2.5 Let R be a finite von Neumann algebra of type I with center Z. Then
every derivation D on the algebra LS(R) is inner if and only if the lattice ZP of all
projections in Z is atomic.

Proof Let R be a finite von Neumann algebra of type I with center Z. There exists a
family {en}n∈F , F ⊆ N, of central projections from R with

∨
n∈F en = 1 such that

the algebraR is ∗-isomorphic with the C∗-product of von Neumann algebras enR of
type In , respectively, n ∈ F , i.e.,R ∼= ⊕

n∈F enR.By Proposition 1.1 of [1], we have
that LS(R) ∼= ∏

n∈F LS(enR).
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Suppose that D is a derivation on LS(R) and δ its restriction onto the center S(Z).

Since δ maps each enS(Z) into itself, δ generates a derivation δn on enS(Z) for each
n ∈ F . By Proposition 1.5 of [1], LS(enR) ∼= Mn(enS(Z)). Let δn be the derivation
on the matrix algebra Mn(enS(Z)) defined as in (1.1). Put

δ({xn}n∈F ) = {δn(xn)}, {xn}n∈F ∈ LS(R). (2.8)

Then themap δ is a derivation on LS(R).Lemma2.3 of [1] implies that each derivation
D on LS(R) can be uniquely represented in the form D = DB + δ, where DB is an
inner derivation and δ is a derivation given as (2.8).

If D is an arbitrary derivation on LS(R) and δ its restriction onto center S(Z), by
Theorem 3.4 of [9], the lattice ZP is atomic if and only if δ = 0. We have δ = 0 if
and only if δn = 0 for each n ∈ F . By Corollary 2.3, δn = 0 if and only if δn = 0 for
each n ∈ F . By equality (2.8), δn = 0 for each n ∈ F if and only if δ = 0. Therefore,
every derivation on the algebra LS(R) is inner derivation if and only if the lattice ZP
of all projections in Z is atomic. The proof is complete. 
�

LetR be a properly infinite von Neumann algebra andM be aR-bimodule of locally
measurable operators. In [10], the authors show that every derivation D : R → M
is an inner derivation. In the case of R is a finite von Neumann algebra of type I, we
obtain the following result.

Theorem 2.6 Let R be a finite von Neumann algebra of type I with center Z. If the
lattice ZP of all projections in Z is atomic, then every derivation D : R → LS(R)

is an inner derivation.

Proof Choose a central decomposition {en}n∈F , F ⊆ N, of the unity 1 such that
enR is a type In von Neumann algebra for each n ∈ F . By hypothesis, it is easy to
check that D(enR) ⊆ enLS(R) for each n ∈ F . Thus, we only need to show that the
derivation D restricted to enR is an inner derivation for each n ∈ F .

Let enR be a type In (n ∈ F) von Neumann algebra with center enZ. It is well
known that enR ∼= Mn(enZ). We denote the center of S(enR) by Z(S(enR)). By
Proposition 1.2 of [1], we have Z(S(enR)) = S(enZ). By Proposition 1.5 of [1],
LS(enR) = S(enR) ∼= Mn(S(enZ)).

By assumption, the lattice ZP of all projections in Z is atomic. This implies that
the lattice enZP is also atomic for each n ∈ F . Statements (ii) of Proposition 2.3 and
(vi) of Proposition 2.6 of [9] imply that every derivation δ : enZ → S(enZ) is trivial.
By Corollary 2.3, we have that every derivation from Mn(enZ) into Mn(S(enZ)) is
inner. The proof is complete. 
�

3 2-Local Derivations

This section is devoted to 2-local inner derivations and 2-local derivations fromMn(A)

intoMn(M). Throughout this section, we always assume that� : Mn(A) → Mn(M)

is a 2-local derivation. Firstly, we give the following lemma.
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Lemma 3.1 For every 2-local derivation � : Mn(A) → Mn(M), n ≥ 2, there
exists a derivation D : Mn(A) → Mn(M) such that �(Ei j ) = D(Ei j ) for all
i, j ∈ {1, 2, . . . , n}. In particular, if � is a 2-local inner derivation, then D is an
inner derivation.

Proof Let � : Mn(A) → Mn(M), n ≥ 2, be a 2-local derivation. By Theorem 2.1,
with the proof similar to the proof of Theorem 3 in [13], it is easy to check that there
exists a derivation D such that �(Ei j ) = D(Ei j ) for all i, j ∈ {1, 2, . . . , n}.

Let � be an inner 2-local derivation. We define two matrices S, T in Mn(A) by

S =
n∑

i=1

i1 ⊗ Eii , T =
n−1∑

i=1

Eii+1.

By assumption, there exists an inner derivation D : Mn(A) → Mn(M) such that

�(S) = D(S), �(T ) = D(T ).

Replacing � by � − D if necessary, we may assume that �(S) = �(T ) = 0. Fixed
i, j ∈ {1, 2, . . . , n}, by assumption, we can take two elements X , Y in Mn(M) such
that

�(Ei j ) = XEi j − Ei j X , 0 = �(S) = XS − SX ,

and

�(Ei j ) = Y Ei j − Ei jY , 0 = �(T ) = YT − TY .

It follows from XS = SX that X is a diagonal matrix. We denote X by diag(xk).
The equality YT = TY implies that Y is of the form

Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 · · yn
0 y1 y2 · · yn−1
0 0 y1 · · yn−2
...

...
...

...
...

...

· · · · · · · · · · y1 y2
0 0 · · · · 0 y1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

On the one side, we have

�(Ei j ) = XEi j − Ei j X = diag(xk)Ei j − Ei jdiag(xk) = (xi − x j ) ⊗ Ei j .

On the other side, we have

[�(Ei j )]i j = [Y Ei j − Ei jY ]i j = 0.

Therefore, �(Ei j ) = 0. The proof is complete. 
�
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Theorem 3.2 Suppose thatA commutes withM. Then every 2-local inner derivation
� : Mn(A) → Mn(M), n ≥ 2, is an inner derivation.

Proof By Lemma 3.1, we may assume that �(Ei j ) = 0 for all i, j ∈ {1, 2, . . . , n}.
For any A ∈ Mn(A), we take a pair ( j, i), j, i ∈ {1, 2, . . . , n}, by assumption, there
exists an inner derivation DB , such that�(A) = DB(A) and 0 = �(Ei j ) = DB(Ei j ).
We have

Ei j�(A)Ei j = Ei j DB(A)Ei j

= DB(Ei j AEi j ) − DB(Ei j )AEi j − Ei j ADB(Ei j ) = DB(Ei j AEi j )

= DB(A ji ⊗ Ei j ) = DB(diag(A ji , . . . , A ji )Ei j )

= DB(diag(A ji , . . . , A ji ))Ei j + diag(A ji , . . . , A ji )DB(Ei j )

= (Bdiag(A ji , . . . , A ji ) − diag(A ji , . . . , A ji )B)Ei j

= 0,

i.e.,
Ei j�(A)Ei j = 0.

Therefore,

E ji (Ei j�(A)Ei j )E ji = E j j�(A)Eii = 0,

i.e., [�(A)] j i = 0,

for every j, i ∈ {1, 2, . . . , n}. Hence �(A) = 0. The proof is complete. 
�
Corollary 3.3 Suppose that A is a unital commutative algebra over C. Then every
2-local inner derivation � : Mn(A) → Mn(A), n ≥ 2, is an inner derivation.

Remark 3.4 The above result is proved in [8]. By comparison, our proof ismore simple.

Suppose that A is an algebra over C and B is a unital subalgebra in A. We denote
the commutant of B by B′ = {a ∈ A : ab = ba, f or every b ∈ B}. Let C be a
submodule in B′. It follows from Theorem 3.2 that

Corollary 3.5 Every 2-local inner derivation� : Mn(B) → Mn(C), n ≥ 2, is an inner
derivation.

Theorem 3.6 Suppose that A is a commutative algebra which commutes with M.
Then every 2-local derivation � : Mn(A) → Mn(M), n ≥ 2, is a derivation.

Proof The proof is similar to the proof of Theorem 4.3 in [5]. We leave it to the reader.

�

Corollary 3.7 Suppose that A is a unital commutative algebra over C. Then every
2-local derivation � : Mn(A) → Mn(A), n ≥ 2, is a derivation.
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IfA is a non-commutative algebra, by Theorem 2.1 every derivation from Mn(A) into
Mn(M)(n ≥ 2) can be represented as a sum D = DB + δ. In [7], the authors apply
this representation of derivation to prove the following result.

Theorem 3.8 ([7], Theorem 2.1) LetA be a unital Banach algebra andM be a unital
A-bimodule. If every Jordan derivation from A into M is a derivation, then every
2-local derivation � : Mn(A) → Mn(A), n ≥ 3, is a derivation.

Theorem 3.9 Let A be a unital Banach algebra and M be a unital A-bimodule. If
n ≥ 6 is a positive integer but not a prime number, then every 2-local derivation
� : Mn(A) → Mn(M) is a derivation.

Proof Suppose that n = rk, where r ≥ 3 and k ≥ 2. Then Mn(A) ∼= Mr (Mk(A)) and
Mn(M) ∼= Mr (Mk(M)). In [2], the author proves that every Jordan derivation from
Mk(A) into Mk(M)(k ≥ 2) is a derivation ([2], Theorem 3.1). By Theorem 3.8, the
proof is complete. 
�
Let R be a type In (n ≥ 2) von Neumann algebra with center Z and τ be a faith-
ful normal semi-finite trace on R. We denote the centers of S(R) and S(R, τ )

by Z(S(R)) and Z(S(R, τ )), respectively. By Proposition 1.2 of [1], we have
Z(S(R)) = S(Z) and Z(S(R, τ )) = S(Z, τZ ), where τZ is the restriction of the
trace τ on Z. By Propositions 1.4 and 1.5 of [1], S(R) = LS(R) ∼= Mn(S(Z)) and
S(R, τ ) ∼= Mn(S(Z, τZ )).

As a direct application of Theorem 3.6, we have the following corollary.

Corollary 3.10 Suppose that R is a type In, n ≥ 2, von Neumann algebra and τ is a
faithful normal semi-finite trace onR. Then we have

(1) every 2-local derivation � : R → LS(R) is a derivation;
(2) every 2-local derivation � : R → S(R, τ ) is a derivation.

Lemma 3.11 Let � : A → M be a 2-local derivation. If there exists a central
idempotent e inA which commutates withM, then �(ea) = e�(a), for each a inA.

Proof For any a ∈ A, by assumption, there exists a derivation δ : A → M such that:
�(ea) = δ(ea), and �(a) = δ(a). By assumption, e is a central idempotent in A
which commutes withM, it follows that δ(e) = 0. Then

�(ea) = δ(ea) = δ(e)a + eδ(a) = eδ(a) = e�(a).

The proof is complete. 
�
Theorem 3.12 Suppose that R is a finite von Neumann algebra of type I without
abelian direct summands. Then every 2-local derivation � : R → S(R) = LS(R) is
a derivation.

Proof By assumption, R is a finite von Neumann algebra of type I without abelian
direct summands. Then there exists a family {Pn}n∈F , F ⊆ N\1, of orthogonal central
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projections in R with
∑

n∈F Pn = 1, such that the algebra R is ∗-isomorphic with
the C∗-product of von Neumann algebras PnR of type In , respectively, n ∈ F . Then

PnLS(R) = PnS(R) = S(PnR) ∼= Mn(Pn Z(R)), n ∈ F .

By Lemma 3.11, we have �(Pn A) = Pn�(A), for all A ∈ R and each n ∈ F . This
implies that�maps each PnR into PnS(R). For each n ∈ F,we define�n : PnR →
PnS(R) by

�n(Pn A) = Pn�(A), A ∈ R.

By assumption, it follows that �n is a 2-local derivation from PnR into PnS(R) for
each n ∈ F . By (1) of Corollary 3.10, we have that �n is a derivation for each n ∈ F .

Since
∑

n∈F Pn = 1, it follows that � is a linear mapping. For any A, B ∈ R, it
follows �n is a derivation for each n ∈ F that

Pn�(AB) = �n(Pn AB) = �n(Pn A)PnB + Pn A�n(PnB)

= Pn�(A)B + Pn A�(B)

= Pn(�(A)B + A�(B)).

By assumption,
∑

n∈F Pn = 1, we get

�(AB) = �(A)B + A�(B).

Therefore, � : R → S(R) is a derivation. The proof is complete. 
�
Ayupov et al. [7] have proved the following result. Now we give a different proof.

Theorem 3.13 ([7], Theorem 3.1) Let R be an arbitrary von Neumann algebra with-
out abelian direct summands and LS(R) be the algebra of all locally measurable
operators affiliated with R. Then every 2-local derivation � : R → LS(R) is a
derivation.

Proof LetR be an arbitrary von Neumann algebra without abelian direct summands.
We know thatR can be decomposed along a central projection into the direct sum of
von Neumann algebras of finite type I, type I∞, type II and type III. By Lemma 3.11,
we may consider these cases separately.

If R is a von Neumann algebra of finite type I, Theorem 3.12 shows that every
2-local derivation fromR into LS(R) is a derivation.

If R is a von Neumann algebra of types I∞, II or III, then the halving Lemma
([12], Lemma 6.3.3) for type I∞ algebras and ([12], Lemma 6.5.6) for types II or III
algebras implies that the unit ofR can be represented as a sum of mutually equivalent
orthogonal projections e1, e2, . . . , e6 in R. It is well known that R is isomorphic to
M6(A), where A = e1Re1. Further, the algebra LS(R) is isomorphic to the algebra
M6(LS(A)). Theorem 3.9 implies that every 2-local derivation fromR into LS(R) is
a derivation. The proof is complete. 
�
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