
Bull. Malays. Math. Sci. Soc. (2019) 42:3303–3322
https://doi.org/10.1007/s40840-018-0670-5

On Characterizing the Exponential q-Distribution

Boutouria Imen1 · Bouzida Imed1 ·Masmoudi Afif1

Received: 7 December 2017 / Revised: 7 July 2018 / Published online: 13 October 2018
©Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018

Abstract
In this paper, we attempted to characterize the exponential q-distribution through
the q-memorylessness property using the q-addition operator and Jackson integral.
Moreover, an extended version of k-gamma q-distribution is introduced and the q-
moments of this family is computed. Finally, we suggested a new q-inversion method
to simulate data from a q-distribution.

Keywords q-Calculus · q-Gamma function · k-Gamma q-distribution · Exponential
q-distribution

Mathematics Subject Classification 44A20 · 33E20 · 33E50

1 Introduction

Quantum calculus is the modern name for the investigation of calculus without limits.
Recently, many researchers have focused on the q-calculus [1,2,8,12,16], which cor-
responds to the link between mathematics and physics. The quantum calculus began
with Jackson [13,14] in the early twentieth century. The book of Quantum Calculus
[7] published by Kac and Cheung covers many of the fundamental aspects of quantum
calculus. Chung et al. [6] defined the q-addition operator and discussed its properties.
They used it in the properties of the q-logarithmic function and q-exponential.
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3304 B. Imen et al.

The quantum calculus has a lot of applications in different mathematical areas such
as number theory, difference equation (see [11]), orthogonal polynomials, probability
theory.

In mathematical physics and probability, the q-distribution is more general than
classical distribution. It was introduced by Díaz et al. [9,10] in the continuous case
and by Charalambos [4] and Cheung and Kac [5] in the discrete case. The construction
of a q-distribution is the construction of a q-analogue of ordinary distribution. Mathai
in [15] introduced the q-analogue of the gamma distribution with respect to Lebesgue
measure. In this paper, gamma q-distribution is introduced with respect to Jackson q-
measure. If q goes to 1,we obtain the ordinary calculus. This condition is the necessary
condition in the theory of q-calculus.

The aimof thiswork is not only to generalize the k-gammaq-distribution, γq,k(λ, a)

with parameters λ > 0 and a > 0, but also to characterize the exponential q-
distribution, ξq(λ), by the q-memorylessness property in the following way:

A random variable X is exponential q-distributed if and only if

Pq
(
X > s ⊕q t |X > s

) = Pq(X > t), ∀s, t ≥ 0.

Next, the link between the quantum distribution and the classical distribution is
portrayed as shown in the following diagram

f (x) = xa−11[0,1] γq,k(λ, a) on [0, [k]
1
k
q

(1−qk )
1
k
] γk(λ, a) on R+

f (x) = xa−11[0,1] γq(λ, a) on [0, 1
1−q ] γ (λ, a) on R+

U[0,1] ξq(λ) on [0, 1
1−q ] ξ(λ) on R+

q→0 q→1

k=1 k=1

q→0

a=1

q→1

a=1 a=1

q→0 q→1

The third objective of this work is to simulate data from the exponential q-
distribution with parameters λ, a > 0.

This paper is structured as follows: in Sect. 2, some preliminary concepts related to
q-derivative, q-integral, q-operators and some essential results are presented to build
our work. In Sect. 3, the q-gamma and the q-beta functions are recalled. Some proper-
ties and relationships between them are presented. Besides, the new q-gamma function
is introduced and its properties are proved. In Sect. 4, the k-gamma q-distribution is
generalized with parameters λ, a > 0 and its q-cumulative function is specified.
Then, the exponential q-distribution is deduced from the k-gamma q-distribution and
its characterization is proved. In Sect. 5, the definition of the q-moments established
by Díaz and Pariguan in [9] and the properties of the q-integral are used to define the
q-mean and the q-variance. The q-mean of the k-gamma q-distribution is computed.

Finally, in the closing section number 6, we introduced a new method called the
q-inversion which is identified in order to simulate the data from a q-distribution; then,
it is applied on the exponential q-distribution.
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On Characterizing the Exponential q-Distribution 3305

2 Preliminaries

In this section, some useful basic definitions [7,13,14,17] are introduced.We shall start
with the q-derivative and the Jackson q-integral. Fixing a real number 0 < q < 1, the
q-derivative of f : R → R at x ∈ R \ {0} is given by:

Dq f (x) = f (qx) − f (x)

(q − 1)x
.

It is also known as the Jackson derivative.
It is manifestly linear,

Dq( f (x) + g(x)) = Dq f (x) + Dqg(x) .

It has a product rule analogous to the ordinary ones, with two equivalent forms

Dq( f (x)g(x)) = g(x)Dq f (x) + f (qx)Dqg(x) = g(qx)Dq f (x) + f (x)Dqg(x).

Similarly, it satisfies a quotient rule,

Dq

(
f (x)

g(x)

)
= g(x)Dq f (x) − f (x)Dqg(x)

g(qx)g(x)
, g �= 0.

In the case q = 0, we have

D0 f (x) = f (x) − f (0)

x
.

For an integer n ≥ 1, we have that Dqx
n = [n]q xn−1, where

[n]q = qn − 1

q − 1
= 1 + q + · · · + qn−1.

We also denote, for all n ∈ N,

[n]q ! =
{
1 if n = 0,
[n]q [n − 1]q . . . [1]q otherwise.

For x ∈ R,

[x]q = 1 − qx

1 − q
.

If x goes to ∞, we obtain [∞]q = 1

1 − q
is called a q-analogue of ∞.

Note that [∞]q approaches 1 when q goes to 0 and goes to+∞when q approaches
1.
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We recall some usual notations used in the q-theory.

(a + b)nq =
n−1∏

i=0

(a + qib), ∀ n ∈ N,

(1 + a)∞q =
∞∏

i=0

(1 + qia),

(1 + a)tq = (1 + a)∞q
(1 + qta)∞q

, ∀ t ∈ R.

A right inverse of the q-derivative is obtained via the Jackson integral.
For a, b ∈ R the Jackson integral or q-integral of f : R → R on [a, b] is defined

by:

∫ b

a
f (x)dq x = (1 − q)

∞∑

n=0

qn
(
b f (qnb) − a f (qna)

)
.

It is clear if one lets q approaches 1, then the q-derivative approaches the Newton
derivative and the Jackson integral approaches the Riemann integral.

The q-analogue of the integration theorem by a variable change is given by

∫ u(b)

u(a)

f (u)dqu =
∫ b

a
f (u(x))dq1/βu(x), where u(x) = αxβ. (1)

The q-analogue of the rule of integration by parts is

∫ b

a
g(x)Dq f (x)dq x = [ f (x)g(x)]ba −

∫ b

a
f (qx)Dqg(x)dq x . (2)

For any function f (x) continuous at x = 0, we have

∫ a

0
Dq f (x)dq x = f (a) − f (0) and Dq

∫ x

0
f (t)dq t = f (x). (3)

Notice that for q = 0, we get

∫ b

a
f (x)d0x = b f (b) − a f (a). (4)

Jackson in [13] proposed the q-analogue of the exponential function ex given by

exq =
∞∑

n=0

xn

[n]q ! .
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On Characterizing the Exponential q-Distribution 3307

It is clear that e0q = 1 and Dqexq = exq .
The q-analogue of the identity exe−x = 1 is exq E

−x
q = 1, where the function Ex

q
defined by ex1/q is given also by

ex1/q = Ex
q =

∞∑

n=0

q
n(n−1)

2
xn

[n]q ! .

The q-logarithm function logq(x) is the inverse of the q-exponential function e
x
q , and

the function Logq(x) is the inverse function of Ex
q .

Many researchers have focused on the operator theory [3,6,17]. In 1994, Chung et
al. [6] proposed the q-addition operator and discussed its properties. The q-addition
operator is defined by

⎧
⎪⎨

⎪⎩

(a ⊕q b)
n =

n∑

k=0

qC
n
k a

kbn−k, ∀ n ∈ N, (a �= b, )

(a ⊕q a)n = (a + a)n = 2nan,

where

qC
n
k = [n]q !

[k]q ![n − k]q ! .

Equivalently ⊕q is defined as: ⊕q : R2 → R

(a, b) 	→ a ⊕q b ,

such that a ⊕q b is the unique real verifying e
a⊕qb
q = eaqe

b
q .

From the above definition, we have the following property
k(a ⊕q b) = ka ⊕q kb, ∀ k ∈ R.

It is easy to see that this operator is commutative, i.e. a ⊕q b = b ⊕q a. Also if we
take b = a, then we have a ⊕q a = a + a = 2a. Finally, if we take b = 0, we obtain
a ⊕q 0 = 0 ⊕q a = a.

This operator permits to express the properties of the q-logarithm and q-exponential
functions in a more compact form.

(i) eaqe
b
q = e

a⊕qb
q ,

(ii) enaq = (eaq)
n, ∀n ∈ N,

(iii) logq(ab) = logq(a) ⊕q logq(b),
(ir) logq(a

n) = n logq(a), ∀n ∈ N.

Thomas in [17] defined the power function, and he used the q-operator in the
properties of this function.

A power function based on q-addition is defined by axq = E
xLogq (a)
q , ∀ a > 0.

This function satisfiesaxq a
y
q = a

x⊕q y
q , (ax )yq = axyq and (ab)xq = axq b

x
q , ∀a, b > 0.
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3308 B. Imen et al.

Chung et al. [6] defined the new q-derivative also called the x-derivative which is
given by

Dx f (x) = lim
δx→0

f (x ⊕q δx) − f (x)

δx
. (5)

The new q-derivative of Eαx
q is αEαx

q with α as a constant indeed,

Example 1

Dx E
αx
q = lim

αδx→0

E
(αx⊕qαδx)
q − Eαx

q

αδx

= lim
αδx→0

Eαx
q Eαδx

q − Eαx
q

αδx

= Eαx
q lim

αδx→0

(1 + α2δx + O(α2δx2)) − 1

αδx
= αEαx

q .

With the same manner, we can prove Dxe
αx
q = αeαx

q .

3 The New q-Gamma Function

Jackson in [13] has shown that the q-beta function has the q-integral representation,
which is a q-analogue of Euler’s formula:

βq(t, s) =
∫ 1

0
xt−1(1 − qx)s−1

q dq x, ∀ t, s > 0. (6)

The q-gamma function expressed as Γq is defined in [13] by

Γq(t) =
∫ 1

1−q

0
xt−1E−qx

q dq x, ∀ t > 0. (7)

Jackson [13] proved the properties of the q-gamma function

Γq(t + 1) = [t]qΓq(t), ∀ t > 0

Γq(n + 1) = [n]q !, ∀n ∈ N

The relationship between the q-gamma and the q-beta functions is given by

βq(t, s) = Γq(t)Γq(s)

Γq(t + s)
, ∀ t, s > 0. (8)
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On Characterizing the Exponential q-Distribution 3309

Díaz et al. in [10] defined the q, k-gamma function by

Γq,k(t) =
∫ [k]

1
k
q

(1−qk )
1
k

0
xt−1E

− qk xk

[k]q
qk

dq x,

with

E
− qk xk

[k]q
qk

=
∞∑

n=0

(−1)nq
kn(n+1)

2

[k]nq [n]qk !
.

The q, k-gamma function is defined on the interval

⎡

⎣0,
[k]

1
k
q

(1 − qk)
1
k

⎤

⎦ .

Nowwe shall define the new q, k-gamma function on the interval

⎡

⎣0,
B[k]

1
k
q

(1 − qk)
1
k

⎤

⎦

for B > 0 in order to generalize the q, k-gamma function.

Definition 1 The new q, k-gamma function Γ B
q,k is given by

Γ B
q,k(t) =

∫ B[k]
1
k
q

(1−qk )
1
k

0
xt−1E

− qk xk

[k]q
qk

dq x .

If we take k = 1, we can deduce the new q-gamma function defined by

Γ B
q,1(t) = Γ B

q (t) =
∫ B

1−q

0
xt−1E−qx

q dq x .

Note that the q-gamma function is a special case of the new q-gamma function.
The following proposition gives some properties of the new q-gamma function.

Proposition 1 For B > 0,

(i) Γ B
q (1) = 1.

(ii) Γ B
q (t + 1) = [t]qΓ B

q (t), ∀t > 0.
(iii) Γ B

q (n + 1) = [n]q !, ∀n ∈ N.

Proof For B > 0,

(i) Γ B
q (1) = ∫ B

1−q
0 E−qx

q dq x = E0
q −

(
E

− 1
1−q

q

)B

= 1. In fact,

we have

exq E
−x
q = 1,
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we know also

e
x

1−q
q = 1

(1 − x)∞q
, with (1 − x)∞q =

∞∏

i=0

(1 − qi x).

If x goes to 1, then we obtain

e
1

1−q
q → +∞.

Therefore,

E
− 1

1−q
q = 1

e
1

1−q
q

= 0.

(ii) Using the q-integration by parts (2), we obtain for t > 0,

Γ B
q (t + 1) =

∫ B
1−q

0
xt E−qx

q dq x

= −
∫ B

1−q

0
xt Dq E

−x
q dq x

=
∫ B

1−q

0
[t]q xt−1E−qx

q dq x

= [t]Γ B
q (t).

(iii) By induction, for n = 1, the formula is true.
By hypothesis of induction, we have Γ B

q (n + 1) = [n]q ! .

Using the q-integration by parts we obtain,

Γ B
q (n + 2) =

∫ B
1−q

0
xn+1E−qx

q dq x

= −
∫ B

1−q

0
xn+1Dq E

−x
q dq x .

=
∫ B

1−q

0
[n + 1]xnE−qx

q dq x

= [n + 1]qΓ B
q (n + 1)

= [n]q ![n + 1]q
= [n + 1]q ! .


�
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On Characterizing the Exponential q-Distribution 3311

4 The k-Gamma q-Distribution

Charalambos was the first who coined the notion of the q-distribution in the discrete
case [4,5]. As for the continuous case, Díaz and Pariguan [9] identified the Gaussian
q-distribution.

A function pq(x) is a q-probability density, provided that it satisfies pq(x) ≥ 0,
∀ x ∈ R, and

∫
R
pq(x)dq x = 1. The q-cumulative distribution function of a real-

valued random variable X , is the q-probability that X will take a value less than or
equal to x . It gives the area under the probability q-density function from −[∞]q to
x . It is defined by

Fq(x) =
∫ x

−[∞]q
pq(s)dqs, x ∈ R.

Note that the q-cumulative function is an increasing function verifying

Pq (]a1, a2[) = Pq(a1 < X < a2) =
∫ a2

a1
pqdq x = Fq(a2) − Fq(a1).

Now, we recall the k-gamma density function with parameters λ, a > 0; it is given
by

γk,a(x) = λa

Γk(a)
xa−1e−(λx)k1[0,∞)(x),

with

Γk(a) =
∫ ∞

0
xa−1e−xkdx .

The k-gamma q-density function [10] is defined by

γq,k,a(x) = 1

Γq,k(t)
xa−1E

− qk xk

[k]q
qk

1⎡

⎣0,
[k]

1
k
q

(1−qk )
1
k

⎤

⎦

(x),

with

Γq,k(a) =
∫ [k]

1
k
q

(1−qk )
1
k

0
xa−1E

− qk xk

[k]q
qk

dq x, a > 0.

The construction of the q-analogue of the k-gamma distribution with parameters
λ, a > 0 rests upon determining the q-analogue for the normalization factor.
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3312 B. Imen et al.

Therefore, the q-analogue of
λa

Γk(a)
is

[λ]aq
Γ

[λ]q
q,k (a)

.

∫ [k]
1
k
q

(1−qk )
1
k

0
γq,k(a, λ)(x)dq x =

∫ [k]
1
k
q

(1−qk )
1
k

0

[λ]aq
Γ

[λ]q
q,k (a)

xa−1E
− qk [λ]kq xk

[k]q
qk

dq x .

Take u = [λ]q x, then u
[λ]q = x and

1

[λ]q dqu = dq x .

So, by applying (1), we have,

∫ [k]
1
k
q

(1−qk )
1
k

0
γq,k(a, λ)(x)dq x = [λ]aq

Γ
[λ]q
q,k (a)

∫ [λ]q [k]
1
k
q

(1−qk )
1
k

0

(
u

[λ]q
)a−1

E
− qkuk

[k]q
qk

1

[λ]q dqu.

Using Definition (1), then we have

∫ [k]
1
k

(1−qk )
1
k

0
γq,k(a, λ)(x)dq x = 1.

Now,we are ready to generalize the k-gammaq-distributionwith parametersλ, a > 0.

Definition 2 The density of the k-gamma q-distribution is defined by

γq,k(a, λ)(x) = [λ]aq
Γ

[λ]q
q,k (a)

xa−1E
− qk [λ]kq xk

[k]q
qk

1⎡

⎣0,
[k]

1
k
q

(1−qk )
1
k

⎤

⎦

(x), with λ > 0, a > 0.

Note that, if we take λ = 1, γq,k(a, 1) = γq,k,a (Fig. 1).

Theorem 1 The q-cumulative function of the k-gamma q-distribution, γq,k(a, λ),with
parameters λ, a > 0 is given by

Fq(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x < 0,

(1 − q)

Γ
[λ]q
q,k (a)

∞∑

n=0

(−1)nq
kn(n+1)

2 ([λ]q x)kn+a

[n]q ![k]nq(1 − qkn+a)
if 0 ≤ x ≤ [k]

1
k
q

(1−qk)
1
k
,

1 if x >
[k]

1
k
q

(1−qk)
1
k
.

123



On Characterizing the Exponential q-Distribution 3313

Fig. 1 Curve of γq,k density function for k = 1, a = 3 and λ = 4

Proof By using the definition of the q-integral and the expression of Ex
q , we obtain

for x ∈ [0, 1
1−q ],

Fq(x) = [λ]aq
Γ

[λ]q
q (a)

∫ x

0
sa−1E

−qk [λ]kq sk
qk

dqs

= [λ]aq
Γ

[λ]q
q,k (a)

∫ x

0

∞∑

n=0

(−1)nq
kn(n+1)

2 [λ]knskn+a−1

[n]q ![k]nq

= [λ]aq
Γ

[λ]q
q,k (a)

(1 − q)

∞∑

n=0

(−1)nq
kn(n+1)

2 [λ]knq xkn+a

[n]q ![k]nq
∞∑

m=0

qm(kn+a)

= (1 − q)

Γ
[λ]q
q,k (a)

∞∑

n=0

(−1)nq
kn(n+1)

2 ([λ]q x)kn+a

[n]q ![k]nq(1 − qkn+a)
.


�

4.1 Characterization of the Exponential q-Distribution

Departing from the k-gamma q-distribution, the gamma and the exponential q-
distributions can be deduced, the first by taking k = 1, and the second by taking
a = k = 1.

We note the gamma q-distribution with parameters λ, a > 0 by γq(λ, a), and we
write the exponential q-distribution by ζq(λ).

123



3314 B. Imen et al.

Fig. 2 Curve of the q-exponential density, ξq , function for λ = 4

Definition 3 The density of the exponential q-distribution, ξq(λ), is defined by

ξq(x) = [λ]q E−q[λ]x
q 1[0, 1

1−q ](x), f or λ > 0.

In Fig. 2, we present the curve of the exponential q-distribution for λ = 4, with
different values of q = 0, 5, q = 0, 4, and q = 0, 44. It is clear that the curve of ξq ,

is decreasing, and the exponential q-distribution as well as the ordinary exponential
density has the same curved shape.

Theorem 2 The q-cumulative function of the exponential q-distribution with param-
eter λ > 0 is given by

Fq(x) =

⎧
⎪⎨

⎪⎩

0 if x < 0,

1 − E
−[λ]q x
q if 0 ≤ x ≤ 1

1−q ,

1 if x > 1
1−q .

Proof For x ∈ [0, 1
1−q ], using 3, we have

Fq(x) =
∫ x

0
[λ]q E−q[λ]q s

q dqs

=
[
−E

−[λ]q s
q

]x

0

= 1 − E
−[λ]q x
q .
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�

In the following result, we prove the q-memorylessness property of the exponential
q-distribution. The idea of the characterization of the exponential q-distribution is
based on the use of the q-addition operator and its properties (see [6,12]).

Theorem 3 A random variable X is exponential q-distributed if and only if

Pq
(
X > s ⊕q t |X > s

) = Pq(X > t), ∀ s, t ≥ 0. (9)

Proof “⇒” Let X be a random variable with q-exponential distribution.

Pq(X ≥ t) =
∫ 1

1−q

t
[λ]q E−q[λ]q x

q dq x

= E
−[λ]q t
q , ∀ t ≥ 0.

Now, we compute the right-hand side of the equality
Note that

s ⊕q t > s ⇔
n∑

k=0

qC
n
k s

ktn−k = (s ⊕q t)
n > sn, ∀n ∈ N.

Pq
(
X > s ⊕q t |X > s

) = Pq(X > s ⊕q t) ∩ (X > s)

Pq(X > s)

= Pq(X > s ⊕q t)

Pq(X > s)

= E
−[λ]q (t⊕q s)
q

E
−[λ]q s
q

= E
−[λ]q t⊕q (−[λ]q s)
q

E
−[λ]q s
q

= E
−[λ]q t
q = Pq(X ≥ t).

Then we obtain the equality.
“⇐”
We suppose that X verify (9) and let fq be a q-density function of X .

Then, Pq(X > t ⊕q s) = Pq(X > t)Pq(X > s); ∀ t, s > 0.

That is
∫

x>t⊕q s
fq(x)dq x =

∫

x>t
fq(x)dq x

∫

x>s
fq(x)dq x .
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3316 B. Imen et al.

In this step, we take the q-derivative with respect to t and we have:

− fq(t ⊕q s) = − fq(t)

(∫

x>s
fq(x)dq x

)

fq(t ⊕q s) = fq(t)

(
1 −

∫ s

0
fq(x)dq x

)
,

which imply
fq(t ⊕q s) − fq(t)

s
= − fq(t)

(
1

s

∫ s

0
fq(x)dq y

)

= − fq(t)

(
1

s
(1 − q)s

∞∑

n=0

qn f (qns)

)

= − fq(t)

(

(1 − q)

∞∑

n=0

qn f (qns)

)

.

In the second step, we tend s towards 0 and we take f (0) = q[λ], then we have,

(

(1 − q)

∞∑

n=0

qn f (qns)

)

→s→0 (1 − q)

∞∑

n=0

qn f (0)

→s→0 f (0) = q[λ].
Then, lim

s→0

fq(t ⊕q s) − fq(t)

s
= −q[λ] fq(t),

hence, Dx fq(t) = −q[λ] fq(t).

We can assume that fq(t) = [λ]E−q[λ]t
q is the solution of the x-differential equation.

Hence, the proof is complete. 
�

Proposition 2 The exponential q-distribution interpolates between the uniform distri-
bution on the interval [0, 1] and the exponential distribution on R+.

Proof If we take q = 0, then [λ]0 = 1 and E0
0 = 1 as a matter of fact, f0(x) =

1[0,1](x).
On the other side, [λ]q converges to λ as q approaches to 1 and E

−q[λ]q x
q goes to

e−λx .
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To sum up, the following diagram illustrates these limits:

U[0,1] ξq(λ) ξ(λ)
q→0 q→1


�

5 The q-Moments

Díaz et al. [9,10] introduced the notion of moment in the theory of the q-calculus. It
is expressed as follows:

qMn =
∫

R

xn f (x)dq x, for n ∈ N.

In the following theorem, we compute the q-moment of the k-gamma q-distribution.

Theorem 4 The q-moment of the k-gamma q-distribution with parameters λ, a > 0,
is given by

qMn = Γ
[λ]q (a+nk)
q,k

Γ
[λ]q
q,k (a)[λ]nk

, ∀ n ∈ N.

Proof The idea of this proof is based on the formula of variable change (1),

qMn = [λ]a
Γ

[λ](a)
q,k

∫ [k]
1
k
q

(1−qk )k

0
xa+nk−1E

− qk [λ]k xk
[k]q

qk
dq x

If we make the variable change u = [λ]q x, the q-moment becomes

qMn = [λ]−nk
q

Γ
[λ]q (a)

q,k

∫ [λ]q [k]
1
k
q

(1−qk )k

0
ua+nk−1E

− qkuk

[k]q
qk

dq x

= Γ
[λ]q
q,k (a + nk)

Γ
[λ]q
q,k (a)[λ]nk

.


�
For n = 1, the q-moment is presented as:

qM1 =
∫

R

xpq(x)dq x .
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That is, the first q-moment is called also q-mean of a random variable X with q-
probability density function pq(x).

Definition 4 The q-mean of a random variable X with q-density function pq(x) is
given by

Eq(X) =
∫

R

xpq(x)dq x = qM1.

Note that the q-expected value operator Eq(·) is linear in the sense that

Eq(X + Y ) = Eq(X) + Eq(Y )

At this level of analysis, we would set forward certain interesting remarks.

Remark 1 1. From the q-moment of the k-gamma q-distribution, we can deduce the

q-mean of the q-gamma distribution in terms of Eq(X) = [a]q
[λ]q , λ, a > 0.

2. If we take a = 1 in the q-mean of the gamma q-distribution, the q-mean of the

exponential q-distribution is Eq(X) = 1

[λ]q .

3. We can check the necessary condition of the q-calculus, i.e. if q goes to 1, then
the q-mean converges to the ordinary mean.

6 The q-Simulation with the q-InversionMethod

In order to introduce the concept of simulation in the theory of q-calculus, we need to
identify the q-analogue of the uniform distribution on [a, b].

Definition 5 A random variable X is called uniform q-distributed, Uq [a,b], if its prob-
ability density function is given by

Uq [a,b](x) =
{

1
[b]q−[a]q if[a]q ≤ x ≤ [b]q ,
0 otherwise.

Note that the q-cumulative function Fq of X is a continuous and a strictly increasing
on (0, 1

1−q ). Then Fq is a bijective function.We denote by F−1
q its reciprocal function.
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Fig. 3 Histogram of a sample from exponential q-distribution for λ = 8 and q = 0, 25

Fig. 4 Histogram of a sample from exponential q-distribution for λ = 8 and q = 0, 55
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Fig. 5 Histogram of a sample from exponential q-distribution for λ = 8 and q = 0, 85

Fig. 6 Histogram of a sample from exponential q-distribution for λ = 8 and q = 0, 9

Theorem 5 Let X be a random variable with q-cumulative function Fq and let U
be a q-uniform random variable on [0, 1]. Then, X and F−1

q (U ) have the same q-
distribution.
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Proof Let t ∈ [0, 1],

Pq [F−1
q (U ) ≤ t] = Pq [U ≤ Fq(t)]

= FUq (Fq(t))

= Fq(t).

Then, X and F−1
q (u) have the same q-distribution. 
�

According to Theorem 5, the algorithm of q-inversion method is defined as:

1. Simulate u from Uq [0, 1].
2. Compute F−1

q (u) = x which is an observation from the random variable X .

Then, we extend the q-inversion method for generating data to q-distribution.
Now, we apply this algorithm in order to simulate different samples from the expo-

nential q-distribution. We simulated samples from the exponential q-distribution with
same size N = 10,000, and we got the following histograms (see Figs. 3, 4, 5 and 6).

The simulated data were obtained from the q-exponential model for different values
of q ∈ (0, 1). The simulated data were represented by histograms. In order to evaluate
the performance of the proposed simulated method, we computed the mean squared
error between the estimated density by applying the histogram method and the true-
density function. The obtained mean squared errors are around to 10−2 for different
values of q. Then, the proposed simulated approach is consistent.

Conclusion

Memorylessness refers to the cases when the distribution of a “waiting time” until a
certain event does not depend on how much time has already elapsed. Basically the
exponential distribution is memoryless. In this paper, we showed that the exponential
q-distribution is q-memoryless and corresponds to a link between the uniform dis-
tribution on [0, 1] and the classical exponential distribution. This transition may be
accounted for in terms of physics as follows: If we take [0, 1

1−q ] the time scale and
try to explore the evolution of a certain phenomenon over time, at time t = 0, this
phenomenon follows the uniform distribution on [0, 1]. However for q > 0 it follows
the exponential q-distribution. The more q approaches 1, this process approaches the
ordinary exponential distribution. From this perspective, we judge that the exponen-
tial q-distribution is extremely interesting as it lays the ground for certain constructive
and fruitful applications. Having explored the exponential q-distribution, our work is
a step that may be taken further. In a future work, we aspire to characterize the gamma
q-distribution.
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