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Abstract

In this paper, we consider two kinds of nonlinear matrix equations X + Y /-, B X' B;
=10<ti<DandX* -3, ATXPiA; =1 (pi > 1, s > 1). By means of the
integral representation of matrix functions, properties of Kronecker product and the
monotonic p-concave operator fixed point theorem, we derive necessary conditions
and sufficient conditions for the existence and uniqueness of the Hermitian positive
definite solution for the matrix equations. We also obtain some properties of the Her-
mitian positive definite solutions, the bounds of the determinant’s sum for A?‘Ai and
the spectral radius of A;.
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1 Introduction
In this paper, we consider the Hermitian positive definite (HPD) solutions of the

nonlinear matrix equations

m
X+> BIX'Bi=1 0<1 <], (1.1

i=1
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and

m
X' =D AIXPA =1, pi>1, s> 1, pi#s, (1.2)

i=1

where A;, B (i = 1,2,...,m) are n X n matrices, / is an n x n identity matrix and
m is a positive integer. Here, A} denotes the conjugate transpose of the matrix A;.

Nonlinear matrix equations with form (1.1) and (1.2) in the case m = s = 1 arise
from many fields such as nano research, ladder networks, dynamic programming,
control theory, stochastic filtering, statistics [1-8] and the references therein.

In the last few years, (1.1) and (1.2) were investigated in some special cases. For
(1.1) with m = 1, Zhang et al. [9] considered the existence of HPD solutions and
the iterative method. Gao and Zhang [10] studied HPD solutions of X — A*X9A =
0 (g > 0). For (1.2) withs = 1, 0 < |p;|] < 1, there were some contributions
in the literature to the solvability, numerical solutions and perturbation analysis [11-
15]. Duan et al. [11] obtained the existence of a unique HPD solution by fixed point
theorems for monotone and mixed monotone operators in a normal cone. Lim [12]
derived the existence of a unique HPD solution by using a strict contraction for the
Thompson metric on the open convex cone of positive definite matrices. Duan et al.
[13] and Li and Zhang [14,15] discussed perturbation analysis for the HPD solution
of this matrix equation.

In addition, the related matrix equations X* + A*F(X)A = Q [16-22], X —
Yo f(@i(X) = Q[23]and X* £ Y7L AFX A = Q (1 > 0) [24-33] were
studied by some scholars. However, (1.1) and (1.2) have not been thoroughly stud-
ied either qualitatively or quantitatively. Motivated by this, this paper will focus on
the solvability for (1.1) and (1.2) by means of the integral representation of matrix
functions, the properties of Kronecker product and the monotonic p-concave operator
fixed point theorem.

The rest of this paper is organized as follows: In Sect. 2, we give some preliminary
lemmas that will be needed to develop this work. In Sect. 3, we discuss the existence
of a unique HPD solution of (1.1). Furthermore, in Sect. 4, some properties of HPD
solutions to (1.2) are presented. We obtain the trace and the determinant for the HPD
solutions, the bounds of eigenvalues and the determinant of A?‘A ;. Finally, in the case
s > p; > 1, by the monotonic p-concave operator fixed point theorem (which was
proposed in [20]), we obtain a sufficient condition for the existence of a unique HPD
solution.

The following notations are used throughout this paper. We denote by C"*", H"*"
and U"*" the set of all n x n complex matrices, Hermitian matrices and unitary

matrices, respectively. For A = (ay, ..., a,) = (a;;) € C"*" and amatrix B, AQ B =
(a;j B) is a Kronecker product, and vecA is a vector defined by vecA = (alT, e, a,{ ).
The symbol || - || stands for the spectral norm, || - || ¢ is the Frobenius norm. We denote

by A; (M) the eigenvalues of M, by det(M) the determinant of M, by p (M) the spectral
radius of M, by tr(M) the trace of M, by A1(M) and A, (M) the maximal and minimal
eigenvalues of M, respectively. For X,Y € H"™", we write X > Y(X > Y) if
X — Y is a Hermitian positive semi-definite (definite) matrix. For A, B € H"*",
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the sets [A, B] and (A, B] are defined by [A, B] = {X € H"*"|A < X < B} and
(A, B] = {X € H""|A < X < B).

2 Preliminaries

In this section, we present some lemmas that will be needed to develop this paper.

Lemma 2.1 [34]. Let A and B be positive operators on a Hilbert space H such that
Ml > A >ml >0, My >B >myl >0and B> A > 0. Then A" <
(%_}1)1*131 > O’ Al < (%)tlet hOldforanyt > 1.

Lemma2.2 [35]. [fA > B >0and0 <y <1, then AY > BY.
Lemma 2.3 [36]. For every Hermitian positive definite matrix X, it yields that

sin
X7P =

pr o —1y—p
G0, 0<p <1, 2.1)

Lemma 2.4 [37, Theorem 1.9.1]. Let A € C"™*", B € CP*4,C e C"*k, D e C9*",
Then

(i) (A® B)(C ® D) = (AC) ® (BD);
(i) (A® B)* = A* ® B*.

Lemma 2.5 [37, Lemma 1.9.1]. Let A € C!*™ X € C"™*" B € C"*. Then
vec(AXB) = (BT ® A) - vecX.

Lemma 2.6 [38, Theorem 6.19]. Let A € C"™*™ and B € C"*" with eigenvalues \;
and wj, i =1,2,....,m, j=1,2,...,n, respectively. Then the eigenvalues of
AQBarelipj, i=1,2,....m, j=1,2,...,n.

Lemma 2.7 [39, Theorem3.2.1]. ForA >0, B > 0, A, B € C"*", thendet(A+B) >
det(A) + det(B).

3 Hermitian Positive Definite Solutions of X + /" | B¥X'iB; = I

In this section, some necessary conditions and sufficient conditions for the existence
and uniqueness of HPD solutions of (1.1) are derived.

The next theorem proposes a sufficient condition for the existence of HPD solutions
of (1.1). Meanwhile, the bounds for HPD solutions of (1.1) are derived.

Theorem 3.1 If Y"1 | A{(BiB;) < 1, then the equations

m m li
x=1-— ZM(Bi*B,-) <1 — Z)»,AB?‘B,-)X"’) , x>0, 0<1<1, (3.1

i=1 i=1
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and
m m 4
x=1- an(B;"Bi) (1 — Z)\l(B;"Bi)xt‘) , x>0, 0<ti<1 (32
i=1 i=1

have real positive solutions. If « and B are the solutions of the above equations,
respectively, then Eq. (1.1) has a HPD solution in [, BI].
Moreover,

m
1= M(B/B) <a<p=<L (3.3)
i=1

Proof Step 1. We will prove (3.1) and (3.2) have positive solutions. Define the
sequences {f,} and {o, }:

m
Bo=1. Bur1 =1= My(BBi)es) (3.4)
i=1
and
m
ay=1-= M(BfB)B. n =012 ... (3.5)
i=1
By the hypothesis of this theorem and the definition of sequences {8,} and {«,}, we
have
m
1>a0=1- ZM(B;‘B,) >0,
i=1

m m
Bo=1=p1=1= h(BBag = 1= M(BIB)=ap >0,

i=l1 i=1
m m
Po=1zar=1-) 2(BiB)S =1~ M(B BB = .

i=1 i=1

m
Suppose fr—1 > B = ao=1— Y A (B/B;) and | = By > ax > a1, then
i=1

m m m
Be=1=> dn(BiB)oj_; = 1= au(BfBey = Bry1 = 1= (BB,
i=1 i=1 i=1

m
1> appr =1- ZAI(B BB = 1= Y M(BB)B =a.

i=1 i=1
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Hence, for each k we have By > Brq1 = 1 — Y 7 A1 (BB;) and 1 > apqy > o,
which imply the sequences {«, } and {8, } are monotonic and bounded. Therefore, they
are convergent to certain positive numbers. Let

a= lim a,, B= lim B,.
n—oo n—oo

Taking limits in (3.4) and (3.5) yields

m m
a=1=Y M(BB)B". B=1- Iu(B}Ba",

i=1 i=1

which imply

m m li
a=1-) r(BB) (1 - Z/\n(B;"Bi)a”) ,

i=1 i=1

m m li
B=1- Z,\n(B;‘Bi) (1 - ZM(B,-*Bi)ﬁ”) .
i=1

i=1

Therefore, o and B satisfy (3.1) and (3.2), respectively. Moreover,

m
1= M(BfB) <a<p=1.
i=1

Step 2. We will prove that (1.1) has a HPD solution under the assumption
Y AM(BIB) < 1.
Let @ =[(1 =" A1 (BfB;) I, I]. Define

m
F(X)=1-— ZBi*X“Bi, X € Q.

i=1

Obviously, €2 is a bounded convex closed set and F is continuous on £2.
For any X € @, we have X < I. Note that s > 1. It follows from Lemmas 2.1 and
2.2 that

m m
[>FX)=1- ZBi*X“Bi > (1 - Z’\l (Bi*Bi)> I>0.
i=1

i=1

Therefore, F(X) C €2. By Brouwer’s fixed point theorem, the map F has a fixed point
Xo € 2, which is a HPD solution of (1.1).

In what follows, we suppose that X is a HPD solution of (1.1).

Step 3. We will prove that X € [al, BI]. According to Lemmas 2.1, 2.2 and the
sequences defined by (3.4) and (3.5), we have ag/ = (1 — Y/ A1(BB;))I < X <
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3328 J.Li, Y. Zhang

I = pol.Ttfollows from X =1 —> /" | BfX"Bjthat X =1 —> /" | B*(I — Y i",
B} X' B;)" B;. Hence

m m ti
(1 - ZM(BZ.*Bi) (1 - Z,\n(B;*B,)xf;(X)> ) I1<X
i=1 i=1
m m t
< (1 — ) aa(B}B)) (1 = (B B)A] (X)) ) I. (3.6)
i=1 i=1

Since agl < X < Pol, it follows that «g < A,(X) and A1(X) < Bo. Note that

inequality (3.6) implies a1/ < X < B11. By similar induction, it yields that
apyl <X < B,l. 3.7

Taking limits on both sides of inequality (3.7), we have ol < X < 1. O

The next estimates for HPD solutions of (1.1) are more precise than that in Theorem
3.1.

Corollary 3.1 If >/ A1 (B*B;) < 1, then every HPD solution of (1.1) is in [I —
Y BBfB;, I —Y ", " BfB;], where o and  are defined as in Theorem 3.1.

Proof We suppose that X is a HPD solution of (1.1). By Theorem 3.1, it follows that
a < A (X), (X)) = B. (3-8)

Using X = I — Y/*, By X" B;, we obtain [ — Y /" A (X)B¥B; < X < I —
S Ai(X) B} B;. Applying inequality (3.8) yields I — > | BB¥B; < X < I —
Z;nzl ali B?Bi. O

In what follows, we will discuss the uniqueness of HPD solutions of (1.1) by means
of the properties of (1.1).

The following lemma plays an important role for discussing the uniqueness of HPD
solution of (1.1).

Lemma3.1 If By, Ba, ..., B, are n x n complex nonsingular matrices, then (1.1) has
a HPD solution if and only if there exist Q; € C"*", i =1,2,...,m, P e U"*", and
diagonal matrices I'y A > 0 such that

i
B = P*T 2Q;AP,i=1,2,...,m,

where A2+ T = I and h Q7 Q; = 1. Inthis case, Y = P*T" P is a HPD solution
of (1.1).
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Proof If (1.1) has a HPD solution Y, it follows from the spectral decomposition the-
orem that there exists P € U"*" and a diagonal matrix I' > O such that Y = P*T"P.
Then (1.1) can be rewritten as

m
P*TP + Z BYP'T'PB; = 1. (3.9)

i=1

Multiplying the left side of (3.9) by P and the right side by P*, we have

m
Z PBP*T " PB;P* =1 —T. (3.10)
i=1
Note that B; (i = 1,2, ...,m) are nonsingular matrices. Then 0 < ¥ < I, which
implies
0<TI <. (3.11)

It follows that (3.10) will be turned into the following form

" 1 t _1
Z(I —T) 2PB!P*T' PBP*(I -T)"2=1. (3.12)
i=1
LetA = (I —T)2, Q; = T3 PB;P*A~" Ttis easy to verify that I' + A% = I and
i
B; = P*I'"2 Q; AP.Tt follows from (3.12) that } 7, QFQ; = I.

Conversely, assume there exist P € U"", Q; € C™", 3", QFQ; = I and
diagonal matrices I', A > 0, A% + T = I such that

i
Bi =P T 2Q;,AP,i=1,2,...,m.
Let Y = P*I' P, then Y is a HPD matrix, and it follows that
m m £ t:
Y+ > BIX'"B;=P*TP+» P*A*Q*T 1 P(P*TP)"P*I 1 Q;AP
i=1 i=1

m
=P*TP+) P*AQ;QiAP =P*T +AHP =1,
i=1
which implies Y is a HPD solution of (1.1). O

To prove the next theorem, we first verify the following lemmas.

Lemma 3.2 Suppose thatm > 1, 0 <t < 1 and m’;’il <Xx,y < 1.Then
JT—oT =& —y) 1
0< fx.y.1) = (I—2x)( yt)(x[ ) b
(x —y)xzy2 n
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L—x)1/2
Proof Let g (x) = ¢ Xf/)z , mrtnil

function g (x) is monotonically decreasing on (-2

<x <1, 0 <t < 1. 1Itis easy to verify that the
1). It follows that

mt+1°
mt (mt + 1)1 mt
= , 1. 3.13
gl(x)<gl<mt+1> \/ Y prenE TR (3.13)
Let gz(x) =x', # <x <1, 0 <t < 1. By the mean value theorem, there exists

IS mt+1, 1) such that

X —

t—1
(X)) — &) — gl(®) < (mt+1> _ (3.14)

Combining (3.13) and (3.14), we have

- 1
0< flxy 0= g1 gy - 208200 L
- m

O

Lemma 3.3 For every Hermitian positive definite matrix X and 0 < t < 1, it yields
that

Xt sin t7r

o0
f X0 + X)"'ada.
T 0

Proof Multiplying the left side of (2.1) in Lemma 2.3 by X and lettingt = 1 — p, we
have

,  sintm [ il
X' = XA+ X)) A'7'da, O0<t<1.
T 0
[m}
Theorem 3.2 Assume that By, By, ..., B,, are n x n complex nonsingular matrices

and 0 < t; < 1. If (1.1) has a HPD solution on [-2=1, I, then the HPD solution of

(1.1) is unique, where t = maxi<j<m{ti}.

t+l

Proof 1f Y| is a HPD solution of (1.1), according to Lemma 3.1, there exist P € U"*",

Q; eC™" i=1,2,...,mand diagonal matrices Iy, A; > 0 such that
7t,/2 .
B; = P{T OiMPy, i=1,2,...,m, (3.15)
where
m
> 0;0i=1and AT+T =1 (3.16)

i=1
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In this case, Y1 = PT'| Py, where I'y = diag(A11, A2, ..., A1) with {41} the
eigenvalues of V7.
Similarly, if Y, is a HPD solution of (1.1), there exist P, € U"*", U; € C"*", | =

1,2, ..., m and diagonal matrices Iy, A2 > 0 such that
Bi = P3T,"PUi APy, i =1,2,...,m, (3.17)
where
m
D UfU =1 and Aj+Ty=1. (3.18)

i=1

In this case, Y, = PZ*I‘QPZ, where Iy = diag(A21, A22, ..., A2,) with {Ap;} the
eigenvalues of Y>.
According to Lemma 3.3, we have

Yl—Yz_ZB*( - i) B,

" B*smt, 00 _ IR P
-y S f [Y2(AI+Y2) YOI+ 1)) ]w B;dA
i=1 0
" B*smt, 00 151
:_Z / (Y1 =Y2) M+ Y~ AT Bida
0

Ly Bisintr S:Tm"” /OOO Yo O + Y~ (¥ = ¥2) & + 1)~ A B, (3.19)
i=1
Note that
M+Y) ' =+ P P) =P LT P (3.20)
and
I +Y) = (A + Pz*rzpz)‘] =P A+ T Py (3.21)

Combing (3.15), (3.17) and (3.19)—(3.21), we have

Dosingw [, o g * 1% -1
Y-V, = — E - PyAUST, > Ph(Y1 = Yo)Pf (M +T)7 T 2 Qi A PIAT dA
. 0
i=1

sin t; 7w i 1 1
Z P2 AUFTY 2 +To) ' Py(Yy — Yo) P +Ty)~
i=1

xFI‘TQiAIP]A’f—‘dA. (3.22)
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Let
W= PyY — Yz)Pl*. (3.23)

Then (3.22) can be rewritten as

m . 00 . "
t: _h _h
w=-y T / AUFT, TWOI + )70 2 QA 12 A
: T 0
i=1

" sint;m [ -4 , -t -
+> / AUIT, (M +T) ' WAL +T)7'T, 2 ;A4 da.
: T 0

i=1

(3.24)
From (3.24) and Lemmas 2.4 and 2.5, it follows that

vecW

D singmw [ - r —\

= _§ : / A +TpP7T, 20iA1 | ®(AUT, 2 ) A~ dA - vecW
; b3 0
=1

2 osingm [ - : 1-% 1|51

+ E 7/ W +T)™ Ty 0N ® AzUl-"‘l"2 AL +T)7 [ AT dA - vecW
: s 0
i=1

sint; 7w Zli 1 i1
=—Z (A1 ® A)(Q] ® U) F2 Qr, f [AM+T)™ @I~ dr - vecW

+Zs‘ﬂ (A ® A2 QT ®U)(r(7i®r2‘*5)

i=1

/ W +TH™'® I + o) i ~lda - veeW. (3.25)
0

Assume that
A1 = diag(oq1, 012, ...,010), A2 =diag(oar, 022, ...,0).
According to (3.11), (3.16) and (3.18) , we have
0 <oy :m< 1, 0<oj :m< 1, j=12,....,n. (3.26)
Let

B=AI®A, J=0] @U},

_ _ int o
¢ =(r"er; ’t/z).s‘“ﬂ'”/ [ +T) @ 1]aa,
0

b4
i=12,...,m. (3.27)

_ sintiw [
D; = ( 1i/2 ® 1—‘1 t,/2> ) _t/ (LI + 1—‘1)71 ® (M + F2)71)\1t,’71dk’
0
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Then (3.25) can be rewritten as

m
vecW + B Y Ji(Ci — D;) - vecW = 0. (3.28)
i=1

By Lemma 2.6, we have

B = A1 @ Ay = diag(o; - 02) 2525

- - tim
. — ( W2 g 1; tl/2> sing / [+ T~ @ 1ai—da.

1t Sll’ll
_dlag< /2 AZJW SmhT / O+ A1)~ W-%u)
n?xn?
_EE
= diag (Xllz Ay My )

. U
= diag ey ')“2]' ,
n2xn?

tim
Diz( “i/2 g - t,/2>.51n1 / G+ T~ ® (T + Ty~ 12~ 1da,

sin t; 7w
_d1ag< FUGRPY il / 42D 0+ 22))” Wz—ldx)

k—t;/Z 1— t‘/z(kt’_l )\.t'-_l)
= diag ( 1 2 ,
n2?xn?

n2xn?

X,—Mz
i=12,....m, L, j=1,2,...,n. (3.29)

It follows that

) ) —t,-/2 1 z,/2 ti—1 ti—1
. %—1 -5 )‘1[ ()‘ )"2/’ )
Ci— D =diag A}, A, —
n?xn?

J )»2/' — Al
A — Al
. 11~ ")
= diag T ,
()‘”_)‘21'))‘121)‘221 n2 xcn2
i=L2,....m, L, j=1,2,...,n. (3.30)

Note that B is nonsingular. Multiplying the left side of Eq. (3.28) by B~!, we have
m
B~ lvecW + Z Ji (C; + Dj) - vecW
i=1

= |:I+ZJ,-(C,~ —D,-)B:| B! vecW = 0. (3.31)
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A combination of (3.27) and Lemma 2.4 gives

Il = (@ ® U (0f @ U = (0; ® U(Q] ® U})
= (0,0 ® (U;U}) = (0; 0}) ® (U;U}).

It follows (3.16), (3.18) and Lemma 2.6 that 0 < ||J;|| < 1. Then

m m

> Ji(Ci — Di)B| < Y I(Ci — D)B. (3.32)

i=1 i=1
By the hypothesis of the theorem, we have m’ﬁl I < Yy1,Y, < I, which implies that
mT—{-l < )»1[,)»2]' <1,1,j=1,2,...,n. Note that m’;:il < #, i=1,2,...,m.
Then %0 < Ay < 1, Lj = 1,2,...,n, i = 1,2,...,m. Therefore, it

follows (3.29) and (3.30) that

VA= r)(1 = A)) (Agj - kt{l)
i/241i/2
()»2./ - )tll) )‘tzj/ )‘[ll/

= rrllf]t,x{f(ku, A2j, 1)}, (3.33)

I(Ci — Di)BJ|| = max

where f(x, y,t) is defined in Lemma 3.2.
A combination of Lemma 3.2, (3.32)—(3.33) gives that

1
<m-— =1,
m

m
> Ji(Ci - D)B
i=1

whichimplies I+ Y /L | J;(C; — D;) B is nonsingular. It follows (3.31) that vecW = 0.
By (3.23), we have Y| = Y>. O

4 Hermitian Positive Definite Solutions of X* — Y, A*XPiA; = |

In this section, the properties of HPD solutions and coefficient matrices of (1.2) are
derived. The sufficient conditions for the existence of a unique HPD solution are given.
We first give the following lemma. This lemma is easy to verify.

Lemma4.l Letg(x) =xP(x*—=1), x> 1, p>s>1.Then

p
p—s

1 . 1
)s ] and decreasing on [(pp_s)x , +00);

1 )51
)Q:%,

(1) g isincreasing on [1, (

(i1) the maximal value of g(x) is g((pl_'s

The spectral radius of coefficient matrices of (1.2) is derived in the next theorem.
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Theorem 4.1 Assume that Ay, Ay, ..., Ay, are nonsingular matrices. If (1.2) with
pi > s > 1 has a HPD solution, then

L_
s(p—s):"!
p

p?

p*(A)) < L i=12,...,m,

where p = minj<;<pm{pi}.

Proof Suppose that X is a HPD solution of (1.2). Let Y = X*. Then (1.2) can be
rewritten as

m
Y=Y AT A =1 pi>s=> 1 (4.1)
i=1
Let 1; be any eigenvalue of A; (j = 1,2,...,m) and e; be the corresponding unit

eigenvector of A ;. Multiplying the left side of (4.1) by e;f and the right side by ¢, we
have

* * 20 * ¢ wy 2L *
erej—ej|kj| Y ej—e; E A7Y 5 Ajej = e’ej,

j
i#]
which implies
* * 2 Lj *
erej—ej|Aj| Ysejzejej. “4.2)
Let o1, 02, ..., 0, be eigenvalues of Y. Then

A (Y—|x-|2Yp*j)— max (o; — 1ot
! / T i<i<n \ AR

Let h(x) = x — |kj|2x€, x >0, p>s > 1. 1Itis easy to verify that 2" (x) =

» s P
—[3jP2(2 — 1)x+ 72 < 0. Therefore, max h(x) = h((—)7—) = —L=S8
Pl)‘Jl Sty pes
pr (AP
Pj 4 5
: 5 5 —5)s P
Since o; > 1, then o; — I)lezoi <o — |?»j|2cri = h(o;) < —:ijl); l%. It
p —S j p—.
follows that

Pj Pj
K

: 7 (p — )57
MY — A PYT) = max (o7 — AP0, ) < —0 2
1<i<n

pr= |

By inequality (4.2), we obtain

s
(p—s)s7=
s 25 7

pr= T s
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which implies

p_
s(p—s)s!
e

ps

p2(A)) <

O

In the next theorem, we obtain the bounds of Y /* | A,(A¥A;), D /L, det(A; A})
and det(X).

Theorem 4.2 Lett = mini<j<m{pi}. If (1.2) with p; > s > 1 has a HPD solution X,
then

)51
(1) 37 A (AFA) < %

r_
@) Y, det(A;AF) < 2= 4nd 5y < det(X) < 8y, where 81,8, (81 < 8,) are
ts

the positive solutions of the equation x ' (x* — 1) — > "i"  det(A;A) =0, x >
1, t >s>1.

Proof (1) Since X is a HPD solution of (1.2), then X > I. It follows that

m m
A (X5) = Ay (1 + Z A?‘X”"Ai) > 14 Ay (Z AfXI’fA,-)
i=1 i=1
m
> 14 Y n(AFA) - M (X),
i=1

which implies Y 7" | A, (A7A)) < X, (X)) (A5 (X) — 1). According to Lemma 4.1, we
have

m L_q
{ — s

S aa(Aran < 20

i=1 ts

(2) Since X is a HPD solution of (1.2), then X* =1 + > ", AT XPiA;. Note that
X > I. Then det(X) > 1, which implies (det(X))?' > (det(X))’. It follows from
Lemma 2.7 that

det(X*) = det (1 +> A,’-‘XP"A,) > 1+ ) det(A; A})(det(X))",
i=1 i=1
which implies
> " det(A; A}) < (det(X)) ™' ((det(X))" — 1). 4.3)
i=1
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It follows from Lemma 4.1 that sz=1 det(AiA;.") < M On the other hand, it
ts

L
is easy to verify that if ) ;" | det(A;Af) < SU=S)Y | the equation x ' (x* — 1) —
t5

Zf"zl det(A,'A?‘) = 0 has two solutions &1, 62 (1 < §; < §2). By inequality (4.3), we
have

81 < det(X) < 4.

m}

To derive the bounds of the trace for HPD solutions of (1.2), we need some properties
of the trace in the following lemma.

Lemma4.2 Let A > 0 and B > 0 be n x n matrices. Then for q > 1, it yields that

(1) A(A)tr(B) < tr(AB) < A1 (A)tr(B),
@) EAE < r(A) < (tr(A).

Proof (1) Since A > 0, so we get A,(A)] < A < 11(A)I, then
0 <tr((A—A,(A)B) =tr(AB — A, (A)B) = tr(AB) — X, (A)tr(B),
which implies A, (A)tr(B) < tr(AB).
Similarly, it is easy to verify that tr(AB) < A1(A)tr(B).

(2) Since A > 0,s0A;(A) >0, i =1,2,...,n. By Holder’s inequality (see Lemma
1.1.2 on Page 1 in [40]), we have

w(A) = Y a4y <n' 0 (ZA?(A)) = ' 1 A7,
i=1 i=1

which implies % < tr(A9).

When A1(A) = A(A) = ... = 1, (A) = 0, obviously tr(A9) = (tr(A))4. If
M(A) + A2(A) 4+ ...+ A, (A) # 0O, then

A A AL(A)

(tr(A)e ' (r(A) ' (r(A)4

_( M (A) >q+ +< An(A) )‘f

A\ M(A) + A(A) + -+ A (A) M (A) + A2(A) + -+ - + A (A)

- A1(A) An(A)

< 4+t =1,
A(A) + A2 (A) + -+ 2, (A) A(A) + 22(A) + - - + A (A)

which implies tr(A7) = Y"7_, 17 (A) < (tr(A))".
O

@ Springer



3338 J.Li, Y. Zhang

Theorem 4.3 Lett = mini<;<m{pi}. If (1.2) with p; > s > 1 has a HPD solution X,
then

y1 = tr(X) <y,

where y1, v» (Y1 < y») are the positive solutions of the equation n'~'x ™' (x* —n) —
S An(A A7) = 0.

Proof Since X is a HPD soluiton of (1.2),

m
X' =1+ A;XPA;. (4.4)

i=1

Note that s > 1, p; > 1 and tr(X) > n. Taking the trace on both sides of (4.4), by
Lemma 4.2, we obtain

(tr(x))* > tr(X*) = tr(] + Z ASXPiA) =n+ Ztr(A,-Ajfxl’f)

i=1 i=1

>n+ ikn(AiA?)tr(Xpi) >n+ i)»n(A;kAi) n <tr(nX))"f
i=1 i=1
>n+n'"" i An(AFAD(X), (4.5)
i=l
which implies
n' (X)) T ((tr(X)* —n) — i)\n(A;'kAi) > 0. (4.6)

i=1

Let hi(x) = n'~'x7'(x* —n), x > n'/%, t > 5 > 1. A calculation gives that the

=Dg_s) 51
maximal value of /;(x) is max hj(x) = hl((%)l/s) = "’# Note that
ts

n'1=5) > 1.1t follows Theorem 4.2 (1) that

m L t(1-1) L
S(E—8)s n s’S(t —8)s

D ha(AFA) < ( L) < 0=

i=1 !

13

3

L
ts

which implies the equation n’ ~1x =" (x* —n) — Y7, A, (AfA;) = 0 has two positive
solution y1, y2 (¥1 < y2). By inequality (4.6), we obtain y; < tr(X) < y».
O

To prove the uniqueness of the HPD solution of (1.2) with 1 < p; < s, we will use
the following definition and lemmas which can be found in [41].
Let X be a real Banach space, and let K be a closed cone in X, KT = K \ {0}.
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Definition 1 [41, Definition 3.1]. Let 7 : K — K, and let p > 0. We say that

(a) T isincreasing if 0 < x < y implies Tx < Ty,
(b) T is p -concave if T(Ax) > APTx forallx € K and0 < A < 1.

Lemma4.3 [41, Theorem 3.2]. Let the norm in X be monotonic. Suppose that T :
K — K is an increasing p-concave mapping withO < p < 1, andthatTf € K¢ for
some f € Kt with || f|| = 1. Suppose in addition that T : Ky — Ky is continuous
in the norm topology. Then there exists a unique z € Ky such that Tz = z.

Let X be M (n), which denotes the set of n x n real matrices. Then a closed cone in
X is given by P (n), the set of n x n real positive semi-definite matrices. The interior
of this cone is the set of n x n real positive definite matrices, which we will denote by
Pn).

Theorem 4.4 If Ay, Ay, ..., Ay, aren x n real nonsingular matricesand 1 < p; <'s,
then (1.2) has a unique positive definite solution Xy € P(n).

Proof Let

m
F(Y)=1+) AYSA;, Y e P,

i=1

It follows from 1 < p; < s that 0 < % < 1. Then F is increasing and continuous in
the norm topology. Let ¢ = maxj<;<,{pi}. Forany Y € P(n) and0 < A < 1, we

have

m m
FOY) =1+ AT S A =05 (143 Ay S a; ) =25 F(r),
i=1 i=1
which implies F is %-concave. Since I € P(n), F(I) € P(n) and ||| = 1, then by
1
Lemma 4.3, there exists a unique Yy € P(n) such that F(Yp) = Yp. Let Xo = Y.
Then Xy € P(n) is a unique positive definite solution of (1.2). O

Remark 4.1 In this section, our method is not valid when p; = s for some i in equation
(1.2). The case of p; = s for some i in equation (1.2) is worth investigating further.
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