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Abstract
This paper deals with the Ulam stability of linear differential equations by using the
method of variation of parameters, which provides a unified method to study the
Ulam stability problem of linear differential equations of n-th order with constant
and nonconstant coefficients. As an application of the main results, we also obtain
the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order,
third order and n-th order. Our results make up to some deficiencies in the relevant
literature.

Keywords Ulam stability · Linear differential equations · Cauchy–Euler differential
equation · Variation of parameters
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1 Introduction

The Ulam stability problem originated from an important talk at the University of
Wisconsin organized by Ulam [34]. Such stability problem is first concerned with the
stability of group homomorphisms. The essential problem of this type of stability is
summarized as follows: “under what conditions can a solution of a perturbed equation
close to a solution of the original equation?” Hyers [8] seems to be the first person to
study this kind of stability. Specifically, he gave a first affirmative partial answer to the
question proposed by Ulam for Banach spaces. Afterward, this work was generalized
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by Rassias [27] for linear mappings by considering an unbounded Cauchy difference.
It is worth mentioning that Rassias’ work has a great impact on the development
of the Ulam stability of functional equations. In the following decades, almost all
of the studies associated with the Ulam stability were focused on different types of
functional equations and abstract spaces. For more details, the reader can refer to
several monographs [6,9,16,29] and the references therein.

Obloza [23] first initiated the study of the Ulam stability of differential equations.
A few years later, Alsina and Ger [2] established the Hyers–Ulam stability of the
differential equation y′(x) = y(x). That is to say, for a given ε > 0, if f is a
differentiable function from an open interval I into R with | f ′(x) − f (x)| ≤ ε for all
x ∈ I , then there exists a differentiable function g : I → R such that g′(x) = g(x)
which satisfies | f (x) − g(x)| ≤ 3ε for all x ∈ I . Later, Miura and Takahasi et al. [18,
20,32] further studied the Ulam stability of the differential equation y′(x) = λy(x)
in various abstract spaces. By using the same method as in [2], Jung [10] proved the
Hyers–Ulam stability of the differential equation ϕ(x)y′(x) = y(x). Furthermore, the
Hyers–Ulam stability of the first-order linear differential equation y′(x)+ p(x)y(x)+
q(x) = 0was extensively studied byMiura et al. [19], Takahasi et al. [33] and Jung [11,
12]. Meantime, Jung [13] also proved the Hyers–Ulam stability of a system of first-
order linear differential equations with constant coefficients by the matrix method. Li
and Shen [17] established the Hyers–Ulam stability of second order linear differential
equations with constant coefficients by the reduced order method. However, this result
requires the condition that the associated characteristic equation contains two different
positive roots. Using the similar technique, the Ulam stability of linear differential
equations with constant coefficients was considered by Cîmpean and Popa [5], Popa
and Raşa [25]. Analogously, the Hyers–Ulam stability of third-order linear differential
equations with constant coefficients was studied by Abdollahpour and Najati [1].
More generally, Brzdek and Jung [3] investigated the Hyers–Ulam stability for an
operator linear equation of second order. Further, Xu et al. [36] proved the Hyers–
Ulam stability of linear operator equations of higher order by using the fixed point
method.Recently, Brzdek et al. [4] studied theHyers–Ulam stability of linear operators
and hence they also obtained the stability results of linear differential equation of
n-th order with constant coefficients. Popa and Raşa [26] investigated the Hyers–
Ulam stability of linear differential equations with nonconstant coefficients by the
decomposition of the differential operator of n-th order. At the same time, Miura
et al. [21] proved the Hyers–Ulam stability of the Chebyshev differential equation
(1 − x2)y′′(x) − xy′(x) + n2y(x) = 0 by using the analytical method. Inspired
by this work, Shen et al. [31] further considered the Ulam stability of a class of
linear differential equations p(x)y′′(x) + q(x)y′(x) + λy(x) = 0, λ > 0 when
the coefficient functions satisfy certain conditions. This work can be regarded as
a generalization of Miura et al. [21]. In recent years, some classical methods for
solving differential equations were also applied to study the Ulam stability problem
of differential equations, such as the integrating factor method [30,35], the power
series method [14] and the Laplace transform method [28] and so on. It should be
pointed out that the fixed point technique had been used to study the Ulam stability
of the general differential equation y′ = F(x, y) [15]. Huang and Li [7] showed
the Hyers–Ulam stability of linear functional equations by using various methods,
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including direct method, iteration method, fixed point method and open mapping
theorem. Meanwhile, Mortici et al. [22] solved the inhomogeneous Euler equation of
second order and proved its Hyers–Ulam stability on a bounded domain by using the
integration method. Soon after, Popa and Pugna [24] obtained the Ulam stability of
the inhomogeneous Euler’s differential equation of n-th order. This result extends and
improves the work of Mortici et al. [22].

Based on the preceding statements, we can find that there is little literature, except
for Ref. [26], to uniformly study the Ulam stability of linear differential equations
with constant and nonconstant coefficients. The aim of this paper is to provide a
unified method, i.e., the variation of parameters, to establish the Ulam stability of
linear differential equations.

Let R denote the set of all real numbers. Unless otherwise stated, the symbol I
denotes a subinterval in R. Let C(I ,R) and Cn(I ,R) denote the set of all real-valued
continuous functions and the set of all differentiable functions which have continuous
derivatives up to n.

2 The General Solution and Ulam Stability of First-Order Linear
Differential Equations

In this section, we shall establish the Ulam stability of first order linear differential
equations by the method of variation of parameters.

The nonhomogeneous linear differential equation of first-order is given as follows:

y′(x) + p(x)y(x) = f (x), (1)

where x ∈ I , p, f ∈ C(I ,R). The associated homogeneous linear differential equa-
tion of (1) is

y′(x) + p(x)y(x) = 0. (2)

Suppose that y1(x) is a basic solution of (2). It is well known that Y (x) = c̃y1(x)
is the general solution of (2), where c̃ is an arbitrary constant. Using the method of
variation of parameters, we can obtain a particular solution of (1) by replacing the
constant c̃ in Y (x) by an undetermined function u(x). Setting yp(x) = u(x)y1(x).
Now, we assume that yp(x) is a solution of (1). Substituting yp into (1), we then obtain

u(x)

(

dy1
dx

+ p(x)y1(x)

)

+ y1(x)
du

dx
= f (x). (3)

Notice that y1(x) is a solution of (2), it follows from (3) that

y1(x)
du

dx
= f (x). (4)
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By separating the variable and integrating both sides of (4) from x0 to x with respect
to t , we get

u(x) = c1 +
∫ x

x0

f (t)

y1(t)
dt,

where c1 ∈ R is an arbitrary constant. Therefore, we have

yp(x) = u(x)y1(x) =
(

c1 +
∫ x

x0

f (t)

y1(t)
dt

)

y1(x).

Accordingly, we can present the following result.

Theorem 2.1 Let p, f ∈ C(I ,R) and let y1(x) be a basic solution of (2). Then, the
general solution y(x) of (1) is given by

y(x) = Y (x) + yp(x)

= c̃y1(x) +
(

c1 +
∫ x

x0

f (t)

y1(t)
dt

)

y1(x)

= cy1(x) + y1(x)
∫ x

x0

f (t)

y1(t)
dt,

where c = c̃ + c1 is still an arbitrary constant.

Based on Theorem 2.1, we now prove the Ulam stability of nonhomogeneous linear
differential Eq. (1).

Theorem 2.2 Let p, f ∈ C(I ,R) and let y1(x) be a basic solution of (2). Assume that
ϕ : I → [0,+∞) is a continuous function. If yϕ ∈ C1(I ,R) satisfies the differential
inequality

∣

∣y′
ϕ(x) + p(x)yϕ(x) − f (x)

∣

∣ ≤ ϕ(x) (5)

for all x ∈ I , then there exists y ∈ C1(I ,R) such that y(x) satisfies (1) and

∣

∣yϕ(x) − y(x)| ≤ |y1(x)
∣

∣

∣

∣

∣

∣

∫ x

x0

ϕ(t)

|y1(t)|dt
∣

∣

∣

∣

for all x ∈ I .

Proof For convenience, we write

y′
ϕ(x) + p(x)yϕ(x) := fϕ(x). (6)

Then, it follows from (5) that

| fϕ(x) − f (x)| ≤ ϕ(x) (7)
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for all x ∈ I . According to Theorem 2.1 and (6), there exists a constant c such that

yϕ(x) = cy1(x) + y1(x)
∫ x

x0

fϕ(t)

y1(t)
dt, (8)

where x0 ∈ I is an arbitrary fixed point.
Define

y(x) = cy1(x) + y1(x)
∫ x

x0

f (t)

y1(t)
dt (9)

for all x ∈ I . By Theorem 2.1, it is easy to verify that y(x) is a solution of (1).
From (7), (8) and (9), we can obtain

|yϕ(x) − y(x)| =
∣

∣

∣

∣

y1(x)
∫ x

x0

fϕ(t)

y1(t)
dt − y1(x)

∫ x

x0

f (t)

y1(t)
dt

∣

∣

∣

∣

= |y1(x)|
∣

∣

∣

∣

∫ x

x0

fϕ(t) − f (t)

y1(t)
dt

∣

∣

∣

∣

≤ |y1(x)|
∣

∣

∣

∣

∫ x

x0

ϕ(t)

|y1(t)|dt
∣

∣

∣

∣

(10)

for all x ∈ I . The proof of the theorem is now completed. ��

Remark 1 In fact, we all know that y1(x) = e− ∫ x
x0

p(t)dt
(x0 ∈ I ) is a basic solution of

the homogeneous linear differential Eq. (2). Then, the general solution of (2) is given

by Y (x) = ce− ∫ x
x0

p(t)dt . Therefore, the inequality (10) can be rewritten as

|yϕ(x) − y(x)| ≤ e− ∫ x
x0

p(t)dt
∣

∣

∣

∣

∫ x

x0
ϕ(t)e

∫ t
x0

p(τ )dτdt

∣

∣

∣

∣

.

As a particular case of Theorem 2.2, we can obtain the Hyers–Ulam stability of the
first-order nonhomogeneous linear differential Eq. (1) when the interval I = [a, b] is
finite.

Corollary 2.3 Let p, f ∈ C([a, b],R). For a given ε > 0, if a continuously differen-
tiable function yε : [a, b] → R satisfies the following inequality

∣

∣y′
ϕ(x) + p(x)yϕ(x) − f (x)

∣

∣ ≤ ε

for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (1) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where
K = e

∫ b
a |p(x)|dx (b − a).
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3 The General Solution and Ulam Stability of Second-Order Linear
Differential Equations

In this section, we shall consider the general solution and Ulam stability of second-
order linear differential equations by the method of variation of parameters.

The second-order nonhomogeneous linear differential equation is given as follows:

y′′(x) + p(x)y′(x) + q(x)y(x) = f (x), (11)

where x ∈ I , p, q, f ∈ C(I ,R). The corresponding homogeneous linear differential
equation of (11) is given by

y′′(x) + p(x)y′(x) + q(x)y(x) = 0. (12)

Let y1 and y2 be fundamental system of solutions of (12). The general solution
of (12) isY (x) = c̃1y1(x)+c̃2y2(x). Replacing c̃1 and c̃2 inY (x) by two undetermined
functions u1(x) and u2(x), respectively. Setting yp(x) = u1(x)y1(x) + u2(x)y2(x).
Now, we assume that yp(x) is a solution of (11). Then, we have

y′
p = u1y

′
1 + u′

1y1 + u2y
′
2 + u′

2y2,

y′′
p = u1y

′′
1 + 2u′

1y
′
1 + u′′

1 y1 + u2y
′′
2 + 2u′

2y
′
2 + u′′

2 y2.
(13)

Substituting (13) into (11), and combining the same items, we can obtain

y′′
p + p(x)y′

p + q(x)yp = (

y′′
1 + p(x)y′

1 + q(x)y1
)

u1 + (

y′′
2 + p(x)y′

2

+ q(x)y2) u2 + y1u
′′
1 + y′

1u
′
1 + y2u

′′
2 + y′

2u
′
2

+ p(x)
(

y1u
′
1 + y2u

′
2

) + y′
1u

′
1 + y′

2u
′
2

= (

y1u
′
1

)′ + (

y2u
′
2

)′ + p(x)
(

y1u
′
1 + y2u

′
2

) + y′
1u

′
1 + y′

2u
′
2

= (

y1u
′
1 + y2u

′
2

)′ + p(x)
(

y1u
′
1 + y2u

′
2

) + y′
1u

′
1 + y′

2u
′
2

= f (x),
(14)

where for the second equal sign we have used the fact y1 and y2 are two solutions
of (12). Note that yp is merely a particular solution. Without loss of generality, we
can assume that

y1u
′
1 + y2u

′
2 = 0, (15)

and then we can obtain from (14) that

y′
1u

′
1 + y′

2u
′
2 = f (x). (16)

Since y1 and y2 are fundamental system of solutions of (12), it follows that the Wron-
skian

W (y1, y2)(x) =
∣

∣

∣

∣

y1(x) y2(x)
y′
1(x) y′

2(x)

∣

∣

∣

∣

	= 0
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for all x ∈ I . By using Cramer’s rule, we can get from (15) and (16) that

u′
1(x) = W1,2(x)

W (y1, y2)(x)
, u′

2(x) = W2,2(x)

W (y1, y2)(x)
, (17)

where

W1,2(x) =
∣

∣

∣

∣

0 y2(x)
f (x) y′

2(x)

∣

∣

∣

∣

, W2,2(x) =
∣

∣

∣

∣

y1(x) 0
y′
1(x) f (x)

∣

∣

∣

∣

.

By integrating both sides of (17) from x0 to x with respect to t , it follows that

u1(x) = ĉ1 +
∫ x

x0

W1,2(t)

W (y1, y2)(t)
dt,

u2(x) = ĉ2 +
∫ x

x0

W2,2(t)

W (y1, y2)(t)
dt,

where ĉ1 and ĉ2 are two arbitrary constants. Then, we have

yp(x) = u1(x)y1(x) + u2(x)y2(x) = ĉ1y1(x) + ĉ2y2(x)

+ y1(x)
∫ x

x0

W1,2(t)

W (y1, y2)(t)
dt + y2(x)

∫ x

x0

W2,2(t)

W (y1, y2)(t)
dt .

Furthermore, we can obtain the general solution of (11).

Theorem 3.1 Let p, q, f ∈ C(I ,R) and let y1(x) and y2(x) be fundamental system
of solutions of (12). Then, the general solution y(x) of (11) can be given by

y(x) = Y (x) + yp(x) = c1y1(x) + c2y2(x) + y1(x)
∫ x

x0

W1,2(t)

W (y1, y2)(t)
dt

+ y2(x)
∫ x

x0

W2,2(t)

W (y1, y2)(t)
dt,

where c1 and c2 are two arbitrary constants, x0 ∈ I is an arbitrary fixed point.

According to Theorem 3.1, we can obtain the Ulam stability of the second-order
nonhomogeneous linear differential Eq. (11).

Theorem 3.2 Let p, q, f ∈ C(I ,R) and let y1(x) and y2(x) be fundamental system
of solutions of (12). Assume that ϕ : I → [0,+∞) is a continuous function. If
yϕ ∈ C2(I ,R) satisfies the differential inequality

∣

∣y′′
ϕ(x) + p(x)y′

ϕ(x) + q(x)yϕ(x) − f (x)
∣

∣ ≤ ϕ(x) (18)

for all x ∈ I , then there exists y ∈ C2(I ,R) such that y(x) satisfies (11) and

∣

∣yϕ(x) − y(x)
∣

∣ ≤
∣

∣

∣

∣

∫ x

x0

∣

∣

∣

∣

W (y1, y2)(t, x)

W (y1, y2)(t)

∣

∣

∣

∣

ϕ(t)dt

∣

∣

∣

∣
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for all x ∈ I , where

W (y1, y2)(t, x) =
∣

∣

∣

∣

y1(t) y2(t)
y1(x) y2(x)

∣

∣

∣

∣

.

Proof Here, we set

y′′
ϕ(x) + p(x)y′

ϕ(x) + q(x)yϕ(x) := fϕ(x). (19)

From (18), it follows that the inequality (11) holds. By Theorem 3.1 and (19), there
exist two constants c1 and c2 such that

yϕ(x) = c1y1(x)+c2y2(x)+ y1(x)
∫ x

x0

−y2(t) fϕ(t)

W (y1, y2)(t)
dt+ y2(x)

∫ x

x0

y1(t) fϕ(t)

W (y1, y2)(t)
dt,

(20)
where x0 ∈ I is an arbitrary fixed point.

Define

y(x) = c1y1(x) + c2y2(x) + y1(x)
∫ x

x0

−y2(t) f (t)

W (y1, y2)(t)
dt + y2(x)

∫ x

x0

y1(t) f (t)

W (y1, y2)(t)
dt

(21)
for all x ∈ I . By Theorem 3.1, we know that y(x) is a solution of (12). In view
of (11), (20) and (21), we can infer that

∣

∣yϕ(x) − y(x)
∣

∣

=
∣

∣

∣

∣

∣

y1(x)
∫ x

x0

−y2(t)
(

fϕ(t) − f (t)
)

W (y1, y2)(t)
dt + y2(x)

∫ x

x0

y1(t)
(

fϕ(t) − f (t)
)

W (y1, y2)(t)
dt

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∫ x

x0

−y1(x)y2(t)
(

fϕ(t) − f (t)
)

W (y1, y2)(t)
dt +

∫ x

x0

y2(x)y1(t)
(

fϕ(t) − f (t)
)

W (y1, y2)(t)
dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ x

x0

∣

∣

∣

∣

W (y1, y2)(t, x)

W (y1, y2)(t)
|ϕ(t)dt | ,

for all x ∈ I . This completes the proof. ��
Remark 2 Let I = [a, b] be a finite closed interval and let ε be an arbitrary positive
number. If we take ϕ(t) ≡ ε, then we can obtain the Hyers–Ulam stability of (11).

Corollary 3.3 Let p, q, f ∈ C([a, b],R). For a given ε > 0, if a twice continuously
differentiable function yε : [a, b] → R satisfies the following inequality

∣

∣y′′
ϕ(x) + p(x)y′

ϕ(x) + q(x)yϕ(x) − f (x)
∣

∣ ≤ ε

for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (11) such that

|yε(x) − y(x)| ≤ K ε
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for all x ∈ [a, b], where

K = max
x∈[a,b]

∫ x

a

∣

∣

∣

∣

W (y1, y2)(t, x)

W (y1, y2)(t)

∣

∣

∣

∣

dt .

As a particular case, we can establish the Ulam stability of second order nonho-
mogeneous linear differential equations with constant coefficients. Specifically, the
differential equation is given as follows:

y′′(x) + γ y′(x) + δy(x) = f (x), (22)

where γ, δ are real constants, f ∈ C(I ,R). The associated characteristic equation is

λ2 + γ λ + δ = 0. (23)

Corollary 3.4 Let ϕ : I → [0,+∞) be a continuous function. Assume that the char-
acteristic Eq. (23) has two distinct real roots λ1 and λ2. If yϕ ∈ C2(I ,R) satisfies the
differential inequality

∣

∣y′′
ϕ(x) + γ y′

ϕ(x) + δyϕ(x) − f (x)
∣

∣ ≤ ϕ(x) (24)

for all x ∈ I , then there exists a solution y ∈ C2(I ,R) of (22) such that

∣

∣yϕ(x) − y(x)
∣

∣ ≤ 1

|λ1 − λ2|
∣

∣

∣

∣

∫ x

x0

∣

∣

∣

∣

eλ2(x−t) − eλ1(x−t) |ϕ(t)dt |

for all x ∈ I .

Proof Notice that y1(x) = eλ1x and y2(x) = eλ2x are fundamental system of solutions
of the associated homogeneous linear differential equation of (22). The desired result
can be obtained from Theorem 3.2. ��
Corollary 3.5 Let ϕ : I → [0,+∞) be a continuous function. Assume that the charac-
teristic Eq. (23) has two real roots λ1 and λ2 with λ1 = λ2. If yϕ ∈ C2(I ,R) satisfies
the differential inequality (24) for all x ∈ I , then there exists a solution y ∈ C2(I ,R)

of (22) such that

∣

∣yϕ(x) − y(x)
∣

∣ ≤
∣

∣

∣

∣

∫ x

x0

∣

∣

∣(x − t)eλ1(x−t)
∣

∣

∣ϕ(t)dt

∣

∣

∣

∣

for all x ∈ I .

Proof It iswell known that y1(x) = eλ1x and y2(x) = xeλ1x are fundamental systemof
solutions of the associated homogeneous linear differential equation of (22). Similarly,
the desired result can be proved by Theorem 3.2. ��
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Corollary 3.6 Let ϕ : I → [0,+∞) be a continuous function. Assume that the char-
acteristic Eq. (23) has a pair of complex conjugate roots λ1 and λ2 with λ1 = α + iβ,
λ2 = α − iβ, where α ∈ R, β > 0. If yϕ ∈ C2(I ,R) satisfies the differential
inequality (24) for all x ∈ I , then there exists a solution y ∈ C2(I ,R) of (22) such
that

|yϕ(x) − y(x)| ≤ β

∣

∣

∣

∣

∫ x

x0

∣

∣

∣eα(x−t) sin[β(x − t)]
∣

∣

∣ϕ(t)dt

∣

∣

∣

∣

for all x ∈ I .

Proof In view of the theory of ordinary differential equations, we know that y1(x) =
eαx cosβx and y2(x) = eαx sin βx are fundamental system of solutions of the asso-
ciated homogeneous linear differential equation of (22). By Theorem 3.2, the desired
result can be derived. ��

In addition, as an application of Theorem3.2,we can show theHyers–Ulam stability
of the Cauchy–Euler differential equation of second order. The general form of the
nonhomogeneous Cauchy–Euler differential equation of second order is given by

x2y′′(x) + μxy′(x) + νy(x) = f (x), (25)

where μ, ν ∈ R, f ∈ C([a, b],R), 0 < a < b. The auxiliary equation is

λ2 − (μ − 1)λ + ν = 0. (26)

The following stability results can be obtained depending on the different cases of
the auxiliary Eq. (26).

Corollary 3.7 Let f ∈ C([a, b],R) and let μ, ν ∈ R with (μ − 1)2 − 4ν > 0, i.e., the
auxiliary Eq. (25) has two distinct real roots λ1 and λ2. For a given ε > 0, if a twice
continuously differentiable function yε : [a, b] → R satisfies the following inequality

∣

∣

∣x2y′′
ϕ(x) + μxy′

ϕ(x) + νyϕ(x) − f (x)
∣

∣

∣ ≤ ε (27)

for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (25) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = 1

|λ1 − λ2| max
x∈[a,b]

∫ x

a

1

t

∣

∣

∣

∣

( x

t

)λ1 −
( x

t

)λ2
∣

∣

∣

∣

dt .

Proof Notice that the inequality (27) is equivalent to

∣

∣

∣

∣

y′′
ϕ(x) + μ

x
y′
ϕ(x) + ν

x2
yϕ(x) − f (x)

x2

∣

∣

∣

∣

≤ ε

x2
, (28)
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since x ∈ [a, b] and 0 < a < b. By Theorem 3.2, there exists y ∈ C2([a, b],R) such
that

y′′(x) + μ

x
y′(x) + ν

x2
y(x) = f (x)

x2
(29)

for all x ∈ [a, b]. Clearly, the Eqs. (25) and (29) are equivalent. So y is also solution
of (25).

Moreover, since λ1 	= λ2, we know that y1(x) = xλ1 and y2(x) = xλ2 are funda-
mental system of solutions of the associated homogeneous linear differential equation
of (25). Then, it follows from Theorem 3.2 and (28) that the desired inequality holds.

��
Corollary 3.8 Let f ∈ C([a, b],R) and let μ, ν ∈ R with (μ − 1)2 − 4ν = 0, i.e.,
the auxiliary Eq. (25) has two equal real roots λ1 = λ2. For a given ε > 0, if a
twice continuously differentiable function yε : [a, b] → R satisfies the following
inequality (27) for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (25)
such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = max
x∈[a,b]

∫ x

a

1

t

∣

∣

∣

∣

( x

t

)λ1
ln

( x

t

)

∣

∣

∣

∣

dt .

Proof In this case, y1(x) = xλ1 and y2(x) = xλ1 ln x are fundamental system of
solutions of the associated homogeneous linear differential equation of (25). The
proof is similar to Corollary 3.7 and so is omitted. ��
Corollary 3.9 Let f ∈ C([a, b],R) and let μ, ν ∈ R with (μ − 1)2 − 4ν < 0, i.e., the
auxiliary Eq. (25) has a pair of complex conjugate roots λ1 = α+iβ and λ2 = α−iβ,
where α ∈ R, β > 0. For a given ε > 0, if a twice continuously differentiable function
yε : [a, b] → R satisfies the following inequality (27) for all x ∈ [a, b], then there
exists a solution y : [a, b] → R of (25) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = 1

β
max
x∈[a,b]

∫ x

a

1

t

∣

∣

∣

( x

t

)α

sin
[

β
( x

t

)]∣

∣

∣ dt .

Proof In this case, y1(x) = xα cos(β ln x) and y2(x) = xα sin(β ln x) are fundamental
system of solutions of the associated homogeneous linear differential equation of (25).
The proof is similar to Corollary 3.7 and so is omitted. ��
Remark 3 In [22], the authors proved the Hyers–Ulam stability of the Eq. (25) when
the auxiliary Eq. (26) has two distinct real roots and two equal real roots, respectively.
But this case is not considered if the auxiliary Eq. (26) has a pair of complex conjugate
roots. So Corollary 3.9 can be regarded as a supplement to [22].
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4 The General Solution and Ulam Stability of Third-Order Linear
Differential Equations

Using the similar argument as in Sect. 3, this section will deal with the general solution
and Ulam stability of three-order linear differential equations.

The general form of the three-order nonhomogeneous linear differential equation
is given by

y′′′(x) + p(x)y′′(x) + q(x)y′(x) + r(x)y(x) = f (x), (30)

where p, q, r , f ∈ C(I ,R). The associated homogenous linear differential equation
of (30) is

y′′′(x) + p(x)y′′(x) + q(x)y′(x) + r(x)y(x) = 0. (31)

Let y1(x), y2(x) and y3(x) be fundamental system of solutions of (31). Then, the
general solution of (31) is Y (x) = c̃1y1(x)+ c̃2y2(x)+ c̃3y3(x). By using the method
of variation of parameters, we set yp(x) = u1(x)y1(x) + u2(x)y2(x) + u3(x)y3(x),
where u1(x), u2(x) and u3(x) are three undetermined functions. In order to solve these
functions, we assume that yp(x) is a solution of (30). Then, we get

y′
p = u1y

′
1 + u′

1y1 + u2y
′
2 + u′

2y2 + u3y
′
3 + u′

3y3, (32)

y′′
p = u1y

′′
1 + 2u′

1y
′
1 + u′′

1 y1 + u2y
′′
2 + 2u′

2y
′
2 + u′′

2 y2 + u3y
′′
3 + 2u′

3y
′
3 + u′′

3 y3,(33)

y′′′
p = u1y

′′′
1 + 3u′

1y
′′
1 + 3u′′

1 y
′
1 + u′′′

1 y1 + u2y
′′′
2 + 3u′

2y
′′
2 + 3u′′

2 y
′
2 + u′′′

2 y2

+ u3y
′′′
3 + 3u′

3y
′′
3 + 3u′′

3 y
′
3 + u′′′

3 y3. (34)

Substituting these equalities (32–34) into (30), we can infer that

y′′′
p + p(x)y′′

p + q(x)y′
p + r(x)yp

= (

y′′′
1 + p(x)y′′

1 + q(x)y′
1 + r(x)y1

)

u1 + (

y′′′
2 + p(x)y′′

2 + q(x)y′
2 + r(x)y2

)

u2

+ (

y′′′
3 + p(x)y′′

3 + q(x)y′
3 + r(x)y3

)

u3 + p(x)
(

u′′
1 y1 + u′′

2 y2 + u′′
3 y3

+ 2u′
1y

′
1 + 2u′

2y
′
2 + 2u′

3y
′
3
) + q(x)

(

u′
1y1 + u′

2y2 + u′
3y3

)

+ u′′′
1 y1 + 3u′′

1 y
′
1 + 3u′

1y
′′
1 + u′′′

2 y2 + 3u′′
2 y

′
2 + 3u′

2y
′′
2

+ u′′′
3 y1 + 3u′′

3 y
′
3 + 3u′

3y
′′
3

= p(x)
(

u′′
1 y1 + u′′

2 y2 + u′′
3 y3 + 2u′

1y
′
1 + 2u′

2y
′
2 + 2u′

3y
′
3
) + q(x)

(

u′
1y1 + u′

2y2 + u′
3y3

)

+ u′′′
1 y1 + 3u′′

1 y
′
1 + 3u′

1y
′′
1 + u′′′

2 y2 + 3u′′
2 y

′
2 + 3u′

2y
′′
2 + u′′′

3 y3 + 3u′′
3 y

′
3 + 3u′

3y
′′
3

= (

u′
1y1 + u′

2y2 + u′
3y3

)′′ + (

u′
1y

′
1 + u′

2y
′
2 + u′

3y
′
3
)′ + p(x)

(

u′
1y1 + u′

2y2 + u′
3y3

)′

+ p(x)
(

u′
1y1 + u′

2y2 + u′
3y3

) + q(x)
(

u′
1y1 + u′

2y2 + u′
3y3

) + (

u′
1y

′′
1 + u′

2y
′′
2 + u′

3y
′′
3
)

= f (x),
(35)

where for the second equal sign we have used the fact y1, y2 and y3 are three solutions
of (31). By the foregoing hypothesis, yp is only a particular solution of (30). For the
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sake of convenience, without loss of generality, we can assume that

{

u′
1y1 + u′

2y2 + u′
3y3 = 0,

u′
1y

′
1 + u′

2y
′
2 + u′

3y3 = 0.
(36)

Then, it follows from (35) that

u′
1y

′′
1 + u′

2y
′′
2 + u′

3y
′′
3 = f (x). (37)

Since y1, y2 and y3 are fundamental system of solutions of (31), the Wronskian

W (y1, y2, y3)(x) =
∣

∣

∣

∣

∣

∣

y1(x) y2(x) y3(x)
y′
1(x) y′

2(x) y′
3(x)

y′′
1 (x) y′′

2 (x) y′′
3 (x)

∣

∣

∣

∣

∣

∣

	= 0

for all x ∈ I . Using Cramer’s rule, it follows from (36) and (37) that

u′
1(x) = W1,3(x)

W (y1, y2, y3)(x)
,

u′
2(x) = W2,3(x)

W (y1, y2, y3)(x)
,

u′
3(x) = W3,3(x)

W (y1, y2, y3)(x)
,

(38)

where

W1,3(x) =
∣

∣

∣

∣

∣

∣

0 y2(x) y3(x)
0 y′

2(x) y′
3(x)

f (x) y′′
2 (x) y′′

3 (x)

∣

∣

∣

∣

∣

∣

,

W2,3(x) =
∣

∣

∣

∣

∣

∣

y1(x) 0 y3(x)
y′
1(x) 0 y′

3(x)
y′′
1 (x) f (x) y′′

3 (x)

∣

∣

∣

∣

∣

∣

,

W3,3(x) =
∣

∣

∣

∣

∣

∣

y1(x) y2(x) 0
y′
1(x) y′

2(x) 0
y′′
1 (x) y′′

2 (x) f (x)

∣

∣

∣

∣

∣

∣

.

By integrating both sides of (38) from x0 to x with respect to t , then we can obtain

u1(x) = ĉ1 +
∫ x

x0

W1,3(t)

W (y1, y2, y3)(t)
dt,

u2(x) = ĉ2 +
∫ x

x0

W2,3(t)

W (y1, y2, y3)(t)
dt,

u3(x) = ĉ3 +
∫ x

x0

W3,3(t)

W (y1, y2, y3)(t)
dt,
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where ĉ1, ĉ2 and ĉ3 are three arbitrary constants. Thus, we get

yp(x) = u1(x)y1(x) + u2(x)y2(x) + u3(x)y3(x)

= ĉ1y1(x) + ĉ2y2(x) + ĉ3y3(x) + y1(x)
∫ x

x0

W1,3(t)

W (y1, y2, y3)(t)
dt

+ y2(x)
∫ x

x0

W2,3(t)

W (y1, y2, y3)(t)
dt + +y3(x)

∫ x

x0

W3,3(t)

W (y1, y2, y3)(t)
dt .

Based on the above argument, we can obtain the following result.

Theorem 4.1 Let p, q, r , f ∈ C(I ,R) and let y1(x), y2(x) and y3(x) be fundamental
system of solutions of (31). Then, the general solution y(x) of (30) can be given by

y(x) = Y (x) + yp(x)

= c1y1(x) + c2y2(x) + c3y3(x) + y1(x)
∫ x

x0

W1,3(t)

W (y1, y2, y3)(t)
dt

+ y2(x)
∫ x

x0

W2,3(t)

W (y1, y2, y3)(t)
dt + y3(x)

∫ x

x0

W3,3(t)

W (y1, y2, y3)(t)
dt,

where c1, c2 and c3 are three arbitrary constants, x0 ∈ I is an arbitrary fixed point.

By Theorem 4.1, we shall discuss the Ulam stability of the three-order nonhomo-
geneous linear differential Eq. (30).

Theorem 4.2 Let p, q, r , f ∈ C(I ,R) and let y1(x), y2(x) and y3(x) be fundamental
system of solutions of (31). Assume that ϕ : I → [0,+∞) is a continuous function.
If yϕ ∈ C3(I ,R) satisfies the differential inequality

∣

∣y′′′
ϕ (x) + p(x)y′′

ϕ(x) + q(x)y′
ϕ(x) + r(x)yϕ(x) − f (x)

∣

∣ ≤ ϕ(x)

for all x ∈ I , then there exists y ∈ C3(I ,R) such that y(x) satisfies (30) and

|yϕ(x) − y(x)| ≤
∣

∣

∣

∣

∫ x

x0

∣

∣

∣

∣

W (y1, y2, y3)(t, t, x)

W (y1, y2, y3)(t)

∣

∣

∣

∣

ϕ(t)dt

∣

∣

∣

∣

for all x ∈ I , where

W (y1, y2, y3)(t, t, x) =
∣

∣

∣

∣

∣

∣

y1(t) y2(t) y3(t)
y′
1(t) y′

2(t) y′
3(t)

y1(x) y2(x) y3(x)

∣

∣

∣

∣

∣

∣

.

Proof Using the same argument as in the proof of Theorem 3.2, we can easily carry
out the proof of this theorem. ��

In particular, we can obtain the Hyers–Ulam stability of (30) when I = [a, b] be a
finite closed interval.
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Corollary 4.3 Let p, q, r , f ∈ C([a, b],R). For a given ε > 0, if a three times con-
tinuously differentiable function yε : [a, b] → R satisfies the following inequality

∣

∣y′′′
ϕ (x) + p(x)y′′

ϕ(x) + q(x)y′
ϕ(x) + r(x)yϕ(x) − f (x)

∣

∣ ≤ ε

for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (30) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = max
x∈[a,b]

∫ x

a

∣

∣

∣

∣

W (y1, y2, y3)(t, t, x)

W (y1, y2, y3)(t)

∣

∣

∣

∣

dt .

According to Theorem 4.2, we can obtain the Ulam stability of third-order nonho-
mogeneous linear differential equations with constant coefficients. The general form
of the differential equation is given by

y′′′(x) + γ y′′(x) + δy′(x) + ηy(x) = f (x), (39)

where γ, δ, η are real constants, f ∈ C(I ,R). The corresponding characteristic equa-
tion is

λ3 + γ λ2 + δλ + η = 0. (40)

By distinguishing various roots of the characteristic equation, the following results
can be obtained.

Corollary 4.4 Let ϕ : I → [0,+∞) be a continuous function. Assume that the char-
acteristic Eq. (40) has three distinct real roots λ1, λ2 and λ3. If yϕ ∈ C3(I ,R) satisfies
the differential inequality

∣

∣y′′′
ϕ (x) + γ y′′

ϕ(x) + δy′
ϕ(x) + ηy′

ϕ(x) − f (x)
∣

∣ ≤ ϕ(x) (41)

for all x ∈ I , then there exists a solution y ∈ C3(I ,R) of (39) such that

|yϕ(x) − y(x)| ≤ 1

|(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)|
∣

∣

∣

∣

∫ x

x0

∣

∣

∣

∣

λ1

(

eλ3(x−t) − eλ2(x−t)
)

+ λ2

(

eλ1(x−t) − eλ3(x−t)
)

+ λ3

(

eλ2(x−t) − eλ1(x−t)
)

∣

∣

∣

∣

ϕ(t)dt

∣

∣

∣

∣

for all x ∈ I .

Proof The proof is quite similar to the proof of Corollary 3.3 and so is omitted. ��
Corollary 4.5 Let ϕ : I → [0,+∞) be a continuous function. Assume that the charac-
teristic Eq. (40) has three real rootsλ1,λ2 andλ3 withλ1 = λ2 	= λ3. If yϕ ∈ C3(I ,R)
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satisfies the differential inequality (41) for all x ∈ I , then there exists a solution
y ∈ C3(I ,R) of (39) such that

|yϕ(x) − y(x)| ≤ 1

(λ1 − λ3)
2

∣

∣

∣

∣

∫ x

x0

∣

∣

∣[(λ1 − λ3) (x − t) − 1]
(

eλ1(x−t) + eλ3(x−t)
)∣

∣

∣ ϕ(t)dt

∣

∣

∣

∣

for all x ∈ I .

Corollary 4.6 Let ϕ : I → [0,+∞) be a continuous function. Assume that the charac-
teristic Eq. (40) has three real roots λ1, λ2 andλ3 withλ1 = λ2 = λ3. If yϕ ∈ C3(I ,R)

satisfies the differential inequality (41) for all x ∈ I , then there exists a solution
y ∈ C3(I ,R) of (39) such that

|yϕ(x) − y(x)| ≤ 1

2

∣

∣

∣

∣

∫ x

x0
(x − t)2eλ1(x−t)ϕ(t)dt

∣

∣

∣

∣

for all x ∈ I .

Corollary 4.7 Let ϕ : I → [0,+∞) be a continuous function. Assume that the charac-
teristic Eq. (40) has a real root λ1 and a pair of complex conjugate roots λ2 = α + iβ,
λ3 = α − iβ, where α ∈ R, β > 0. If yϕ ∈ C3(I ,R) satisfies the differential
inequality (41) for all x ∈ I , then there exists a solution y ∈ C3(I ,R) of (39) such
that

|yϕ(x) − y(x)| ≤ 1

β[β2 + (α − λ1)2]
∣

∣

∣

∣

∫ x

x0

∣

∣

∣

∣

βeλ1(x−t) − eα(x−t) (β cos[β(x − t)]
+ (α − λ) sin[β(x − t)]) |ϕ(t)dt |

for all x ∈ I .

Moreover, we can infer from Theorem 4.2 that the Cauchy–Euler differential equa-
tion of third order is Hyers–Ulam stable. The general form of the nonhomogeneous
Cauchy–Euler differential equation of third order is given by

x3y′′′(x) + μx2y′′(x) + νxy′(x) + ωy(x) = f (x), (42)

where μ, ν, ω ∈ R, f ∈ C([a, b],R), 0 < a < b. The auxiliary equation is

λ3 + (μ − 3)λ2 + (ν − μ + 2)λ + ω = 0. (43)

The following stability results can be obtained depending on the different cases of
the auxiliary Eq. (43).

Corollary 4.8 Let f ∈ C([a, b],R) and let μ, ν, ω ∈ R. Assume that the auxiliary
Eq. (43) has three distinct real roots λ1,λ2 and λ3. For a given ε > 0, if a three times
continuously differentiable function yε : [a, b] → R satisfies the following inequality

∣

∣

∣x3y′′′
ϕ (x) + μx2y′′

ϕ(x) + νxy′
ϕ(x) + ωyϕ(x) − f (x)

∣

∣

∣ ≤ ε (44)
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for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (42) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = 1

|(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)| max
x∈[a,b]

∫ x

a

1

t

∣

∣

∣

∣

(λ1 − λ2)
( x

t

)λ3

+ (λ2 − λ3)
( x

t

)λ1 + (λ3 − λ1)
( x

t

)λ2
∣

∣

∣

∣

dt .

Proof Using the same argument as in Corollary 3.7, the desired result can be derived
by Theorem 4.2. ��
Corollary 4.9 Let f ∈ C([a, b],R) and let μ, ν, ω ∈ R. Assume that the auxiliary
Eq. (43) has a single root λ1 and a double root λ2. For a given ε > 0, if a three
times continuously differentiable function yε : [a, b] → R satisfies the following
inequality (44) for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (42)
such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = 1

(λ1 − λ2)2
max
x∈[a,b]

∫ x

a

1

t

∣

∣

∣

∣

( x

t

)λ1 −
( x

t

)λ2 + (λ2 − λ1)
( x

t

)λ2
ln

x

t

∣

∣

∣

∣

dt .

Corollary 4.10 Let f ∈ C([a, b],R) and let μ, ν, ω ∈ R. Assume that the auxiliary
Eq. (43) has a triple root λ1. For a given ε > 0, if a three times continuously dif-
ferentiable function yε : [a, b] → R satisfies the following inequality (44) for all
x ∈ [a, b], then there exists a solution y : [a, b] → R of (42) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = 1

2
max
x∈[a,b]

∫ x

a

1

t

( x

t

)λ1
ln2

x

t
dt .

Corollary 4.11 Let f ∈ C([a, b],R) and let μ, ν, ω ∈ R. Assume that the auxiliary
Eq. (43) has a real root λ1 and a pair of complex conjugate roots λ2 = α + iβ,
λ3 = α − iβ, where α ∈ R, β > 0. For a given ε > 0, if a three times continuously
differentiable function yε : [a, b] → R satisfies the following inequality (44) for all
x ∈ [a, b], then there exists a solution y : [a, b] → R of (42) such that

|yε(x) − y(x)| ≤ K ε
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for all x ∈ [a, b], where

K = 1

β[(α − λ1)2 + β2] max
x∈[a,b]

∫ x

a

1

t

∣

∣

∣

∣

β
( x

t

)λ1 −
( x

t

)α [

β cos
(

β ln
x

t

)

+ (λ1 − α) sin
(

β ln
x

t

)]∣

∣

∣ dt .

5 The General Solution and Ulam Stability of n-th Order Linear
Differential Equations

More generally, in this section, we will consider the Ulam stability of n-th order linear
differential equations.

The general form of the n-th order nonhomogeneous linear differential equation is
given by

y(n)(x) + pn−1(x)y
(n−1)(x) + · · · + p1(x)y

′(x) + p0(x)y(x) = f (x), (45)

where pk, f ∈ C(I ,R), k = 0, 1, . . . , n−1, n ≥ 2. The corresponding homogeneous
linear differential equation of (45) is

y(n)(x) + pn−1(x)y
(n−1)(x) + · · · + p1(x)y

′(x) + p0(x)y(x) = 0. (46)

Let y1(x), y2(x), . . . , yn(x) be fundamental system of solutions of (46). It is well
known that the general solution of (45) is

Y (x) = c̃1y1(x) + c̃2y2(x) + · · · + c̃n yn(x),

where c̃1, c̃2, . . . , c̃n are arbitrary constants. Using the method of variation of param-
eters, we can replace c̃1, c̃2, . . . , c̃n by the undetermined functions u1(x), u2(x),
. . . , un(x), respectively. Then, we set

yp(x) = u1(x)y1(x) + u2(x)y2(x) + · · · + un(x)yn(x).

To determine these functions, we assume that yp is a solution of (45). Thus, we
have

y′
p =

n
∑

k=1

(

u′
k yk + uk y

′
k

)

.

In order to conveniently compute the second derivative of yp, we can assume

n
∑

k=1

u′
k yk = u′

1y1 + u′
2y2 + · · · + u′

n yn = 0.
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Furthermore, we can obtain

y′′
p =

n
∑

k=1

(

u′
k y

′
k + uk y

′′
k

)

.

Similarly, if we assume

n
∑

k=1

u′
k y

′
k = u′

1y
′
1 + u′

2y
′
2 + · · · + u′

n y
′
n = 0.

Then, we have

y′′′
p =

n
∑

k=1

(

u′
k y

′′
k + uk y

′′′
k

)

.

Continuing in this manner, in general, we arrive at the following hypothesis and
the corresponding derivative.

n
∑

k=1

u′
k y

(n−2)
k = u′

1y
(n−2)
1 + u′

2y
(n−2)
2 + · · · + u′

n y
(n−2)
n = 0,

y(n)
p =

n
∑

k=1

(

u′
k y

(n−1)
k + uk y

(n)
k

)

.

(47)

Under these assumptions, by substituting yp and its derivatives up to n into (45),
we can infer that

n
∑

k=1

u′
k y

(n−1)
k = u′

1y
(n−1)
1 + u′

2y
(n−1)
2 + · · · + u′

n y
(n−1)
n = f (x).

Combining (47) with the previous assumptions gives the following system of linear
equations

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u′
1y1 + u′

2y2 + · · · + u′
n yn = 0

u′
1y

′
1 + u′

2y
′
2 + · · · + u′

n y
′
n = 0

· · · · · ·
u′
1y

(n−1)
1 + u′

2y
(n−1)
2 + · · · + u′

n y
(n−1)
n = f (x)

.

Notice that y1, y2, . . . , yn are fundamental system of solutions of (46). Then, the
Wronskian

W (y1, y2, . . . , yn)(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(x) y2(x) · · · yn(x)
y′
1(x) y′

2(x) · · · y′
n(x)

...
...

...

y(n−1)
1 (x) y(n−1)

2 (x) · · · y(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

	= 0
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for all x ∈ I . Using Cramer’s rule, it follows that

u′
k(x) = Wk,n(x)

W (y1, y2, . . . , yn)(x)
, k = 1, 2, . . . , n,

where Wk,n(x) is the determinant of n order obtained by replacing the k-th column of
the Wronskian by the n dimensional column vector (0, 0, . . . , 0, f (x))T.

By integrating both sides of (45) from x0 to x with respect to t , then we can infer
that

uk(x) = ĉk +
∫ x

x0

Wk,n(t)

W (y1, y2, . . . , yn)(t)
dt,

where ĉk, k = 1, 2, . . . , n are arbitrary constants. Therefore, we can obtain

yp(x) =
n

∑

k=1

uk(x)yk(x)

=
n

∑

k=1

ĉk yk(x) +
n

∑

k=1

∫ x

x0

yk(x)Wk,n(t)

W (y1, y2, . . . , yn)(t)
dt .

Based on the preceding argument, the general solution of the n-th order nonhomo-
geneous linear differential Eq. (45) can be obtained.

Theorem 5.1 Let pk, f ∈ C(I ,R), k = 1, 2, . . . , n−1, and let y1(x), y2(x), . . . , yn(x)
be fundamental system of solutions of (46). Then, the general solution y(x) of (45)
can be given by

y(x) = Y (x) + yp(x)

=
n

∑

k=1

ck yk(x) +
n

∑

k=1

∫ x

x0

yk(x)Wk,n(t)

W (y1, y2, . . . , yn)(t)
dt,

where ck, k = 1, 2, . . . , n are arbitrary constants, x0 ∈ I is an arbitrary fixed point.

According to Theorem 5.1, the Ulam stability of the n-th order linear differential
Eq. (45) can be derived.

Theorem 5.2 Let pk, f ∈ C(I ,R), k = 1, 2, . . . , n−1, and let y1(x), y2(x), . . . , yn(x)
be fundamental system of solutions of (46). Assume that ϕ : I → [0,+∞) is a con-
tinuous function. If yϕ ∈ Cn(I ,R) satisfies the differential inequality

∣

∣

∣

∣

∣

y(n)
ϕ (x) +

n
∑

k=1

pn−k(x)y
(n−k)
ϕ (x) − f (x)

∣

∣

∣

∣

∣

≤ ϕ(x)
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for all x ∈ I , then there exists y ∈ Cn(I ,R) such that y(x) satisfies (45) and

|yϕ(x) − y(x)| ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ x

x0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W (y1, y2, · · · , yn)

⎛

⎝

n−1
︷ ︸︸ ︷

t, . . . , t, x

⎞

⎠

W (y1, y2, . . . , yn) (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ(t)dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(48)

for all x ∈ I , where

W (y1, y2, . . . , yn)(t, . . . , t
︸ ︷︷ ︸

n−1

, x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(t) y2(t) · · · yn(t)
y′
1(t) y′

2(t) · · · y′
n(t)

...
...

...

y(n−2)
1 (t) y(n−2)

2 (t) · · · y(n−2)
n (t)

y1(x) y2(x) · · · yn(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof Using the same argument as in Theorem 3.2, we set

y(n)
ϕ (x) +

n
∑

k=1

pn−k(x)y
(n−k)
ϕ (x) := fϕ(x).

By Theorem 5.1, there exist c1, c2, . . . , cn such that

yϕ(x) =
n

∑

k=1

ck yk(x) +
n

∑

k=1

∫ x

x0

yk(x) ˜Wk,n(t)

W (y1, y2, . . . , yn)(t)
dt, (49)

where ˜Wk,n(x) is the determinant of n-th order obtained by replacing the k-th column
of the Wronskian by the n dimensional column vector (0, 0, . . . , 0, fϕ(x))T.

Define

y(x) =
n

∑

k=1

ck yk(x) +
n

∑

k=1

∫ x

x0

yk(x)Wk,n(t)

W (y1, y2, . . . , yn)(t)
dt . (50)

By the property of the determinant, we get

n
∑

k=1

(

yk(x) ˜Wk,n(t) − yk(x)Wk,n(t)
)

=
n

∑

k=1

yk(x)(−1)k+n fϕ(x)Mk,n(t) − yk(x)(−1)k+n f (x)Mk,n(t)

= ( fϕ(x) − f (x))
n

∑

k=1

(−1)k+n yk(x)Mk,n(t)
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= ( fϕ(x) − f (x))W (y1, y2, . . . , yn)(t, . . . , t
︸ ︷︷ ︸

n−1

, x),

where Mk,n(t) is the cofactor of the element fϕ(x) in the determinant ˜Wk,n(t). Obvi-
ously, it is the same as the cofactor of the element f (x) in the determinant Wk,n(t).

Therefore, the desired inequality (48) can be derived from (49), (50) and the above
equality. The proof of the theorem is now completed. ��

Similar to Corollary 4.3, the Hyers–Ulam stability of the n-th order nonhomoge-
neous linear differential Eq. (45) can be derived from Theorem 5.2.

Corollary 5.3 Let pk, f ∈ C(I ,R), k = 1, 2, . . . , n − 1. For a given ε > 0, if an
n times continuously differentiable function yε : [a, b] → R satisfies the following
inequality

∣

∣

∣

∣

∣

y(n)
ϕ (x) +

n
∑

k=1

pn−k(x)y
(n−k)
ϕ (x) − f (x)

∣

∣

∣

∣

∣

≤ ε

for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (45) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = max
x∈[a,b]

∫ x

a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W (y1, y2, . . . , yn)

⎛

⎝

n−1
︷ ︸︸ ︷

t, . . . , t, x

⎞

⎠

W (y1, y2, . . . , yn) (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dt .

Remark 4 In the theory of Ulam stability, the optimal Hyers–Ulam constant K is the
minimum positive real number such that the error inequality |yε(x) − y(x)| ≤ K ε

holds for all x ∈ I . It can be easily seen from the proofs of the main theorems that
each Hyers–Ulam constant K is optimal in Corollaries 3.3, 4.3 and 5.3.

Finally, by Theorem 5.2, we can obtain the Hyers–Ulam stability of the Cauchy–
Euler differential equation of n-th order. For simplicity, the general form of the
nonhomogeneous Cauchy–Euler differential equation of n-th order is given as fol-
lows:

xn y(n)(x) +
n

∑

k=1

μn−k x
n−k y(n−k)(x) = f (x), (51)

where μk ∈ R, (k = 1, 2, . . . , n), f ∈ C([a, b],R) with 0 < a < b.

Corollary 5.4 Let y1(x), y2(x), . . . , yn(x) be fundamental system of solutions of the
associatedhomogeneous equationof (51). For agiven ε > 0, if ann times continuously
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differentiable function yε : [a, b] → R satisfies the following inequality

∣

∣

∣

∣

∣

xn y(n)
ϕ (x) +

n
∑

k=1

μn−k x
n−k y(n−k)

ϕ (x) − f (x)

∣

∣

∣

∣

∣

≤ ε

for all x ∈ [a, b], then there exists a solution y : [a, b] → R of (51) such that

|yε(x) − y(x)| ≤ K ε

for all x ∈ [a, b], where

K = max
x∈[a,b]

∫ x

a

1

tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W (y1, y2, · · · , yn)

⎛

⎝

n−1
︷ ︸︸ ︷

t, . . . , t, x

⎞

⎠

W (y1, y2, . . . , yn) (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dt .

Proof By Theorem 5.2, the proof is a direct extension of Corollary 3.7 and so is
omitted. ��

6 Conclusions

By using the method of variation of parameters, in this paper, we have established
the Ulam stability of linear differential equations of first order, second order, third
order and n-th order, respectively. This paper presented a unified method to study the
Ulam stability problem of linear differential equations of first order and higher order
with constant and nonconstant coefficients. Accordingly, the Hyers–Ulam stability of
linear differential equations can be directly derived from the main results. Moreover,
the stability constant obtained in this paper is optimal. In particular, the Hyers–Ulam
stability of the Cauchy–Euler differential equations of second order, third order and
n-th order can also be obtained by the relevant conclusions.
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