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Abstract
In this paper, we consider two kinds of nonlinear matrix equations X+∑m

i=1 B
∗
i X

ti Bi
= I (0 < ti < 1) and Xs −∑m

i=1 A
∗
i X

pi Ai = I (pi > 1, s ≥ 1). By means of the
integral representation of matrix functions, properties of Kronecker product and the
monotonic p-concave operator fixed point theorem, we derive necessary conditions
and sufficient conditions for the existence and uniqueness of the Hermitian positive
definite solution for the matrix equations. We also obtain some properties of the Her-
mitian positive definite solutions, the bounds of the determinant’s sum for A∗

i Ai and
the spectral radius of Ai .

Keywords Nonlinear matrix equation · Hermitian positive definite solution · Integral
representation · Kronecker product · Spectral radius

AMS classification 15A24 · 15A42

1 Introduction

In this paper, we consider the Hermitian positive definite (HPD) solutions of the
nonlinear matrix equations

X +
m∑

i=1

B∗
i X

ti Bi = I , 0 < ti < 1, (1.1)
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and

Xs −
m∑

i=1

A∗
i X

pi Ai = I , pi > 1, s ≥ 1, pi �= s, (1.2)

where Ai , Bi (i = 1, 2, . . . ,m) are n × n matrices, I is an n × n identity matrix and
m is a positive integer. Here, A∗

i denotes the conjugate transpose of the matrix Ai .
Nonlinear matrix equations with form (1.1) and (1.2) in the case m = s = 1 arise

from many fields such as nano research, ladder networks, dynamic programming,
control theory, stochastic filtering, statistics [1–8] and the references therein.

In the last few years, (1.1) and (1.2) were investigated in some special cases. For
(1.1) with m = 1, Zhang et al. [9] considered the existence of HPD solutions and
the iterative method. Gao and Zhang [10] studied HPD solutions of X − A∗Xq A =
Q (q > 0). For (1.2) with s = 1, 0 < |pi | < 1, there were some contributions
in the literature to the solvability, numerical solutions and perturbation analysis [11–
15]. Duan et al. [11] obtained the existence of a unique HPD solution by fixed point
theorems for monotone and mixed monotone operators in a normal cone. Lim [12]
derived the existence of a unique HPD solution by using a strict contraction for the
Thompson metric on the open convex cone of positive definite matrices. Duan et al.
[13] and Li and Zhang [14,15] discussed perturbation analysis for the HPD solution
of this matrix equation.

In addition, the related matrix equations Xs ± A∗F(X)A = Q [16–22], X −∑m
i=1 f (�i (X)) = Q [23] and Xs ±∑m

i=1 A
∗
i X

−ti Ai = Q (ti > 0) [24–33] were
studied by some scholars. However, (1.1) and (1.2) have not been thoroughly stud-
ied either qualitatively or quantitatively. Motivated by this, this paper will focus on
the solvability for (1.1) and (1.2) by means of the integral representation of matrix
functions, the properties of Kronecker product and the monotonic p-concave operator
fixed point theorem.

The rest of this paper is organized as follows: In Sect. 2, we give some preliminary
lemmas that will be needed to develop this work. In Sect. 3, we discuss the existence
of a unique HPD solution of (1.1). Furthermore, in Sect. 4, some properties of HPD
solutions to (1.2) are presented. We obtain the trace and the determinant for the HPD
solutions, the bounds of eigenvalues and the determinant of A∗

i Ai . Finally, in the case
s > pi > 1, by the monotonic p-concave operator fixed point theorem (which was
proposed in [20]), we obtain a sufficient condition for the existence of a unique HPD
solution.

The following notations are used throughout this paper. We denote by Cn×n, Hn×n

and Un×n the set of all n × n complex matrices, Hermitian matrices and unitary
matrices, respectively. For A = (a1, . . . , an) = (ai j ) ∈ Cn×n and amatrix B, A⊗B =
(ai j B) is aKronecker product, and vecA is a vector defined by vecA = (aT1 , . . . , aTn )T .
The symbol ‖ · ‖ stands for the spectral norm, ‖ · ‖F is the Frobenius norm. We denote
by λi (M) the eigenvalues ofM , by det(M) the determinant ofM , by ρ(M) the spectral
radius of M, by tr(M) the trace of M, by λ1(M) and λn(M) the maximal and minimal
eigenvalues of M , respectively. For X ,Y ∈ Hn×n , we write X ≥ Y (X > Y ) if
X − Y is a Hermitian positive semi-definite (definite) matrix. For A, B ∈ Hn×n ,
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the sets [A, B] and (A, B] are defined by [A, B] = {X ∈ Hn×n|A ≤ X ≤ B} and
(A, B] = {X ∈ Hn×n|A < X ≤ B}.

2 Preliminaries

In this section, we present some lemmas that will be needed to develop this paper.

Lemma 2.1 [34]. Let A and B be positive operators on a Hilbert space H such that
M1 I ≥ A ≥ m1 I > 0, M2 I ≥ B ≥ m2 I > 0 and B ≥ A > 0. Then At ≤
(M1
m1

)t−1Bt > 0, At ≤ (M2
m2

)t−1Bt hold for any t ≥ 1.

Lemma 2.2 [35]. If A ≥ B > 0 and 0 ≤ γ ≤ 1, then Aγ ≥ Bγ .

Lemma 2.3 [36]. For every Hermitian positive definite matrix X, it yields that

X−p = sin pπ

π

∫ ∞

0
(λI + X)−1λ−pdλ, 0 < p < 1. (2.1)

Lemma 2.4 [37, Theorem 1.9.1]. Let A ∈ Cm×n, B ∈ C p×q ,C ∈ Cn×k, D ∈ Cq×r .

Then

(i) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD);
(ii) (A ⊗ B)∗ = A∗ ⊗ B∗.

Lemma 2.5 [37, Lemma 1.9.1]. Let A ∈ Cl×m, X ∈ Cm×n, B ∈ Cn×k . Then

vec(AXB) = (BT ⊗ A) · vecX .

Lemma 2.6 [38, Theorem 6.19]. Let A ∈ Cm×m and B ∈ Cn×n with eigenvalues λi
and μ j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n , respectively. Then the eigenvalues of
A ⊗ B are λiμ j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Lemma 2.7 [39, Theorem 3.2.1]. For A ≥ 0, B ≥ 0, A, B ∈ Cn×n, then det(A+B) ≥
det(A) + det(B).

3 Hermitian Positive Definite Solutions of X + ∑m
i=1 B

∗
i X

tiBi = I

In this section, some necessary conditions and sufficient conditions for the existence
and uniqueness of HPD solutions of (1.1) are derived.

The next theorem proposes a sufficient condition for the existence of HPD solutions
of (1.1). Meanwhile, the bounds for HPD solutions of (1.1) are derived.

Theorem 3.1 If
∑m

i=1 λ1(B∗
i Bi ) < 1 , then the equations

x = 1 −
m∑

i=1

λ1(B
∗
i Bi )

(

1 −
m∑

i=1

λn(B
∗
i Bi )x

ti

)ti

, x > 0, 0 < ti < 1, (3.1)
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and

x = 1 −
m∑

i=1

λn(B
∗
i Bi )

(

1 −
m∑

i=1

λ1(B
∗
i Bi )x

ti

)ti

, x > 0, 0 < ti < 1 (3.2)

have real positive solutions. If α and β are the solutions of the above equations,
respectively, then Eq. (1.1) has a HPD solution in [α I , β I ].

Moreover,

1 −
m∑

i=1

λ1(B
∗
i Bi ) < α ≤ β ≤ 1. (3.3)

Proof Step 1. We will prove (3.1) and (3.2) have positive solutions. Define the
sequences {βn} and {αn}:

β0 = 1, βn+1 = 1 −
m∑

i=1

λn(B
∗
i Bi )α

ti
n (3.4)

and

αn = 1 −
m∑

i=1

λ1(B
∗
i Bi )β

ti
n , n = 0, 1, 2, . . . . (3.5)

By the hypothesis of this theorem and the definition of sequences {βn} and {αn}, we
have

1 ≥ α0 = 1 −
m∑

i=1

λ1(B
∗
i Bi ) > 0,

β0 = 1 ≥ β1 = 1 −
m∑

i=1

λn(B
∗
i Bi )α

ti
0 ≥ 1 −

m∑

i=1

λ1(B
∗
i Bi ) = α0 > 0,

β0 = 1 ≥ α1 = 1 −
m∑

i=1

λ1(B
∗
i Bi )β

ti
1 ≥ 1 −

m∑

i=1

λ1(B
∗
i Bi )β

ti
0 = α0.

Suppose βk−1 ≥ βk ≥ α0 = 1 −
m∑

i=1
λ1(B∗

i Bi ) and 1 = β0 ≥ αk ≥ αk−1, then

βk = 1 −
m∑

i=1

λn(B
∗
i Bi )α

ti
k−1 ≥ 1 −

m∑

i=1

λn(B
∗
i Bi )α

ti
k = βk+1 ≥ 1 −

m∑

i=1

λ1(B
∗
i Bi ),

1 ≥ αk+1 = 1 −
m∑

i=1

λ1(B
∗
i Bi )β

ti
k+1 ≥ 1 −

m∑

i=1

λ1(B
∗
i Bi )β

ti
k = αk .
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Hence, for each k we have βk ≥ βk+1 ≥ 1 −∑m
i=1 λ1(B∗

i Bi ) and 1 ≥ αk+1 ≥ αk,

which imply the sequences {αn} and {βn} are monotonic and bounded. Therefore, they
are convergent to certain positive numbers. Let

α = lim
n→∞ αn, β = lim

n→∞ βn .

Taking limits in (3.4) and (3.5) yields

α = 1 −
m∑

i=1

λ1(B
∗
i Bi )β

ti , β = 1 −
m∑

i=1

λn(B
∗
i Bi )α

ti ,

which imply

α = 1 −
m∑

i=1

λ1(B
∗
i Bi )

(

1 −
m∑

i=1

λn(B
∗
i Bi )α

ti

)ti

,

β = 1 −
m∑

i=1

λn(B
∗
i Bi )

(

1 −
m∑

i=1

λ1(B
∗
i Bi )β

ti

)ti

.

Therefore, α and β satisfy (3.1) and (3.2), respectively. Moreover,

1 −
m∑

i=1

λ1(B
∗
i Bi ) < α ≤ β ≤ 1.

Step 2. We will prove that (1.1) has a HPD solution under the assumption∑m
i=1 λ1(B∗

i Bi ) < 1.
Let 	 = [(1 −∑m

i=1 λ1
(
B∗
i Bi
)
I , I

]
. Define

F(X) = I −
m∑

i=1

B∗
i X

ti Bi , X ∈ 	.

Obviously, 	 is a bounded convex closed set and F is continuous on 	.

For any X ∈ 	, we have X ≤ I . Note that s ≥ 1. It follows from Lemmas 2.1 and
2.2 that

I ≥ F(X) = I −
m∑

i=1

B∗
i X

ti Bi ≥
(

1 −
m∑

i=1

λ1
(
B∗
i Bi
)
)

I > 0.

Therefore, F(X) ⊆ 	.By Brouwer’s fixed point theorem, the map F has a fixed point
X0 ∈ 	, which is a HPD solution of(1.1).

In what follows, we suppose that X is a HPD solution of (1.1).
Step 3. We will prove that X ∈ [α I , β I ]. According to Lemmas 2.1, 2.2 and the

sequences defined by (3.4) and (3.5), we have α0 I = (1−∑m
i=1 λ1(B∗

i Bi ))I ≤ X ≤
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I = β0 I . It follows from X = I −∑m
i=1 B

∗
i X

ti Bi that X = I −∑m
i=1 B

∗
i (I −∑m

i=1
B∗
i X

ti Bi )ti Bi . Hence

(

1 −
m∑

i=1

λ1(B
∗
i Bi )

(

1 −
m∑

i=1

λn(B
∗
i Bi )λ

ti
n (X)

)ti)

I ≤ X

≤
(

1 −
m∑

i=1

λn(B
∗
i Bi )

(

1 −
m∑

i=1

λ1(B
∗
i Bi )λ

ti
1 (X)

)ti)

I . (3.6)

Since α0 I ≤ X ≤ β0 I , it follows that α0 ≤ λn(X) and λ1(X) ≤ β0. Note that
inequality (3.6) implies α1 I ≤ X ≤ β1 I . By similar induction, it yields that

αn I ≤ X ≤ βn I . (3.7)

Taking limits on both sides of inequality (3.7), we have α I ≤ X ≤ β I . �

The next estimates for HPD solutions of (1.1) aremore precise than that in Theorem
3.1.

Corollary 3.1 If
∑m

i=1 λ1(B∗
i Bi ) < 1 , then every HPD solution of (1.1) is in [I −∑m

i=1 β ti B∗
i Bi , I −∑m

i=1 αti B∗
i Bi ], where α and β are defined as in Theorem 3.1.

Proof We suppose that X is a HPD solution of (1.1). By Theorem 3.1, it follows that

α ≤ λn(X), λ1(X) ≤ β. (3.8)

Using X = I − ∑m
i=1 B

∗
i X

ti Bi , we obtain I − ∑m
i=1 λ

ti
1 (X)B∗

i Bi ≤ X ≤ I −
∑m

i=1 λ
ti
n (X)B∗

i Bi . Applying inequality (3.8) yields I −∑m
i=1 β ti B∗

i Bi ≤ X ≤ I −∑m
i=1 αti B∗

i Bi . �

In what follows, we will discuss the uniqueness of HPD solutions of (1.1) by means
of the properties of (1.1).

The following lemma plays an important role for discussing the uniqueness of HPD
solution of (1.1).

Lemma 3.1 If B1, B2, . . . , Bm are n×n complex nonsingular matrices, then (1.1) has
a HPD solution if and only if there exist Qi ∈ Cn×n, i = 1, 2, . . . ,m, P ∈ Un×n, and
diagonal matrices 
,� > 0 such that

Bi = P∗
− ti
2 Qi�P, i = 1, 2, . . . ,m,

where �2 + 
 = I and
∑m

i=1 Q
∗
i Qi = I . In this case, Y = P∗
P is a HPD solution

of (1.1).
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Proof If (1.1) has a HPD solution Y , it follows from the spectral decomposition the-
orem that there exists P ∈ Un×n and a diagonal matrix 
 > 0 such that Y = P∗
P.

Then (1.1) can be rewritten as

P∗
P +
m∑

i=1

B∗
i P

∗
ti P Bi = I . (3.9)

Multiplying the left side of (3.9) by P and the right side by P∗, we have

m∑

i=1

PB∗
i P

∗
ti P Bi P
∗ = I − 
. (3.10)

Note that Bi (i = 1, 2, . . . ,m) are nonsingular matrices. Then 0 < Y < I , which
implies

0 < 
 < I . (3.11)

It follows that (3.10) will be turned into the following form

m∑

i=1

(I − 
)−
1
2 PB∗

i P
∗
ti P Bi P

∗(I − 
)−
1
2 = I . (3.12)

Let � = (I − 
)
1
2 , Qi = 


ti
2 PBi P∗�−1. It is easy to verify that 
 + �2 = I and

Bi = P∗
− ti
2 Qi�P . It follows from (3.12) that

∑m
i=1 Q

∗
i Qi = I .

Conversely, assume there exist P ∈ Un×n , Qi ∈ Cn×n ,
∑m

i=1 Q
∗
i Qi = I and

diagonal matrices 
,� > 0, �2 + 
 = I such that

Bi = P∗
− ti
2 Qi�P, i = 1, 2, . . . ,m.

Let Y = P∗
P , then Y is a HPD matrix, and it follows that

Y +
m∑

i=1

B∗
i X

ti Bi = P∗
P +
m∑

i=1

P∗�∗Q∗
− ti
2 P(P∗
P)ti P∗
− ti

2 Qi�P

= P∗
P +
m∑

i=1

P∗�Q∗
i Qi�P = P∗(
 + �2)P = I ,

which implies Y is a HPD solution of (1.1). �
To prove the next theorem, we first verify the following lemmas.

Lemma 3.2 Suppose that m ≥ 1, 0 < t < 1 and mt
mt+1 < x, y < 1. Then

0 < f (x, y, t) =
√

(1 − x)(1 − y)(xt − yt )

(x − y)x
t
2 y

t
2

<
1

m
.
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3330 J. Li, Y. Zhang

Proof Let g1(x) = (1−x)1/2

xt/2
, mt

mt+1 < x < 1, 0 < t < 1. It is easy to verify that the
function g1(x) is monotonically decreasing on ( mt

mt+1 , 1). It follows that

g1(x) < g1

(
mt

mt + 1

)

=
√

(mt + 1)t−1

(mt)t
,

mt

mt + 1
< x < 1. (3.13)

Let g2(x) = xt , mt
mt+1 < x < 1, 0 < t < 1. By the mean value theorem, there exists

ξ ∈ ( mt
mt+1 , 1) such that

g2(x) − g2(y)

x − y
= g′

2(ξ) < t

(
mt

mt + 1

)t−1

. (3.14)

Combining (3.13) and (3.14), we have

0 < f (x, y, t) = g1(x) · g1(y) · g2(x) − g2(y)

x − y
<

1

m
.

�
Lemma 3.3 For every Hermitian positive definite matrix X and 0 < t < 1, it yields
that

Xt = sin tπ

π

∫ ∞

0
X(λI + X)−1λt−1dλ.

Proof Multiplying the left side of (2.1) in Lemma 2.3 by X and letting t = 1− p, we
have

Xt = sin tπ

π

∫ ∞

0
X(λI + X)−1λt−1dλ, 0 < t < 1.

�
Theorem 3.2 Assume that B1, B2, . . . , Bm are n × n complex nonsingular matrices
and 0 < ti < 1. If (1.1) has a HPD solution on [ mt

mt+1 I , I ], then the HPD solution of
(1.1) is unique, where t = max1≤i≤m{ti }.
Proof If Y1 is aHPD solution of (1.1), according to Lemma 3.1, there exist P1 ∈ Un×n,

Qi ∈ Cn×n, i = 1, 2, . . . ,m and diagonal matrices 
1,�1 > 0 such that

Bi = P∗
1 


−ti /2
1 Qi�1P1, i = 1, 2, . . . ,m, (3.15)

where

m∑

i=1

Q∗
i Qi = I and �2

1 + 
1 = I . (3.16)
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In this case, Y1 = P∗
1 
1P1, where 
1 = diag(λ11, λ12, . . . , λ1n) with {λ1 j } the

eigenvalues of Y1.
Similarly, if Y2 is a HPD solution of (1.1), there exist P2 ∈ Un×n, Ui ∈ Cn×n, i =

1, 2, . . . ,m and diagonal matrices 
2,�2 > 0 such that

Bi = P∗
2 


−ti /2
2 Ui�2P2, i = 1, 2, . . . ,m, (3.17)

where

m∑

i=1

U∗
i Ui = I and �2

2 + 
2 = I . (3.18)

In this case, Y2 = P∗
2 
2P2, where 
2 = diag(λ21, λ22, . . . , λ2n) with {λ2 j } the

eigenvalues of Y2.
According to Lemma 3.3, we have

Y1 − Y2 =
m∑

i=1

B∗
i

(
Y ti
2 − Y ti

1

)
Bi

=
m∑

i=1

B∗
i sin tiπ

π

∫ ∞
0

[
Y2 (λI + Y2)

−1 − Y1 (λI + Y1)
−1
]
λti−1Bidλ

= −
m∑

i=1

B∗
i sin tiπ

π

∫ ∞
0

(Y1 − Y2) (λI + Y1)
−1 λti−1Bidλ

+
m∑

i=1

B∗
i sin tiπ

π

∫ ∞
0

Y2 (λI + Y2)
−1 (Y1 − Y2) (λI + Y1)

−1 λti−1Bidλ. (3.19)

Note that

(λI + Y1)
−1 = (λI + P∗

1 
1P1
)−1 = P−1

1 (λI + 
1)
−1 P1 (3.20)

and

(λI + Y2)
−1 = (λI + P∗

2 
2P2
)−1 = P−1

2 (λI + 
2)
−1 P2. (3.21)

Combing (3.15), (3.17) and (3.19)–(3.21), we have

Y1 − Y2 = −
m∑

i=1

sin tiπ

π

∫ ∞

0
P∗
2 �2U

∗
i 


− ti
2

2 P2(Y1 − Y2)P
∗
1 (λI + 
1)

−1

− ti

2
1 Qi�1P1λ

ti−1dλ

+
m∑

i=1

sin tiπ

π

∫ ∞

0
P∗
2 �2U

∗
i 


1− ti
2

2 (λI + 
2)
−1P2(Y1 − Y2)P

∗
1 (λI + 
1)

−1

×

− ti

2
1 Qi�1P1λ

ti−1dλ. (3.22)
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Let

W = P2(Y1 − Y2)P
∗
1 . (3.23)

Then (3.22) can be rewritten as

W = −
m∑

i=1

sin tiπ

π

∫ ∞

0
�2U

∗
i 


− ti
2

2 W (λI + 
1)
−1


− ti
2

1 Qi�1λ
ti−1dλ

+
m∑

i=1

sin tiπ

π

∫ ∞

0
�2U

∗
i 


1− ti
2

2 (λI + 
2)
−1W (λI + 
1)

−1

− ti

2
1 Qi�1λ

ti−1dλ.

(3.24)

From (3.24) and Lemmas 2.4 and 2.5, it follows that

vecW

= −
m∑

i=1

sin tiπ

π

∫ ∞

0

[

(λI + 
1)
−1


− ti
2

1 Qi�1

]T
⊗
(

�2U
∗
i 


− ti
2

2

)

λti−1dλ · vecW

+
m∑

i=1

sin tiπ

π

∫ ∞

0

[

(λI + 
1)
−1


− ti
2

1 Qi�1

]T
⊗
[

�2U
∗
i 


1− ti
2

2 (λI + 
2)
−1
]

λti−1dλ · vecW

= −
m∑

i=1

sin tiπ

π
(�1 ⊗ �2)(Q

T
i ⊗U∗

i )

(



−ti
2

1 ⊗ 

− ti

2
2

)∫ ∞

0
[(λI + 
1)

−1 ⊗ I ]λti−1dλ · vecW

+
m∑

i=1

sin tiπ

π
(�1 ⊗ �2)(Q

T
i ⊗U∗

i )

(



− ti

2
1 ⊗ 


1− ti
2

2

)

∫ ∞

0
(λI + 
1)

−1 ⊗ (λI + 
2)
−1λti−1dλ · vecW . (3.25)

Assume that

�1 = diag(σ11, σ12, . . . , σ1n), �2 = diag(σ21, σ22, . . . , σ2n).

According to (3.11), (3.16) and (3.18) , we have

0 < σ1 j = √1 − λ1 j < 1, 0 < σ2 j = √1 − λ2 j < 1, j = 1, 2, . . . , n. (3.26)

Let

B = �1 ⊗ �2, Ji = QT
i ⊗U∗

i ,

Ci =
(



−ti /2
1 ⊗ 


−ti /2
2

)
· sin tiπ

π

∫ ∞

0

[
(λI + 
1)

−1 ⊗ I
]
λti−1dλ,

Di =
(



−ti /2
1 ⊗ 


1−ti /2
2

)
· sin tiπ

π

∫ ∞

0
(λI + 
1)

−1 ⊗ (λI + 
2)
−1λti−1dλ,

i = 1, 2, . . . ,m. (3.27)
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Then (3.25) can be rewritten as

vecW + B
m∑

i=1

Ji (Ci − Di ) · vecW = 0. (3.28)

By Lemma 2.6, we have

B = �1 ⊗ �2 = diag(σ1l · σ2 j )n2×n2 ,

Ci =
(



−ti /2
1 ⊗ 


−ti /2
2

)
· sin tiπ

π

∫ ∞

0
[(λI + 
1)

−1 ⊗ I ]λti−1dλ,

= diag

(

λ
−ti /2
1l · λ

−ti /2
2 j · sin tiπ

π

∫ ∞

0
(λ + λ1l)

−1λti−1dλ

)

n2×n2

= diag

(

λ
− ti

2
1l · λ

− ti
2

2 j · λ
ti−1
1l

)

n2×n2

= diag

(

λ
ti
2 −1
1l · λ

− ti
2

2 j

)

n2×n2
,

Di =
(



−ti /2
1 ⊗ 


1−ti /2
2

)
· sin tiπ

π

∫ ∞

0
(λI + 
1)

−1 ⊗ (λI + 
2)
−1λti−1dλ

= diag

(

λ
−ti /2
1l · λ

1−ti /2
2 j · sin tiπ

π

∫ ∞

0
(λ + λ1l)

−1(λ + λ2 j )
−1λti−1dλ

)

n2×n2

= diag

(
λ

−ti /2
1l · λ

1−ti /2
2 j (λ

ti−1
1l − λ

ti−1
2 j )

λ2 j − λ1l

)

n2×n2

,

i = 1, 2, . . . ,m, l, j = 1, 2, . . . , n. (3.29)

It follows that

Ci − Di = diag

(

λ
ti
2 −1
1l · λ

− ti
2

2 j − λ
−ti /2
1l · λ

1−ti /2
2 j (λ

ti−1
1l − λ

ti−1
2 j )

λ2 j − λ1l

)

n2×n2

= diag

⎛

⎜
⎝

λ
ti
1l − λ

ti
2 j

(λ1l − λ2 j )λ
ti
2
1lλ

ti
2
2 j

⎞

⎟
⎠

n2×n2

,

i = 1, 2, . . . ,m, l, j = 1, 2, . . . , n. (3.30)

Note that B is nonsingular. Multiplying the left side of Eq. (3.28) by B−1, we have

B−1vecW +
m∑

i=1

Ji (Ci + Di ) · vecW

=
[

I +
m∑

i=1

Ji (Ci − Di )B

]

B−1 · vecW = 0. (3.31)
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A combination of (3.27) and Lemma 2.4 gives

J ∗
i Ji = (QT

i ⊗U∗
i )∗(QT

i ⊗U∗
i ) = (Qi ⊗Ui )(Q

T
i ⊗U∗

i )

= (Qi Q
T
i ) ⊗ (UiU

∗
i ) = (Qi Q∗

i ) ⊗ (UiU
∗
i ).

It follows (3.16), (3.18) and Lemma 2.6 that 0 < ||Ji || ≤ 1. Then

∥
∥
∥
∥
∥

m∑

i=1

Ji (Ci − Di )B

∥
∥
∥
∥
∥

≤
m∑

i=1

‖(Ci − Di )B‖. (3.32)

By the hypothesis of the theorem, we have mt
mt+1 I < Y1,Y2 < I , which implies that

mt
mt+1 < λ1l , λ2 j < 1, l, j = 1, 2, . . . , n. Note that mti

mti+1 < mt
mt+1 , i = 1, 2, . . . ,m.

Then mti
mti+1 < λ1l , λ2 j < 1, l, j = 1, 2, . . . , n, i = 1, 2, . . . ,m. Therefore, it

follows (3.29) and (3.30) that

‖(Ci − Di )B‖ = max
l, j

⎧
⎨

⎩

√
(1 − λ1l)(1 − λ2 j )

(
λ
ti
2 j − λ

ti
1l

)

(
λ2 j − λ1l

)
λ
ti /2
2 j λ

ti /2
1l

⎫
⎬

⎭

= max
l, j

{ f (λ1l , λ2 j , ti )}, (3.33)

where f (x, y, t) is defined in Lemma 3.2.
A combination of Lemma 3.2, (3.32)−(3.33) gives that

∥
∥
∥
∥
∥

m∑

i=1

Ji (Ci − Di )B

∥
∥
∥
∥
∥

< m · 1

m
= 1,

which implies I+∑m
i=1 Ji (Ci −Di )B is nonsingular. It follows (3.31) that vecW = 0.

By (3.23), we have Y1 = Y2. �

4 Hermitian Positive Definite Solutions of Xs − ∑m
i=1 A

∗
i X

piAi = I

In this section, the properties of HPD solutions and coefficient matrices of (1.2) are
derived. The sufficient conditions for the existence of a uniqueHPD solution are given.

We first give the following lemma. This lemma is easy to verify.

Lemma 4.1 Let g(x) = x−p(xs − 1), x > 1, p > s ≥ 1. Then

(i) g is increasing on [1, ( p
p−s )

1
s ] and decreasing on [( p

p−s )
1
s ,+∞);

(ii) the maximal value of g(x) is g(( p
p−s )

1
s ) = s(p−s)

p
s −1

p
p
s

.

The spectral radius of coefficient matrices of (1.2) is derived in the next theorem.
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Theorem 4.1 Assume that A1, A2, . . . , Am are nonsingular matrices. If (1.2) with
pi > s ≥ 1 has a HPD solution, then

ρ2(A j ) ≤ s(p − s)
p
s −1

p
p
s

, j = 1, 2, . . . ,m,

where p = min1≤i≤m{pi }.
Proof Suppose that X is a HPD solution of (1.2). Let Y = Xs . Then (1.2) can be
rewritten as

Y −
m∑

i=1

A∗
i Y

pi
s Ai = I , pi > s ≥ 1. (4.1)

Let λ j be any eigenvalue of A j ( j = 1, 2, . . . ,m) and e j be the corresponding unit
eigenvector of λ j . Multiplying the left side of (4.1) by e∗

j and the right side by e j , we
have

e∗
j Y e j − e∗

j |λ j |2Y
p j
s e j − e∗

j

m∑

i �= j

A∗
i Y

p j
s Ai e j = e∗

j e j ,

which implies

e∗
j Y e j − e∗

j |λ j |2Y
p j
s e j ≥ e∗

j e j . (4.2)

Let σ1, σ2, . . . , σn be eigenvalues of Y . Then

λ1

(
Y − |λ j |2Y

p j
s

)
= max

1≤i≤n

(

σi − |λ j |2σ
p j
s

i

)

.

Let h(x) = x − |λ j |2x p
s , x > 0, p > s ≥ 1. It is easy to verify that h′′(x) =

−|λ j |2 p
s (

p
s − 1)x

p
s −2 < 0. Therefore, max h(x) = h(( s

p|λ j |2 )
s

p−s ) = (p−s)s
s

p−s

p
s

p−s +1|λ j |
2s
p−s

.

Since σi ≥ 1, then σi − |λ j |2σ
p j
s

i ≤ σi − |λ j |2σ
p
s
i = h(σi ) ≤ (p−s)s

s
p−s

p
s

p−s +1|λ j |
2s
p−s

. It

follows that

λ1(Y − |λ j |2Y
p j
s ) = max

1≤i≤n
(σi − |λ j |2σ

p j
s

i ) ≤ (p − s)s
s

p−s

p
s

p−s +1|λ j |
2s
p−s

.

By inequality (4.2), we obtain

e∗
j e j ≤ e∗

j

(
Y − |λ j |2Y

p j
s

)
e j ≤ (p − s)s

s
p−s

p
s

p−s +1|λ j |
2s
p−s

,
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which implies

ρ2(A j ) ≤ s(p − s)
p
s −1

p
p
s

.

�
In the next theorem, we obtain the bounds of

∑m
i=1 λn(A∗

i Ai ),
∑m

i=1 det(Ai A∗
i )

and det(X).

Theorem 4.2 Let t = min1≤i≤m{pi }. If (1.2) with pi > s ≥ 1 has a HPD solution X,
then

(1)
∑m

i=1 λn(A∗
i Ai ) ≤ s(t−s)

t
s −1

t
t
s

;
(2)

∑m
i=1 det(Ai A∗

i ) ≤ s(t−s)
t
s −1

t
t
s

and δ1 ≤ det(X) ≤ δ2, where δ1, δ2 (δ1 ≤ δ2) are

the positive solutions of the equation x−t (xs − 1) −∑m
i=1 det(Ai A∗

i ) = 0, x >

1, t > s ≥ 1.

Proof (1) Since X is a HPD solution of (1.2), then X ≥ I . It follows that

λn(X
s) = λn

(

I +
m∑

i=1

A∗
i X

pi Ai

)

≥ 1 + λn

(
m∑

i=1

A∗
i X

pi Ai

)

≥ 1 +
m∑

i=1

λn(A
∗
i Ai ) · λtn(X),

which implies
∑m

i=1 λn(A∗
i Ai ) ≤ λ−t

n (X)(λsn(X) − 1). According to Lemma 4.1, we
have

m∑

i=1

λn(A
∗
i Ai ) ≤ s(t − s)

t
s −1

t
t
s

.

(2) Since X is a HPD solution of (1.2), then Xs = I +∑m
i=1 A

∗
i X

pi Ai . Note that
X ≥ I . Then det(X) ≥ 1, which implies (det(X))pi ≥ (det(X))t . It follows from
Lemma 2.7 that

det(Xs) = det

(

I +
m∑

i=1

A∗
i X

pi Ai

)

≥ 1 +
m∑

i=1

det(Ai A
∗
i )(det(X))t ,

which implies

m∑

i=1

det(Ai A
∗
i ) ≤ (det(X))−t ((det(X))s − 1). (4.3)

123



The Investigation on Two Kinds of Nonlinear Matrix… 3337

It follows from Lemma 4.1 that
∑m

i=1 det(Ai A∗
i ) ≤ s(t−s)

t
s −1

t
t
s

. On the other hand, it

is easy to verify that if
∑m

i=1 det(Ai A∗
i ) ≤ s(t−s)

t
s −1

t
t
s

, the equation x−t (xs − 1) −
∑m

i=1 det(Ai A∗
i ) = 0 has two solutions δ1, δ2 (1 < δ1 ≤ δ2). By inequality (4.3), we

have

δ1 ≤ det(X) ≤ δ2.

�
Toderive theboundsof the trace forHPDsolutions of (1.2),weneed someproperties

of the trace in the following lemma.

Lemma 4.2 Let A ≥ 0 and B ≥ 0 be n × n matrices. Then for q ≥ 1, it yields that

(1) λn(A)tr(B) ≤ tr(AB) ≤ λ1(A)tr(B),

(2) (tr(A))q

nq−1 ≤ tr(Aq) ≤ (tr(A))q .

Proof (1) Since A ≥ 0, so we get λn(A)I ≤ A ≤ λ1(A)I , then

0 ≤ tr((A − λn(A))B) = tr(AB − λn(A)B) = tr(AB) − λn(A)tr(B),

which implies λn(A)tr(B) ≤ tr(AB).

Similarly, it is easy to verify that tr(AB) ≤ λ1(A)tr(B).

(2) Since A ≥ 0, so λi (A) ≥ 0, i = 1, 2, . . . , n.ByHölder’s inequality (see Lemma
1.1.2 on Page 1 in [40]), we have

tr(A) =
n∑

i=1

λi (A) ≤ n1−
1
q

(
n∑

i=1

λ
q
i (A)

) 1
q

= n1−
1
q (tr(Aq))

1
q ,

which implies (tr(A))q

nq−1 ≤ tr(Aq).

When λ1(A) = λ2(A) = . . . = λn(A) = 0, obviously tr(Aq) = (tr(A))q . If
λ1(A) + λ2(A) + . . . + λn(A) �= 0, then

λ
q
1(A)

(tr(A))q
+ λ

q
2(A)

(tr(A))q
+ · · · + λ

q
n(A)

(tr(A))q

=
(

λ1(A)

λ1(A) + λ2(A) + · · · + λn(A)

)q
+ · · · +

(
λn(A)

λ1(A) + λ2(A) + · · · + λn(A)

)q

≤ λ1(A)

λ1(A) + λ2(A) + · · · + λn(A)
+ · · · + λn(A)

λ1(A) + λ2(A) + · · · + λn(A)
= 1,

which implies tr(Aq) =∑n
i=1 λ

q
i (A) ≤ (tr(A))q .

�
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Theorem 4.3 Let t = min1≤i≤m{pi }. If (1.2) with pi > s ≥ 1 has a HPD solution X,
then

γ1 ≤ tr(X) ≤ γ2,

where γ1, γ2 (γ1 < γ2) are the positive solutions of the equation nt−1x−t (xs − n) −∑m
i=1 λn(A∗

i Ai ) = 0.

Proof Since X is a HPD soluiton of (1.2),

Xs = I +
m∑

i=1

A∗
i X

pi Ai . (4.4)

Note that s ≥ 1, pi > 1 and tr(X) ≥ n. Taking the trace on both sides of (4.4), by
Lemma 4.2, we obtain

(tr(x))s ≥ tr(Xs) = tr(I +
m∑

i=1

A∗
i X

pi Ai ) = n +
m∑

i=1

tr(Ai A
∗
i X

pi )

≥ n +
m∑

i=1

λn(Ai A
∗
i )tr(X

pi ) ≥ n +
m∑

i=1

λn(A
∗
i Ai ) · n

(
tr(X)

n

)pi

≥ n + n1−t
m∑

i=1

λn(A
∗
i Ai )tr(X)t , (4.5)

which implies

nt−1(tr(X))−t ((tr(X))s − n) −
m∑

i=1

λn(A
∗
i Ai ) ≥ 0. (4.6)

Let h1(x) = nt−1x−t (xs − n), x ≥ n1/s, t > s ≥ 1. A calculation gives that the

maximal value of h1(x) is max h1(x) = h1((
nt
t−s )

1/s) = nt(1− t
s )s(t−s)

t
s −1

t
t
s

. Note that

nt(1− t
s ) > 1. It follows Theorem 4.2 (1) that

m∑

i=1

λn(A
∗
i Ai ) ≤ s(t − s)

t
s −1

t
t
s

<
nt(1− t

s )s(t − s)
t
s −1

t
t
s

,

which implies the equation nt−1x−t (xs − n) −∑m
i=1 λn(A∗

i Ai ) = 0 has two positive
solution γ1, γ2 (γ1 < γ2). By inequality (4.6), we obtain γ1 ≤ tr(X) ≤ γ2.

�
To prove the uniqueness of the HPD solution of (1.2) with 1 < pi < s, we will use
the following definition and lemmas which can be found in [41].

Let X be a real Banach space, and let K be a closed cone in X , K+ = K \ {0}.
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Definition 1 [41, Definition 3.1]. Let T : K → K , and let p ≥ 0. We say that

(a) T is increasing if 0 ≤ x ≤ y implies T x ≤ T y,
(b) T is p -concave if T (λx) ≥ λpT x for all x ∈ K and 0 < λ < 1.

Lemma 4.3 [41, Theorem 3.2]. Let the norm in X be monotonic. Suppose that T :
K → K is an increasing p-concave mapping with 0 < p < 1, and that T f ∈ K f for
some f ∈ K+ with ‖ f ‖ = 1. Suppose in addition that T : K f → K f is continuous
in the norm topology. Then there exists a unique z ∈ K f such that T z = z.

LetX be M(n),which denotes the set of n×n real matrices. Then a closed cone in
X is given by P(n), the set of n × n real positive semi-definite matrices. The interior
of this cone is the set of n × n real positive definite matrices, which we will denote by
P(n).

Theorem 4.4 If A1, A2, . . . , Am are n×n real nonsingular matrices and 1 < pi < s,
then (1.2) has a unique positive definite solution X0 ∈ P(n).

Proof Let

F(Y ) = I +
m∑

i=1

A∗
i Y

pi
s Ai , Y ∈ P(n).

It follows from 1 < pi < s that 0 <
pi
s < 1. Then F is increasing and continuous in

the norm topology. Let q = max1≤i≤m{pi }. For any Y ∈ P(n) and 0 < λ < 1, we
have

F(λY ) = I +
m∑

i=1

A∗
i (λY )

pi
s Ai ≥ λ

q
s

(

I +
m∑

i=1

A∗
i Y

pi
s Ai

)

= λ
q
s F(Y ),

which implies F is q
s -concave. Since I ∈ P(n), F(I ) ∈ P(n) and ‖I‖ = 1, then by

Lemma 4.3, there exists a unique Y0 ∈ P(n) such that F(Y0) = Y0. Let X0 = Y
1
s
0 .

Then X0 ∈ P(n) is a unique positive definite solution of (1.2). �
Remark 4.1 In this section, our method is not valid when pi = s for some i in equation
(1.2). The case of pi = s for some i in equation (1.2) is worth investigating further.
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