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Abstract
Twohierarchies of isospectral andnonisospectralGerdjikov–Ivanov equations are con-
structed. Conservation laws of the isospectral soliton hierarchy are explicitly derived
from a specific Riccati equation that a ratio of two eigenfunctions satisfies. The
corresponding K-symmetries and τ -symmetries formulated from the isospectral and
nonisospectral hierarchies constitute an infinite-dimensional τ -symmetry algebra for
the isospectral hierarchy.
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1 Introduction

Many soliton systems possess remarkably rich algebraic characteristics, including the
existence of infinitely many symmetries and conservation laws.

For (1+1)-dimensional integrable systems, many approaches have been developed
to find their conservation laws (CLs), such as themethod using the variational identities
to formulate generating functions for conserved densities [1,2] in the non-semisimple
Lie algebras framework, using adjoint symmetries [3,4] and the expansion technique
of ratios of eigenfunctions of spectral problems [5,6]. Among them, generating the
CLs from Lax pairs of evolution equations is most popular one [5–9]. The key of this
method is to get a conservation density from the spectral problem of Lax pairs. Then
by using the obtained conservation density and evolution equation of time, CLs are
worked out.

Associated with those CLs are K -symmetries, which do not depend explicitly on
space and time variables. In 1987, Li et al. found a general way to construct τ -
symmetries [10,11]. These symmetries often constitute a Lie algebra together with
K -symmetries. Li and Cheng [12,13] found that there also exist new sets of sym-
metries for the evolution equations which take τ -symmetries as vector fields. Tu [14]
showed that these τ -symmetries may be generated by the generators of the first degree.
On the basis of Tu’s work, one of the authors (Ma) established a more general skele-
ton on K -symmetries and τ -symmetries of evolution equations and their Lie algebraic
structures [15,16]. In recent years, symmetries of discrete soliton hierarchies were also
researched [17–20].

It is well known that the Kaup–Newell equation, the Chen–Lee–Liu equation and
the Gerdjikov–Ivanov (GI) equation are three celebrated equations with derivative-
type nonlinearities [21–24]. The GI equation

(
q
r

)
t
=

(
qxx − 2q2rx − 2q3r2

−rxx − 2qxr2 + 2q2r3

)
(1.1)

as an integrable system with fifth-order nonlinear terms, has drawn a great attraction.
It has already been proved to be integrable in the Liouville sense by means of trace
identity [25,26]. In Refs. [27,28], Fan constructed an N -fold Darboux Transformation
(DT) of Eq. (1.1) and derived its soliton solutions. It is well known that some soliton
equations can exhibit rogue wave phenomena [29,30]. He et al. researched the rogue
waves and breather solutions of the GI equation by using DT [31,32]. The algebro-
geometric solutions of the GI equation were given in [33–35]. Recently, Zhang et
al. [36] gave its N-soliton solutions by Hirotas bilinear method. But conservation laws
and τ -symmetries of the GI soliton hierarchy have not been studied yet.

In this paper, we would like to construct the isospectral and nonisospectral GI
hierarchies from a matrix spectral problem associated with the GI equation. The
nonisospectral GI hierarchy will be used to present τ -symmetries for the isospetral
GI hierarchy. Moreover, a series of CLs of the GI isospectral soliton hierarchy is
derived from a Riccati equation which a ratio of two eigenfunctions needs to satisfy.
As the application of the obtained hierarchies, the corresponding K -symmetries and
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τ -symmetries will be formulated and all those symmetries will be proved to form an
infinite-dimensional Lie algebra.

The paper is organized as follows. In Sect. 2, we will discuss basic notions and
notations. In Sect. 3, we will obtain the isospectral and nonisospectral GI hierarchies
and CLs of the GI isospectral soliton hierarchy. In Sect. 4, two types of symmetries
will be constructed and proved to constitute an infinite-dimensional Lie algebra. We
conclude the paper in Sect. 5.

2 Basic Notions

Here wemainly follow the notions and notations used in [15] (see also [20]). LetR and
C be the real and complex fields respectively, and L be one linear topological space
overC. We denote byL all differentiable vector functions mappingRN ×R×L into
L.
Definition 1 Let K = K (u) = K (x, t, u), S = S(u) = S(x, t, u) ∈ L . The Gateaux
derivative of K (u) in the direction S(u) with respect to u is defined by

K ′[S] = K ′[u][S(u)] = ∂

∂ε
K (u + εS(u))|ε=0. (2.1)

It is well known that L forms a Lie algebra with respect to the following product:

�K , S� = �K (u), S(u)� = K ′(u)[S(u)] − S′(u)[K (u)] K , S ∈ L . (2.2)

Assume that u = u(x, t) is a differentiable function or a differential vector function
mapping R

N × R into L. We consider an evolution equation

ut = K (x, t, u) K ∈ L . (2.3)

Definition 2 A function G = G(x, t, u) ∈ L is called a symmetry of the equation of
(2.3) if G satisfies the linearized equation of (2.3)

dG

dt
= K ′(u)[G] (2.4)

where d/dt denote the total t-derivative, u satisfies Eq. (2.3) and K ′(u)[G] is defined
as in (2.1).

Evidently, the linearized equation (2.4) is equivalent to the following equation

∂G

∂t
= �K ,G� (2.5)

where �, � is defined as in (2.2). The symmetries defined inDefinition 2 are all infinites-
imal generators of one-parameter groups of invariant transformations of Eq. (2.3).
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Denote by L(L ) the linear operators mapping L into itself. Furthermore, denote
byU the set of differentiable operators mappingRn ×R×L into L(L ) and suppose
that �K = �(x, t, u)K for � ∈ U , K ∈ L , (x, t) ∈ R

N × R, u ∈ L .

Definition 3 Let � ∈ U , K ∈ L , the Lie derivative LK� ∈ U of � with respect to
K is defined by

(LK�) = �′[K ] − K ′� + �K ′ (2.6)

where the Gateaux derivative �′[K ] of the operator �(u) in the direction K with
respect to u is defined as (2.1).

Definition 4 An operator � ∈ U is called a hereditary symmetry if the following
holds:

�′[�K ]S − �′[�S]K = �(�′[K ]S − �′[S]K ) K , S ∈ L . (2.7)

Definition 5 An operator� ∈ U is called a strong symmetry if it maps one symmetry
of (2.3) into another symmetry of (2.3).

It is easy to see that � ∈ U is a strong symmetry of (2.3) if and only if

∂�

∂t
+ LK� = 0. (2.8)

3 Isospectral and Nonisospcetral Hierarchies and Conservation Laws

In this section, we first deduce isospectral and nonisospectral GI hierarchies from a
matrix spectral problem associated with the GI equation.

Let

ς =
(− 1 0

0 1

)
, δ =

(
0 1
1 0

)
, I =

(
1 0
0 1

)

and assume that T denotes the transpose of a matrix. It is well known that the GI
hierarchy has the following Lax Pairs [35,36]

φx = Mφ, M =
(− 1

2 (η
2 − 2qr) ηq

ηr 1
2 (η

2 − 2qr)

)
, φ =

(
φ1
φ2

)
, (3.1a)

and its time evolution

φt = Nφ, N =
(
A B
C − A

)
, (3.1b)

where q = q(t, x), r = r(t, x) are potential functions and η is a spectral parameter.
We assume that q(x, t) and r(x, t) are smooth functions of variables t and x ; and their
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derivatives of any order with respect to x vanish rapidly as x → ∞. The compatibility
condition, the zero curvature equation, reads

Mt − Nx + [M, N ] = 0, (3.2)

which yield

η

(
q
r

)
t
= L1L2

(
B

−C

)
+ η2

(
B

−C

)
+ 2ηA0

(
q

− r

)

−ηt L1

(
q
r

)
− 2η2ηt

(
xq

− xr

)
, (3.3)

where

L1 = I + 2(q,−r)T∂−1(r , q), L2 = −ς∂ − 2qr I .

Setting

(
B
C

)
=

n∑
j=1

(−1)n− j
(
b j

c j

)
η2(n− j)+1, (3.4)

and comparing the coefficients of the same power of η in (3.3), we then see that
the related hierarchies of isospectral (ηt = 0, A0 = 1

2 (−1)nη2n) and nonisospectral
(ηt = 1

2 (−1)n−1η2n−1, A0 = 0) can be derived respectively, i.e.,

ut = Kn = �n
(
q
−r

)
, (3.5a)

ut = σn = �n−1

(
xqx + 1

2q

xrx + 1
2r

)
, (3.5b)

where n is a positive integer and

u =
(
q
r

)
, � =

(
∂ − 2q∂−1rx − 4q∂−1r2q 2q∂−1qx − 2q2 − 4q∂−1q2r
2r∂−1rx − 2r2 + 4r∂−1qr2 −∂ − 2r−1qx + 4r∂−1q2r

)
.

(3.6)

The first nonlinear equation in the GI soliton hierarchy (3.5a) is the GI equation (1.1).
To apply the scheme of generating conservation laws based on Lax pairs, we con-

sider the ratio of the two eigenfunctions

ω = η
φ2

φ1
. (3.7)

123



116 J. Zhang et al.

Obviously from the spectral problem in (3.1), we see that the ratio ω satisfies the
following Riccati equation:

qωx = −q2ω2 + (η2 − 2qr)qω + η2qr , (3.8)

and the following conservation law relation holds:

[qr + qω(x, η)]t =
(
A + B

ω(x, η)

η

)
x
. (3.9)

Therefore, for example, letting

A = 1

2
η4 − qrη2 − q2r2 + (rqx − qrx ), B = −qη3 + qxη, (3.10)

we have

(
qr +

∞∑
n=0

ωn(x)

η2n

)

t

=
[
1

2
η4 − qrη2 − q2r2 + rqx − qrx −

∞∑
n=0

ωn(x)

η2n−2 + qx
q

∞∑
n=0

ωn(x)

η2n

]

x

, (3.11)

which generates infinitely many conservation laws for the GI equation (1.1). Expand
ω into a Laurent series

ω =
∞∑
n=0

ωnη
−2n, (3.12)

we obtain from the above Riccati equation a recursion relation for defining ωn :

ω0 = −qr , ωn+1 = q

(
ωn

q

)
x

+
n∑
j=0

ω jωn− j + 2qrωn, n ≥ 0. (3.13)

The first few conservation laws in (3.11) can be computed as follows:

(qr)t = [qxr − qrx − q2r2]x ,
[qrx + q2r2]t = [qxrx − qrxx − 2q2rrx ]x ,[−qrxx − qqxr

2 − 2q2rrx
]
t

= [
qrxxx + qqxxr

2 + q2r2x − qxrxx − q2x r
2 + 2qqxrrx + 2q2rrxx − 2q3r2rx − q4r4

]
x .
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4 �-Symmetry Algebra of the GI Soliton Hierarchy

Rewrite the recursion operator � of the GI soliton hierarchy in the following form:

� = −ς∂ + uTδue + 2ςu∂−1uTx ςδ − 2uuTδ + 2ςu∂−1uTδuTδu,

and then the Gâteaux derivative of the operator � in the direction of f ∈ L is

�
′ [ f ] = 2ς

[
f ∂−1(uTx ςδ + uTδuTδu) + u∂−1( f Tx ςδ + f TδuTδu + 2 f TδuuTδ)

]

+ 2( f Tδu − f uTδ − u f Tδ).

By the same way, we can obtain the Gâteaux derivative �
′ [g], g ∈ L . With the

equality

ςu∂−1 f Tx ςδg − ςu∂−1gTx ςδ f = f uTδg − guTδ f ,

we have

�(�
′ [ f ]g − �

′ [g] f )
= �[2ς f ∂−1(uTx ςδg + uTδguTδu) − 2ςg∂−1(uTx ςδ f + uTδ f uTδu)

− 2 f uTδg + 2guTδ f ].

Similarly, we can arrive at

�
′ [� f ]g − �

′ [�g] f
= 2(� f )T(δu − uTδ)g + 2ς(� f )∂−1(uTx ςδ + uTδuTδu)g + 2ςu∂−1

[
(� f )Tx ςδ

+(� f )TδuTδu
]
g

− 2(�g)T(δu − uTδ) f − 2ς(�g)∂−1(uTx ςδ + uTδuTδu) f − 2ςu∂−1
[
(�g)Tx ςδ

+(�g)TδuTδu
]
f

− 2u
[
(� f )Tδg − (�g)Tδ f

]
+ 4ςu∂−1uTδ

[
(� f )Tδug − (�g)Tδu f

]
.

Lemma 1 The recursion operator � is a hereditary symmetry.

Proof By using the following equalities

ςguTδ fx = f Tx ςδug − u f Tx ςδg + ςu f Tx δg, (4.1a)

ς f uTδgx = gTx ςδu f − ugTx ςδ f + ςugTx δ f , (4.1b)
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we have

�(�
′ [ f ]g − �

′ [g] f ) − (�
′ [� f ]g − �

′ [�g] f )
= 2ς( f uTx δg − guTx δ f ) − 2( f uTx ςδg − guTx ςδ f ) + 4ςu∂−1 [

uTςδ(guTδ f − f uTδg)
]
x

+ 4(guTδ f − f uTδg)uTδu − 8ςu∂−1( f TςδguTδux + uTx ςδ f uTδg − uTx ςδguTδ f )

= 4guTδ f uTδu − 4 f uTδguTδu + 4ςu
[
(uTςδguTδ f ) − (uTςδ f uTδg)

]
= 0. ��

Lemma 2 The recursion operator � is a strong symmetry of the GI hierarchy (3.5a),
i.e.,

�′[Km] = [K ′
m,�]. (4.2)

Proof It is easy to verify

�
′ [K0] = 2u(uTςδ − ∂−1uTx ςδ − ∂−1uTδuTδu)

− 2ςu(∂−1uTςδuTδu + ∂−1uTx δ − uTδ)

= (K0)
′
� − �(K0)

′
.

Since � is a hereditary and strong symmetry operator for the equation ut = K0, we
have that � is a strong symmetry operator for ut = �mK0 = Km . Hence, Eq. (4.2)
holds. ��
Lemma 3

�′[σn] + �σ ′
n − σ ′

n� = �n, n = 1, 2, . . . (4.3)

Proof When n = 1, it is easy to verify that

�′[σ1] + �σ ′
1 − σ ′

1� = �. (4.4)

Assume that

�′[σm] + �σ ′
m − σ ′

m� = �m, (4.5)

then

(�m+1 − �σ ′
m+1 + σ ′

m+1�) f

= �m+1 f − �(�σm)′ f + (�σm)′� f

= �m+1 f − �(�′[ f ]σm + �σ ′
m [ f ]) + �′[� f ]σm + �σ ′

m [� f ]
= �m+1 f − ��′[ f ]σm − �(σ ′

m� + �m − �′[σm ]) f + �′[� f ]σm + �σ ′
m [� f ]

= ��′[σm ] f + �′[� f ]σm − ��′[ f ]σm
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= �′[�σm ] f
= �′[σm+1] f . (4.6)

where we have used that � is a hereditary symmetry operator. Thus Eq. (4.3) holds
for any n. ��

Theorem 1 The isospectral flows Km (3.5a) and nonisospectral flows σm (3.5b) of the
GI hierarchy constitute an infinitely-dimensional Lie algebra and satisfy the relation,

�Km, Kn� = 0, (4.7a)

�Km, σn� = mKm+n−1, (4.7b)

�σm, σn� = (m − n)σm+n−1, m, n = 1, 2, . . . . (4.7c)

Proof Here we only prove Eq. (4.7b), since the proof of the other two identities is
similar.

We first prove the identity

�Km, σ1� = mKm . (4.8)

When m = 0, we have

�K0, σ1� = K ′
0[σ1] − σ ′

1[K0]
=

(
1 0
0 − 1

) (
xqx + q

2
xrx + r

2

)
−

(
x∂ + 1

2 0
0 x∂ + 1

2

)(
q
− r

)

= 0

(4.9)

Thus Eq. (4.8) is true when m = 0.
Assume that Eq. (4.8) holds for m − 1, i.e.,

�Km−1, σ1� = (m − 1)Km−1, (4.10)

then

�Km, σ1� = ��Km−1, σ1�

= �′[σ1]Km−1 + �K ′
m−1[σ1] − σ ′

1[Km]
= (� + σ ′

1� − �σ ′
1)Km−1 + �K ′

m−1[σ1] − σ ′
1[Km]

= Km + ��Km−1, σ1�

= mKm .

(4.11)

So Eq. (4.8) is true for any m.
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Now let us consider general identity (4.7b) using the same method. From Eq. (4.8)
we know that the identity (4.7b) holds when n = 1. Assume that equation (4.7b) hold
for n − 1, which is

�Km, σn−1� = mKm+n−2. (4.12)

Then we can obtain

�Km, σn� = �Km,�σn−1�

= K ′
m[�σn−1] − �′[Km]σn−1 − �σ ′

n−1[Km]
= K ′

m[�σn−1] − (K ′
m� − �K ′

m)σn−1 − �σ ′
n−1[Km]

= ��Km, σn−1�

= mKm+n−1.

(4.13)

Thus we complete the proof of Eq. (4.7b). ��
Corollary 1 The vector field σ2(u) is a master symmetry, i.e., it acts as a flow generator
via the following relations:

Ks+1 = 1

s
�Ks, σ2�, (4.14a)

σs+1 = 1

s − 2
�σs, σ2� s 	= 2. (4.14b)

From the isospectral flows Km and the nonisospectral flows σn , we further define
the function τm0 and τmn as

τm0 = mtKm + σ1, (4.15a)

τmn = �nτm0 = mtKm+n + σn+1. (4.15b)

Theorem 2

(τmn )t = K ′
m[τmn ], m = 0, 1, 2, . . . ; n = 1, 2, . . . , (4.16)

i.e., τmn are sets of symmetries of Eq. (3.5a).

Proof Since � maps symmetries of Eq. (3.5a) into symmetries of Eq. (3.5a), it is
sufficient to prove

(τm0 )t = K ′
m[τm0 ]. (4.17)

By Eq. (4.15a), we have

(τm0 )t = mKm + mtK ′[ut ] + σ ′
1[ut ]

= mKm + mtK ′[Km] + σ ′
1[Km]

= mtK ′[Km] + K ′
m[σ1]

= K ′
m[τm0 ],

(4.18)
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and so we conclude that Eq. (4.16) is true. ��

Theorem 3 Every equation in the hierarchy of Eq. (3.5a) has two sets of symmetries:
Km and τ nm, m ≥ 0. They constitute an infinite-dimensional Lie algebra with the
commutator relation:

�Km, Kn� = 0, (4.19a)

�Km, τ ln� = mKm+n−1, (4.19b)

�τml , τmn � = (l − n)τml+n−1. (4.19c)

Proof Here we only prove Eq. (4.19c). Using Eqs. (4.15b) and (4.7), we obtain

�τml , τmn � = �mtKm+l + σl+1,mtKm+n + σn+1�

= mt{�Km+l , σn+1� + �σl+1, Km+n�} + �σl+1, σn+1�

= mt{(m + l)Km+n+l − (m + n)Km+n+l} + (l − n)σn+l+1

= (l − n)(mtKm+n+l + σn+l+1)

= (l − n)τmn+l .

So we accomplish the proof of Theorem 3. ��

5 Conclusions

In general, we researched the integrability of the GI soliton hierarchies in this paper.
From its Lax pairs, we deduced the isospectral and nonisospectral hierarchies associ-
ated with the GI equation. Then we constructed the conservation laws for the obtained
isospectral hierarchy. Those conservation laws were generated from taking a Laurent
expansion of a ratio of eigenfunctions, which satisfies a Riccati equation, and the first
few conservation laws in the series were explicitly presented for the GI equation. From
the isospectral and nonisospectral hierarchies, we constructed two different types of
symmetries, which are so-called K-symmetries and τ -symmetries, and proved that
those two types of symmetries constitute a Lie algebra. The recursion operator �

of the GI hierarchy was proved to be a hereditary and strong symmetry of the GI
hierarchy.

There have been active studies on lumps and their interaction solutionswith solitons
[37–39]. It would be very interesting to generalize the presented GI equations, both
isospectral and nonisospectral, to (2+1)-dimensional equations and consider their
lumps and interaction solutions. This will be one of our future projects.
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