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Abstract
In this paper, we investigate the flow through a thin corrugated domain filled with
fluid-saturated porous medium. The porous medium flow is described by the nonlinear
Darcy–Lapwood–Brinkman model acknowledging the viscous shear and the inertial
effects. The thickness of the domain is assumed to be of the same small order ε as the
period of the oscillating boundaries. Depending on the magnitude of the permeability
with respect to ε, we rigorously derive different asymptotic models and compare the
results with the non-oscillatory case.We employ a homogenization technique based on
the adaption of the unfolding method and deduce the influence of the porous structure
and boundary oscillations on the effective flow.
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1 Introduction

Numerousmodels havebeendeveloped in the past 15decades to describeflows through
porous media. When a fluid permeates a porous material, the actual path of an indi-
vidual fluid particle cannot be followed analytically. The effect at main order, as the
fluid slowly percolates the pores of the medium, must be represented by amacroscopic
law, which is applicable to fluid with large mass compared with the dimension of the
porous structure of a medium, and this is the basis for the Darcy’s law [15]. According
to this law, the driving force necessary to move a specific volume of fluid at a certain
speed through a porous medium is in equilibrium with the resistance generated by
internal friction between the fluid and the pore structure. Mathematically, the Darcy
law takes the form

u = −K

μ
∇ p, (1)

where u and p represent the filter velocity and pressure, K is the permeability of
the porous medium and μ is the dynamic coefficient of viscosity. In the presence an
external force f , Eq. (1) can be written as

u = K

μ
( f − ∇ p), (2)

In the case of a homogeneous, isotropic porous medium, the flow governed by this
modified Darcy law is of potential type rather than a boundary layer type. This law
is valid for a densely packed porous medium whose permeability is very low. The
Darcy model takes into account only the frictional force offered by the solid particles
to the fluid rather than the usual viscous shear, so this law is only valid if a variety
of the conditions are being met, and therefore, it is not applicable in many physically
relevant settings. For instance, as a first-order PDE for the velocity, Darcy’s equation
cannot sustain the no-slip boundary condition imposed on an impermeable boundary.
The existence of shear within the porous medium was experimentally demonstrated
by Beavers et al. [9], near the boundaries, thus forming a zone of shear influenced by
fluid flow. The Darcy equation cannot predict the existence of such a boundary zone
because there is not a macroscopic shear term included in the equation. Thus, to take
into account the shear, Eq. (2) was generalized by Slattery [27] and Tam [28] taking
the form

− μ

K
u + μeΔu = ∇ p − f , (3)

where μe is the effective viscosity of the fluid in the porous medium and is a function
of the porosity, φ. This is the most suitable governing equation for an incompressible
creeping flow of a Newtonian fluid within an isotropic, homogeneous porous medium.
This equation, originally proposed by Brinkman [10], was justified by Childress [13],
Lundgren [19] and Saffman [26]. The Brinkman equation (3) is physically consis-
tent with the previously mentioned experimentally observed boundary shear zone on
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account of the usual viscous shear force. The Brinkman model is valid for a sparsely
packed fluid-saturated porous medium wherein there is more window for a fluid to
flow so that the distortion of velocity gives rise to the usual viscous shear force.

Also, if the effects of inertia are important for the process (e.g., due to the curvilin-
earity of the flow path), the Darcy’s law again cannot be applied. As the inertia force
increases relative to the viscous force, the streamlines becomemore distorted and drag
increases more rapidly than linearly with velocity. At present, there are several differ-
ent views as to how the Darcymodel should be generalized to include the inertia effect.
Lapwood [18] gave a mathematical form incorporating the convective inertial term,
ρ

φ2 (u · ∇)u in the momentum equation, where ρ is the fluid density (see also Nield
and Bejan [24]). Thus, in such situation when viscous shear and macroscopic inertial
effects are significant, it has been customary to use the so called Darcy–Lapwood–
Brinkman (DLB) equation to model the porous medium flow. This model takes the
form:

− μeΔu + ∇ p + μ

K
u = f − ρ

φ2 (u · ∇)u, (4)

div u = 0. (5)

Note that the second-order DLB equation (4) is capable of handling the presence
of the solid boundary on which the no-slip condition for the velocity is imposed.
Moreover, the effects of flow inertia are also being incorporated making model (4),
(5) an important generalization of the Darcy law that has sound physical basis.

We observe that in the absence of viscous shear, Eq. (4) is known as the Darcy–
Lapwood equation. If quadratic drag is incorporated in the system, then the above
equation becomes

−μeΔu + ∇ p + μ

K
u + ρCb√

K
|u|u = f − ρ

φ2 (u · ∇)u,

whereCb is the is the dimensionless quadratic drag coefficient. This equation is known
as Darcy–Lapwood–Brinkman–Forchheimer model. If the Reynolds number Re is
very small, then the quadratic drag can be neglected. If Re ≈ O(1), then the quadratic
drag law holds. For high Reynolds numbers, we will have to use a cubic drag law.

In this paper, we consider that the Reynolds number Re is very small (the quadratic
drag can be neglected), and sowe study theDarcy–Lapwood–Brinkmanmodel. Due to
nonlinearity of Eq. (4), the Darcy–Lapwood–Brinkmanmodel has beenmostly treated
numerically (see, e.g., Chen et al. [12], Khalilli et al. [17], Umawathi et al. [30]).
Analytical treatments are sparse and address only simple 2D fractures with plane-
parallel walls under additional assumptions which linearize the momentum equation
(4). We refer the reader to the papers by Hamdan et al. [7,21]. In view of that, the goal
of this paper is to analyze the 3D fluid flow through a thin layer of porous medium
sandwiched between two corrugated walls and governed by (4), (5). First, in Sect. 2,
we study the flow in a thin constricted fracture without boundary oscillations, namely:

Ωε =
{
(x ′, x3) ∈ R

2 × R : x ′ ∈ ω, εh− (
x ′) < x3 < εh+ (

x ′)} . (6)
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Hereω is a smooth bounded open set inR2, while h− and h+ are smooth functions such
that h+ > h− on ω. Assuming that permeability K = Kε may depend on the small
parameter ε, we employ a homogenization technique with respect to ε and rigorously
derive three different effective models (see Theorem 1):

– If Kε ≈ ε2, i.e., when the permeability is of order ε2, we obtain a 2D Darcy law as
an effective model including the effects of the domain’s geometry and the porous
structure.

– If Kε � ε2, we obtain a 2D pressure-driven Darcy law as an effective model not
accounting the effects of the Brinkman (viscous) term.

– If Kε � ε2, we obtain no contribution of the porous structure at the macroscopic
model. As a result, we obtain a solution in the form of the Poiseuille flow.

We observe that the convective inertial term does not contribute to in the macroscopic
models, and only the Darcy and Brinkman terms appear.

Most recently, Pažanin and Siddheshwar [25] considered the similar problem, but
in the case of the 2D flow. It is worth mentioning that the effective expression in the
critical case provided in Theorem 1 is consistent with the one formally obtained in
[25] via two-scale expansion method.
Section 3 is the central part of the present work. Here, we introduce the oscillations
at the top and the bottom of the flow domain; namely, we assume that the period of
the oscillations has the same small order as the domain thickness. In view of that, the
domain to be considered is the following:

Λε =
{
(x ′, x3) ∈ R

2 × R : x ′ ∈ ω, εh−
(
x ′

ε

)
< x3 < εh+

(
x ′

ε

)}
, (7)

for periodic functions h− and h+. As above, we aim to determine the asymptotic
behavior (as ε → 0) of the flowgoverned by (4), (5), nowposed inΛε . The proof of our
results is based on an adaptation of the unfolding method (see Arbogast et al. [6], and
Cioranescu et al. [14]), which is strongly related to the two-scale convergence method
(see Allaire [2], Nguetseng [23] and also Marušić-Paloka et al. [20]). The unfolding
method has been extensively used to study periodic homogenization problems where
the size of the periodic cell tends to zero. We refer the reader to a recent works by
Anguiano and Suárez-Grau [3–5]. The basic idea is to introduce suitable changes of
variables which transform every periodic cell into a simpler reference set by using a
supplementary variable (microscopic variable). In the present setting, it is necessary to
combine the unfoldingmethodwith a rescaling in the height variable in order to be able
to work with a domain of a fixed height. In particular, due to the boundary oscillations,
an extension operator needs to be constructed in order to extend the pressure to an ε-
independent domain. Consequently, wemanage to identify the critical size and later on
the effects of the microstructure (boundary oscillations) in the corresponding effective
equations. It turns out that the critical size is exactly the same as the one we obtain for
the non-oscillatory case. Moreover, depending on the magnitude of the permeability
Kε with respect to ε, we derive three different characteristic cases (see Theorem 2):
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– If Kε ≈ ε2, we obtain a 2D Darcy law as an effective model which includes both
the effects of the porous structure and the boundary oscillations given by the local
Darcy–Brinkman problems in 3D.

– If Kε � ε2, we obtain a 2D pressure-driven Darcy law as an effective model not
accounting the effects of the Brinkman (viscous) term, but including the effects of
the boundary oscillations provided by the local Hele-Shaw problems in 2D.

– If Kε � ε2, as in the non-oscillatory case, we obtain no contribution of the porous
structure at the effective model, but here the effects of the boundary oscillations
are present through local Stokes problems in 3D.

We remark that convective inertial term also vanishes in the limit, and so only the
Darcy and Brinkman terms contribute to the macroscopic models depending on the
relation between ε and Kε.

To conclude, we believe that the analysis presented in this paper is instrumental
for understanding the effective behavior of the porous medium flow in thin domains
with highly oscillating boundaries. As emphasized above, by considering the (non-
linear) Darcy–Lapwood–Brinkman equation, the important features have been taken
into account that cannot be captured by a classical Darcy’s law. Consequently, the
considered flow naturally finds applications both in industry (chemical reactors, heat
exchangers, filtering equipment, etc.) and in geophysical problems; see [24] and the
references therein. By employing a homogenization technique, the averaged effects
of the boundary oscillations and the porous structure have been elegantly deduced. It
should be mentioned that such homogenized system is of practical interest for devel-
oping numerical codes since it allows to filter out the small scales of the boundary,
having a high computational cost. In view of that, we hope that our results could have
an impact on the known engineering practice.

2 Non-oscillatory Case

Throughout the text, the points x ∈ R
3 will be decomposed as x = (x ′, x3) with

x ′ ∈ R
2, x3 ∈ R. Correspondingly, for the functions we use the same notation U =

(U ′,U3), U ′ ∈ R
2.

In this section, we study the flow of a viscous fluid in the domain Ωε given by

Ωε =
{
(x ′, x3) ∈ R

3 : x ′ ∈ ω, εh−(x ′) < x3 < εh+(x ′)
}

,

where h−, h+ ∈ C1(ω)∩C(ω) such that h+ > h− on ω. We suppose that the fracture
Ωε is filled by a fluid-saturated sparsely packed porous medium. As explained in
Introduction, the flow through the porousmedium ismodeled by theDarcy–Lapwood–
Brinkman (DLB) equation. In view of that, let us consider a sequence (uε, pε) ∈
H1
0 (Ωε)

3 × L2(Ωε) satisfying

−μeΔuε + ∇ pε + μ

Kε

uε = f − ρ

φ2 (uε · ∇)uε,

div uε = 0. (8)
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To complete the problem, we impose a standard no-slip boundary condition

uε = 0 on ∂Ωε. (9)

The right-hand side f is of the form

f (x) = ( f ′(x ′), 0), a.e. x ∈ ω,

where f is assumed to be in L2(ω × (h−
min, h

+
max))

2. Such choice of f is usual and
justified when we deal with thin domains. Indeed, since the thickness of the domain
is small, then the vertical component of the force can be neglected and, moreover, the
force can be considered independent of the vertical variable.

Using standard techniques (see, e.g., Galdi [16]), it can be established that (8), (9)
have at least one solution (uε, pε) ∈ H1

0 (Ωε)
3 × L2

0(Ωε). The space L2
0(Ωε) is the

space of functions of L2(Ωε) with null integral. Our aim is to study the asymptotic
behavior of uε and pε when the thickness ε tends to zero, taking into account the
magnitude of Kε with respect to ε. For this purpose, we use the dilatation in the
vertical variable x3:

y3 = x3
ε

, (10)

in order to have the functions defined in an open set independent of ε and with height
of order one:

Ω =
{
(x ′, y3) ∈ R

3 : x ′ ∈ ω, h−(x ′) < y3 < h+(x ′)
}

.

We define ũε ∈ H1
0 (Ω)3, p̃ε ∈ L2(Ω)/R by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x ′, y3) ∈ Ω.

In view of (10), system (8) can be rewritten in Ω as

⎧
⎨
⎩

−μeΔx ′ ũε − ε−2μe∂
2
y3 ũε + ∇x ′ p̃ε + ε−1∂y3 p̃εe3 + μ

Kε

ũε = f ′ − ρ

φ2 (ũε · ∇ε)ũε,

divx ′ ũ′
ε + ε−1∂y3 ũε,3 = 0

(11)

with no-slip boundary condition on ∂Ω , i.e.,

ũε = 0 on ∂Ω. (12)

The asymptotic behavior of the sequence (ũε, p̃ε) is provided in the following result:

Theorem 1 We distinguish three characteristic cases:
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(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, then (ũε/ε

2, p̃ε) converges
weakly, as ε tends to zero, in H1(h−, h+; L2(ω)3)×L2

0(ω) to (ũ, p̃), with ũ3 = 0
and ũ = 0 on y3 = h−, h+. Moreover, p̃ ∈ H1(ω) and (Ũ ′(x ′), p̃(x ′)) is the
solution of the effective problem

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ũ ′(x ′) = 2K AM (x ′)
Mμ

(
f ′(x ′) − ∇x ′ p̃(x ′)

)
in ω,

divx ′Ũ ′(x ′) = 0 in ω,

Ũ ′(x ′) · n = 0 on ∂ω,

(13)

where Ũ (x ′) =
∫ h+(x ′)

h−(x ′)
ũ(x ′, y3) dy3, M =

√
μ

K μe
and the function AM (x ′) is

given by

AM (x ′) = 2 − eMh+(x ′)−Mh−(x ′) − eMh−(x ′)−Mh+(x ′)

eMh+(x ′)−Mh−(x ′) − eMh−(x ′)−Mh+(x ′)

= 1 − ch(Mh+(x ′) − Mh−(x ′))
sh(Mh+(x ′) − Mh−(x ′))

. (14)

(ii) if Kε � ε2, then (ũε/ε
2, (Kε/ε

2) p̃ε) converges weakly, as ε tends to zero, in
H1(h−, h+; L2(ω)3)×L2

0(ω) to (ũ, p̃), with ũ3 = 0 and ũ = 0 on y3 = h−, h+.
Moreover, p̃ ∈ H1(ω) and (Ũ , p̃) is the unique solution of the effective problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ũ ′(x ′, y3) = − A0(x ′)
μ

∇x ′ p̃(x ′) in ω,

Ũ3(x ′) = 0 in ω,

divx ′ Ũ (x ′) = 0 in ω,

Ũ (x ′) · n = 0 on ∂ω,

(15)

where Ũ (x ′) =
∫ h+(x ′)

h−(x ′)
ũ(x ′, y3) dy3 and the function A0(x ′) is given by

A0(x
′) = h+(x ′) − h−(x ′).

(iii) if Kε � ε2, then (ũε/ε
2, p̃ε) converges weakly, as ε tends to zero, in

H1(h−, h+; L2(ω)3)×L2
0(ω) to (ũ, p̃), with ũ3 = 0 and ũ = 0 on y3 = h−, h+.
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Moreover, p̃ ∈ H1(ω) and (Ũ , p̃) is the unique solution of the effective problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ũ ′(x ′) = A∞(x ′)
12μe

(
f ′(x ′) − ∇x ′ p̃(x ′)

)
in ω,

Ũ3(x ′) = 0 in ω,

divx ′ Ũ ′(x ′) = 0 in ω,

Ũ ′(x ′) · n = 0 on ∂ω,

(16)

where Ũ (x ′) =
∫ h+(x ′)

h−(x ′)
ũ(x ′, y3) dy3 and the function A∞(x ′) is given by

A∞(x ′) = h+(x ′)3 − 3h−(x ′)3 − 3
(
h+(x ′)2h−(x ′) − h+(x ′)h−(x ′)2

)
.

2.1 Proof of Theorem 2.1

Let us first fix some notation.
We denote by : the full contraction of two matrices, namely for A = (ai, j )1≤i, j≤2

and B = (bi, j )1≤i, j≤2, we have A : B = ∑2
i, j=1 ai j bi j .

We denote by Oε a generic real sequence which tends to zero with ε and can change
from line to line.

We denote by C a generic positive constant which can change from line to line.
A priori estimates: First, we need to derive the a priori estimates for uε. To accomplish
this, we employ some technical results which can be verified straightforwardly by a
simple change of variables (for the proof, see [20], Lemmas 8 and 11):

Lemma 1 The following estimates hold:

‖ϕε‖L2(Ωε)3
≤ Cε‖Dϕε‖L2(Ωε)3×3 , (17)

‖ϕε‖L4(Ωε)3
≤ Cε

1
2 ‖Dϕε‖L2(Ωε)3×3, (18)

Now, we prove the sharp a priori estimates for the velocity uε.

Proposition 1 For uε satisfying system (8), (9),

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞ or Kε � ε2, it holds

‖uε‖L2(Ωε)3
≤ Cε

5
2 . (19)

(ii) if Kε � ε2, it holds

‖uε‖L2(Ωε)3
≤ Cε

3
2 K

1
2
ε . (20)
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Moreover, in every case it holds

‖Duε‖L2(Ωε)3×3 ≤ Cε
3
2 . (21)

Proof We consider uε as test function in the weak formulation of problem (8), and so
we get

μe

∫

Ωε

|Duε|2 dx + μ

Kε

∫

Ωε

|uε|2 dx =
∫

Ωε

f ′(x ′) · u′
ε dx . (22)

Using the Cauchy–Schwarz inequality, f ′ ∈ L2(ω)2 and (17), we deduce

∣∣∣∣
∫

Ωε

f ′(x ′) · u′
ε dx

∣∣∣∣ ≤ Cε
3
2 ‖Duε‖L2(Ωε)3×3 ,

leading to

μe

∫

Ωε

|Duε|2 dx + μ

Kε

∫

Ωε

|uε|2 dx ≤ Cε
3
2 ‖Duε‖L2(Ωε)3×3 . (23)

On the one hand, this implies that (21) holds. Consequently, using (17), we get

‖uε‖L2(Ωε)3
≤ Cε

5
2 . (24)

On the other hand, using (21) in (23), we also obtain

‖uε‖L2(Ωε)3
≤ Cε

3
2 K

1
2
ε . (25)

From (24) and (25), we have that

‖uε‖L2(Ωε)3
≤ C

(
ε

5
2 + ε

3
2 K

1
2
ε

)
.

We compare ε
5
2 with respect to ε

3
2 K

1
2
ε and observe that the critical case is when

Kε ≈ ε2 which gives estimate (19). In the subcritical case Kε � ε2, we also deduce
(19), while in the supercritical case we deduce (20). ��
Corollary 1 For ũε satisfying system (11), (12),

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, or Kε � ε2, the following

estimate holds

‖ũε‖L2(Ω)3 ≤ Cε2. (26)
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(ii) if Kε � ε2, the following estimate holds

‖ũε‖L2(Ω)3 ≤ Cε K
1
2
ε . (27)

Moreover, in every cases it holds

‖Dx ′ ũε‖L2(Ω)2×3 ≤ Cε, ‖∂y3 ũε‖L2(Ω)3 ≤ Cε2. (28)

Proof Estimates (26), (27) and (28) are easily obtained from (19), (20) and (21),
respectively, by applying the change of variable (10). ��

Now, we prove the a priori estimates for the pressure pε. For this, we need one
more technical lemma addressing the auxiliary divergence problem (see Lemma 20
from [20]).

Lemma 2 The problem

⎧
⎨
⎩
div ϕε = fε ∈ L2

0(Ωε) in Ωε,

ϕε = 0 on ∂Ωε,

(29)

has a solution ϕε ∈ H1
0 (Ωε)

3 such that

‖ϕε‖L2(Ωε)3
≤ C‖ fε‖L2(Ωε)

, ‖Dϕε‖L2(Ωε)3×3 ≤ C

ε
‖ fε‖L2(Ωε)

. (30)

Proposition 2 For pε satisfying system (8), (9),

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, or Kε � ε2, we have

‖pε‖L2(Ωε)
≤ Cε

1
2 , (31)

(ii) if Kε � ε2, we have

‖pε‖L2(Ωε)
≤ C

ε
5
2

Kε

. (32)

Proof We introduce ϕε as the solution of the auxiliary problem

div ϕε = pε ∈ L2
0(Ωε) in Ωε, ϕε = 0 on ∂Ωε.

According to Lemma 2, such problem has at least one solution such that

‖ϕε‖L2(Ωε)3
≤ C‖pε‖L2(Ωε)

, ‖Dϕε‖L2(Ωε)3×3 ≤ C

ε
‖pε‖L2(Ωε)

.

123



Homogenization of the Darcy–Lapwood–Brinkman Flow in a... 3083

We multiply system (8) by ϕε, and integrating over Ωε, we obtain

‖pε‖2L2
0(Ωε)

=
∣∣∣∣
∫

Ωε

pε div ϕε dx

∣∣∣∣

≤
∣∣∣∣μe

∫

Ωε

Duε : Dϕε dx

∣∣∣∣ +
∣∣∣∣
∫

Ωε

f · ϕε dx

∣∣∣∣

+
∣∣∣∣
μ

φ2

∫

Ωε

(uε · ∇)ũε ϕε dx

∣∣∣∣ +
∣∣∣∣

μ

Kε

∫

Ωε

uε · ϕε dx

∣∣∣∣ . (33)

Taking into account estimate (21) and Lemma 2, we have

∣∣∣∣μe

∫

Ωε

Duε : Dϕε dx

∣∣∣∣ ≤ C‖Duε‖L2(Ωε)3×3‖Dϕε‖L2(Ωε)3×3 ≤ Cε
1
2 ‖pε‖L2

0(Ωε)
.

Similarly, we obtain

∣∣∣∣
∫

Ωε

f · ϕε dx

∣∣∣∣ ≤ Cε
1
2 ‖pε‖L2

0(Ωε)
.

For the convective term, from estimate (21) and employing inequalities (17) and (18)
and Lemma 2, we deduce

∣∣∣∣
μ

φ2

∫

Ωε

(uε · ∇)uε ϕε dx

∣∣∣∣ ≤ C‖Duε‖L2(Ωε)3×3‖uε‖L4(Ωε)3
‖ϕε‖L4(Ωε)3

≤ Cε
5
2 ‖Dϕε‖L2(Ωε)3

≤ Cε
3
2 ‖pε‖L2

0(Ωε)
.

Finally, we get

∣∣∣∣
μ

Kε

∫

Ωε

uε · ϕε dx

∣∣∣∣ ≤ C‖uε‖L2(Ωε)3
‖ϕε‖L2(Ωε)3

.

Depending on the magnitude of Kε with respect to ε, we conclude:

– if Kε ≈ ε2, estimates (17), (19) and Lemma 2 yield

∣∣∣∣
μ

Kε

∫

Ωε

uε · ϕε dx

∣∣∣∣ ≤ Cε
1
2 ‖pε‖L2(Ωε)

.

– if Kε � ε2, using estimate (19), we get

∣∣∣∣
μ

Kε

∫

Ωε

uε · ϕε dx

∣∣∣∣ ≤ C
ε

5
2

Kε

‖pε‖L2(Ωε)
.
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– if Kε � ε2, using estimate (20), we get

∣∣∣∣
μ

Kε

∫

Ωε

uε · ϕε dx

∣∣∣∣ ≤ C
ε

3
2

K
1
2
ε

‖pε‖L2(Ωε)
.

Thus, in view of (33), we deduce that if Kε ≈ ε2 or Kε � ε2, we have

‖pε‖L2(Ωε)
≤ Cε

1
2 .

Finally, if Kε � ε2, we get

‖pε‖L2(Ωε)
≤ C

ε
5
2

Kε

.

��
Corollary 2 For p̃ε satisfying system (11), (12),

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞ or Kε � ε2, we have

‖ p̃ε‖L2(Ω) ≤ C, (34)

(ii) if Kε � ε2, we have

‖ p̃ε‖L2(Ω) ≤ C
ε2

Kε

. (35)

Proof Estimates (34) are (35) are easily obtained from (34) and (35) by applying the
change of variables (10). ��

Some compactness results: From the a priori estimates of (ũε, p̃ε), we can deduce
the following compactness results:

Lemma 3 For ũε satisfying system (11), (12), there exists ũ ∈ H1(h−, h+; L2(ω))3

where ũ3 = 0 and ũ = 0 on y3 = h−, h+, such that

ũε

ε2
⇀(ũ′, 0) in H1(h−, h+; L2(ω))3 as ε → 0, (36)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

divx ′

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
= 0 in ω,

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
· n = 0 on ∂ω.

(37)
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Proof We divide the proof in three steps.
Step 1 Let us begin with the cases Kε ≈ ε2 and Kε � ε2. Estimates (26) and (28)

imply the existence of ũ ∈ H1(h−, h+; L2(ω)3), such that, up to a subsequence, we
have convergence (36). Consequently,

1

ε2
divx ′ ũ′

ε⇀divx ′ ũ′ in H1(h−, h+; H−1(ω)). (38)

Since divεũε = 0 in Ω , multiplying by ε−2 we obtain

1

ε2
divx ′ ũ′

ε + 1

ε3
∂y3 ũε,3 = 0, in Ω, (39)

which, combined with (38) implies that ∂y3 ũε,3/ε
3 is bounded in H1(h−, h+;

H−1(ω)). This implies that ∂y3 ũε,3/ε
2 tends to zero in H1(h−, h+; H−1(ω)). Also,

from (36), we have that ∂y3 ũε,3/ε
2 tends to ∂y3 ũ3 in L2(Ω). From the uniqueness

of the limit, we have that ∂y3 ũ3 = 0, which implies that ũ3 does not depend on y3.
Moreover, the continuity of the trace applications from the space of functions v such
that ‖ṽ‖L2 and ‖∂y3 ṽ‖L2 are bounded to L2(ω×{h−}) and L2(ω×{h−}) implies that
the values of ũε,3 on the boundary ω × {h−} and ω × {h+} which are constant are
preserved by letting ε tend to zero. Thus, ũ3 = 0 on ω × {h−} and ω × {h+}. This
together with the fact that ũ3 is independent of y3 gives that ũ3 = 0.

Step 2 In the case Kε � ε2, from the second estimate in (28), we can deduce that
there exists ũ ∈ H1(h−, h+; L2(ω)3) such that (36) holds.

Taking into account this convergence, estimate (27) and that ε−1K
− 1

2
ε ũε =

ε K− 1
2 ũε/ε

2, we deduce that ε−1K
− 1

2
ε ũε tends to zero.

Proceeding as the previous cases, we can deduce that ũ3 = 0 in Ω .
Step 3 In this step, we prove (37). To do this, we consider ϕ ∈ C1

c (ω) as test function
in divεũε = 0 in Ω , which multiplying by ε−2 gives

1

ε2

∫

Ω

divx ′ ũ′
ε ϕ(x ′) dx ′dy3 = 0.

Now, from (36), we get (37). ��
Lemma 4 For p̃ε satisfying system (11), (12),

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, or Kε � ε2, there exists

p̃ ∈ L2
0(Ω) such that

p̃ε⇀ p̃ in L2(Ω), as ε → 0. (40)

(ii) if Kε � ε2, then there exists p̃ ∈ L2
0(Ω) such that

Kε

ε2
p̃ε⇀ p̃ in L2(Ω), as ε → 0. (41)
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Proof Taking into account estimates (34) and (35), assertions (40) and (41) follow
directly. ��

We are now able to prove the main result of this section:

Proof (Proof of Theorem 1) First of all, applying the change of variables (10) to estimate
(18), and using estimate (28), we deduce that

∣∣∣∣
∫

Ω

(ũε · ∇ε)ũε v dx ′dy3
∣∣∣∣ ≤ ‖ũε‖L4(Ω)3‖Dεũε‖L2(Ω)3×3‖vε‖L4(Ω)3

≤ ε‖Dεũε‖2L2(Ω)3×3‖Dεvε‖L2(Ω)3×3

≤ ε2‖Dvε‖L2(Ω)3×3 = Oε. (42)

Now, we choose a test function ϕ(x ′, y3) ∈ D(Ω)3. Multiplying (11) by ϕ(x ′, y3),
integrating by parts and taking into account the above estimate, we have

−μe

∫

Ω

Dx ′ ũε : Dx ′ϕ dx ′dy3 − μ

ε2

∫

Ω

∂y3 ũε : ∂y3ϕ dx ′dy3 +
∫

Ω

p̃ε divx ′ϕ′ dx ′dy3

+1

ε

∫

Ω

p̃ε ∂y3v3 dx
′dy3 − μ

Kε

∫

Ω

ũε · v dx ′dy3 =
∫

Ω

f ′ · v′ dx ′dy3 + Oε. (43)

The above variational formulation will be useful in the following.
We proceed in three steps depending on the magnitude of Kε with respect to ε.
Step 1 Critical case Kε ≈ ε2, with Kε/ε

2 → K , 0 < K < +∞.
First, we prove that p̃ does not depend on the variable y3. To do this, in (43) we

consider as a test function ϕε(x ′, y3) = (0, εϕ3(x ′, y3)). Passing to the limit and using
(36) and (40), we arrive at

∫

ω×Y
p̃ ∂y3ϕ3 dx

′dy = 0

confirming that p̃ does not depend on y3.
Now, we choose a test function ϕ(x ′, y3) = (ϕ′(x ′, y3), 0) in (43) satisfying con-

dition (37). By doing that, we can use convergences (36) and (40). When passing to
the limit in (43), we take into account that 1

K 2
ε

= ε2

Kε

1
ε2

and that p̃ does not depend on

y3. As a result, we obtain

− μe

∫

Ω

∂y3 ũ
′ · ∂y3ϕ

′ dx ′dy3 − μ

K

∫

Ω

ũ · ϕ dx ′dy3 =
∫

Ω

f ′ · ϕ′ dx ′dy3. (44)
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By density, (44) holds for every function v in the Hilbert space V defined by

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(x ′, y3) ∈ H1(h−, h+; L2(ω)3), such that

divx ′

(∫ h+(x ′)

h−(x ′)
ϕ(x ′, y3)dy3

)
= 0 in ω,

(∫ h+(x ′)

h−(x ′)
ϕ(x ′, y3)dy3

)
· n = 0 on ω

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Due toLax–Milgram lemma, variational formulation (44) in theHilbert spaceV admits
a unique solution ũ in V . Following the same arguments as in [1], the orthogonal of V
with respect to the usual scalar product in H1(h−, h+; L2(ω)3) is made of gradients
of the form ∇x ′ q̃(x ′), with q̃(x ′) ∈ L2

0(ω). Therefore, using the integration by parts,
variational formulation (44) is equivalent to the effective system

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−μe∂
2
y3 ũ

′(x ′, y3) + μ
K ũ′(x ′, y3) = f ′(x ′) − ∇x ′ p̃(x ′) in Ω,

divx ′

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
= 0 in ω,

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
· n = 0 on ∂ω.

(45)

It remains to prove that the pressure q̃(x ′) arising as a Lagrange multiplier of the

incompressibility constraint divx ′(
∫ h+(x ′)
h−(x ′) ϕ(x ′, y3)dy3) = 0 is the same as the limit of

the pressure p̃ε. This can be easily done by multiplying Eq. (11) by a test function and
identifying limits. Since (13) admits a unique solution, then the complete sequence
(ũε/ε

2, p̃ε) converges to the unique solution (ũ(x ′, y3), p̃(x ′)). This gives the desired
result.

Since (45)1 can be viewed as a linear second-order ODE (with constant coefficients)
with respect to y3, we get

ũ′(x ′, y3) = K

μ

(
A1(x

′)eMy3 + A2(x
′)e−My3 − 1

) (
∇x ′ p̃(x ′) − f ′(x ′)

)
.

Here, we introduce M =
√

μ
K μe

, while the unknown functions A1(x ′), A2(x ′) are

given by

A1(x
′) = e−Mh−(x ′) − e−Mh+(x ′)

eMh+(x ′)−Mh−(x ′) − eMh−(x ′)−Mh+ ,

A2(x
′) = − eMh−(x ′) − eMh+(x ′)

eMh+(x ′)−Mh−(x ′) − eMh−(x ′)−Mh+ .

By a simple integration with respect to y3 from h−(x ′) to h+(x ′), we obtain (13).
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Step 2 Subcritical case Kε � ε2. Similarly to the previous case, it can be proved
that p̃ does not depend on y3. In order to obtain the effective model, we take as a test
function ϕε(x ′, y3) = (Kε/ε

2ϕ′(x ′, y3), 0) in (43) with ϕ′ satisfying (37). Thus, we
can use convergences (36) and (41). When passing to the limit, we take into account
that Kε/ε

2 → 0 to obtain

μ

∫

Ω

ũ · ϕ dx ′dy3 = 0. (46)

Again, by density, (46) holds for every function ϕ in the Hilbert space V . Proceeding
as above, the variational formulation (46) is equivalent to the effective system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ũ′(x ′, y3) = − 1
μ
∇x ′ p̃(x ′) in Ω,

divx ′

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
= 0 in ω,

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
· n = 0 on ∂ω,

(47)

which, after integrating with respect to y3, gives (15).
Step 3 Supercritical case Kε � ε2. Similarly as above, it can be proved that p̃ does

not depend on y3. Proceeding as in Step 1 and taking into account that ε2/Kε → 0,
we obtain

− μe

∫

Ω

∂y3 ũ
′ : ∂y3ϕ

′ dx ′dy3 =
∫

Ω

f ′ · ϕ′ dx, (48)

which is equivalent to the effective problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−μe∂
2
y3 ũ

′(x ′) = f ′ − ∇x ′ p̃(x ′) in ω,

divx ′

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
= 0 in ω,

(∫ h+(x ′)

h−(x ′)
ũ′(x ′, y3)dy3

)
· n = 0 on ∂ω

(49)

implying that

u(x ′, y3) = (h+(x ′) − y3)(y3 − h−(x ′))
2μe

( f ′(x ′) − ∇x ′ p̃(x ′)),

which, after integrating with respect to y3, gives (16). ��
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3 Oscillatory Case

In this section, we investigate the asymptotic behavior of a viscous fluid in the domain
with highly oscillating boundaries, namely

Λε =
{
(x ′, x3) ∈ R

3 : x ′ ∈ ω, εh−
(
x ′

ε

)
< x3 < εh+

(
x ′

ε

)}
.

In this setting, we consider h−, h+, with h− < h+, to be smooth functions defined
for y′ in R

2, Y ′-periodic, where Y ′ = (−1/2, 1/2)2 is the 2D cell of periodicity. We
define the 3D basic cell

Y =
{
y ∈ R

3 : y′ ∈ Y ′, h−(y′) < y3 < h+(y′)
}

.

We define the values h−
min, h

+
max as

h−
min = min

y′∈Y ′ h
−(y′) h+

max = max
y′∈Y ′ h

+(y′). (50)

We denote by L2
�(Y ), H1

� (Y ), the functional spaces

L2
�(Y ) =

{
v ∈ L2

loc(Y ) :
∫

Y
|v|2dy < +∞,

v(y′ + k′, y3) = v(y)∀k′ ∈ Z
2, a.e. y ∈ Y

}

and

H1
� (Y ) =

{
v ∈ H1

loc(Y ) ∩ L2
�(Y ) :

∫

Y
|∇yv|2dy < +∞

}
.

As in Sect. 2, the porous medium flow is modeled by the Darcy–Lapwood–
Brinkman equation (8), (9), nowposed inΛε . In view of that, let us consider a sequence
(uε, pε) ∈ H1

0 (Λε)
3 × L2(Λε), which satisfies

{
−μeΔuε + ∇ pε + μ

Kε

uε = f ′ − ρ

φ2 (uε · ∇)uε,

div uε = 0
(51)

endowed with

uε = 0 on ∂Λε. (52)

As commented in Sect. 2, system (51), (52) has a unique solution (uε, pε) ∈
H1
0 (Λε)

3 × L2
0(Λε).
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Our goal is to find the asymptotic behavior of uε and pε when ε → 0, depending
on the magnitude of Kε with respect to ε. For this purpose, we introduce the dilated
variable y3 = x3

ε
in order to have the functions defined in an open set with a height of

order one:

Λ̃ε =
{
(x ′, y3) ∈ R

3 : x ′ ∈ ω, h−
(
x ′

ε

)
< y3 < h+

(
x ′

ε

)}
.

In view of that, the functions ũε ∈ H1
0 (Λ̃ε)

3, p̃ε ∈ L2
0(Λ̃ε) are defined by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x ′, y3) ∈ Λ̃ε.

As a consequence, system (51) can be rewritten in Λ̃ε:
⎧⎨
⎩

−μeΔx ′ ũε − ε−2μe∂
2
y3 ũε + ∇x ′ p̃ε + ε−1∂y3 p̃εe3 + μ

Kε
ũε = f ′ − ρ

φ2 (ũε · ∇ε)ũε

divx ′ ũ′
ε + ε−1∂y3 ũε,3 = 0

(53)

with no-slip boundary condition on ∂Λ̃ε, i.e.,

ũε = 0 on ∂Λ̃ε. (54)

It is essential to observe that the sequence of solutions (ũε, p̃ε) ∈ H1(Λ̃ε)
3 ×

L2
0(Λ̃ε) is not defined in a fixed domain (independent of ε) but in Λ̃ε which varies

with respect to ε. In order to pass the limit, the convergences in fixed Sobolev spaces
(defined in an ε-independent set Λ̃) are to be employed which requires first that (ũε,
p̃ε) be extended to the whole domain

Λ̃ =
{
(x ′, y3) ∈ R

3 : x ′ ∈ ω, h−
min < y3 < h+

max

}
.

Here h−
min and h+

max are defined by (50).
The main result of the paper can be formulated as follows:

Theorem 2 We distinguish the three characteristic cases:

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, then the extension (ṽε/ε

2, P̃ε)

converges weakly, as ε tends to zero, in H1(h−
min, h

+
max; L2(ω)3) × L2

0(ω) to
(ṽ, P̃), with ṽ3 = 0 and ṽ′ = 0 on y3 = h−

min, h
+
max. Moreover, P̃ ∈ H1(ω) and

(Ṽ ′(x ′), P̃(x ′)) is the solution of the effective problem

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ṽ ′(x ′) = K
μ
AM

(
f ′(x ′) − ∇x ′ P̃(x ′)

)
in ω,

Ṽ3(x ′) = 0
divx ′ Ṽ ′(x ′, y3) = 0 in ω,

Ṽ ′(x ′, y3) · n = 0 on ∂ω.

(55)
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where Ṽ (x ′) = ∫ h+
max

h−
min

ṽ(x ′, y3) dy3 and AM ∈ R
2×2 → R

2 is symmetric, positive

definite and defined by its entries:

(AM )i j =
∫

Y
Dwi (y) : Dyw

j (y) dy, i, j = 1, 2. (56)

Here,wi (y) (i = 1, 2) denote the unique solutions in H1
� (Y )3 of the local Darcy–

Brinkman problems in 3D:

⎧
⎪⎪⎨
⎪⎪⎩

− 1
M2 Δyw

i + 1
M2μe

∇yqi + wi = ei in Y ,

divywi = 0 in Y ,

wi = 0 in y3 = h−(y′), h+(y′),
wi , π i Y ′ − periodic,

(57)

with M =
√

μ
Kμe

.

(ii) if Kε � ε2, then the extension (ṽε/ε
2, Kε/ε

2 P̃ε) converges weakly, as ε tends
to zero, in H1(h−

min, h
+
max; L2(ω)3) × L2

0(ω) to (ṽ, P̃), with ṽ3 = 0 and ṽ′ = 0
on y3 = h−

min, h
+
max. Moreover, P̃ ∈ H1(ω) and (Ṽ ′(x ′), P̃(x ′)) is the solution

of the effective problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṽ ′(x ′) = − A0
μ

∇x ′ P̃(x ′) in ω,

Ṽ3(x ′) = 0,
divx ′ Ṽ ′(x ′) = 0 in ω,

Ṽ ′(x ′) · n = 0 in ∂ω,

(58)

where Ṽ (x ′) =
∫ h+

max

h−
min

ṽ(x ′, y3) dy3 and A0 ∈ R
2×2 is a symmetric tensor defined

by its entries:

(A0)i j =
∫

Y ′
(ei + ∇y′qi )e j dy

′, i, j = 1, 2.

Here qi (y′) (i = 1, 2) denote the unique solutions in H1
� (Y ′

f )
2 of the local

Hele-Shaw problems in 2D:

⎧⎨
⎩

Δy′qi = 0 in Y ′
f ,

(∇y′qi + ei ) · n = 0 in ∂Y ′,
qi Y ′ − periodic.

(59)

(iii) if Kε � ε2, then the extension (ṽε/ε
2, P̃ε) converges weakly, as ε tends to zero,

in H1(h−
min, h

+
max; L2(ω)3) × L2

0(ω) to (ṽ, P̃), with ṽ3 = 0 and ṽ′ = 0 on
y3 = h−

min, h
+
max. Moreover, P̃ ∈ H1(ω) and (Ṽ ′(x ′), P̃(x ′)) is the solution of

the effective problem
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṽ ′(x ′) = A∞
μe

(
f ′(x ′) − ∇x ′ P̃(x ′)

)
in ω,

Ṽ3(x ′) = 0
divx ′ Ṽ ′(x ′, y3) = 0 in ω,

Ṽ ′(x ′, y3) · n = 0 on ∂ω.

(60)

where Ṽ (x ′) =
∫ h+

max

h−
min

ṽ(x ′, y3) dy3 and A∞ ∈ R
2×2 → R

2 is symmetric,

positive definite and defined by its entries:

(A∞)i j =
∫

Y
Dwi (y) : Dyw

j (y) dy, ∀ i, j = 1, 2. (61)

Here, wi (y) (i = 1, 2) denote the unique solutions in H1
� (Y )3 of the local Stokes

problems in 3D

⎧⎪⎪⎨
⎪⎪⎩

−Δyw
i + ∇yqi = ei in Y ,

divywi = 0 in Y ,

wi = 0 in y3 = h−(y′), h+(y′),
wi , π i Y ′ − periodic.

(62)

3.1 Proof of theMain Result

A priori estimates: Using the same arguments as in Sect. 2, we derive the a priori
estimates for ũε and p̃ε in Λ̃ε.

Lemma 5 For uε satisfying system (53), (54),

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞ or Kε � ε2, the following

estimate holds:

‖ũε‖L2(Λ̃ε)3
≤ Cε2. (63)

(ii) if Kε � ε2, the following estimate holds:

‖ũε‖L2(Λ̃ε)3
≤ CεK

1
2
ε . (64)

Moreover, in every cases, it holds

‖Dx ′ ũε‖L2(Λ̃ε)3×2 ≤ Cε, ‖∂y3 ũε‖L2(Λ̃ε)3
≤ Cε2. (65)

Now, we turn our attention to the pressure. As in the previous section, from Eq. (53)
we can obtain the estimate for the pressure pε. However, now the constantC appearing
in (30) depends on the domain Λε, and, thus, the estimate for the corresponding
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Fig. 1 Basic cell Y

y

y3

h+
max

y3 = h+(y )

y3 = h−(y )

YY +
m

Y +
f

S+

Γ+

pressure p̃ε may not be uniformly bounded when ε → 0. For that reason, the idea is
to extend the pressure p̃ε to the ε-independent domain Λ̃.
The Extension of (ũε, p̃ε) to the domain Λ̃ : It is easy to extend the velocity by zero
in Λ̃ \ Λ̃ε (this is compatible with its Dirichlet boundary condition on ∂Λ̃ε). We will
denote by ṽε the continuation of ũε in Λ̃. It is well known that extension by zero
preserves L2 and H1

0 norms. We note that the extension ṽε belongs to H1
0 (Λ̃)3.

However, extending the pressure is amuchmore difficult task. Tartar [29] introduced
a continuation of the pressure for a flow in porous media. This construction applies to
periodic holes in a domain Λ̃ε when each hole is strictly contained into the periodic cell.
In this context, we cannot use directly this result because the “holes” are along the top
and bottomboundaries ofΛε , andmoreover the scale of the vertical direction is smaller
than the scales of the horizontal directions. This fact will induce several limitations
in the results obtained by using the method, especially in view of the convergence
for the pressure. In this sense, for the case of Newtonian fluids in a domain with a
top boundary with roughness, Bayada and Chambat [8] and Mikelić [22] introduced
an operator Rε generalizing the results of Tartar [29] to this context. In our case, we
need an operator Rε between H1

0 (Qε)
3 and H1

0 (Λε)
3 with similar properties, where

Qε = ω × (εh−
min, εh

+
max).

Following [8], we make a few more assumptions on the geometrical structure:

H1 The surface roughness is made of detached smooth humps periodically given on
the upper (resp. the lower) part of the gap.

H2 Weconsider that the domainω is covered by afinite number of periodic cellsY ′
k′,ε,

of size ε, where for k′ ∈ Z
2, each cell Y ′

k′,ε = εk′+εY ′, with Y ′ = (−1/2, 1/2)2.

We define Tε =
{
k′ ∈ Z

2 : ω ∩ Y ′
k′,ε �= ∅

}
.

We consider a smooth surface included in Y and surrounding the hump (in the
top) such that Y is split into two areas Y+

f and Y+
m (see Fig. 1 for more details).

H3 ∂Y+
m is a C1 manifold.

We note

Π+ = Y ′ × (h−(y′), h+
max), S+ = ∂Y+

m ∩ ∂Y+
f .
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We obtain the following result.

Lemma 6 For given ϕ̃ ∈ H1(Π+)3 such that ϕ̃ = 0 on Γ +, there exists w̃+ ∈
H1(Y+

m )3 such that:

w̃+
|S+ = ϕ̃|S+ and w̃+

|
∂Y+

m \S+ .

Moreover, there exists a constant C which does not depend on ϕ̃ such that:

{ ‖w̃+‖H1(Y+
m )3 ≤ C‖ϕ̃‖H1(Π+)3,

divεϕ̃ = 0 ⇒ divεw̃
+ = 0.

(66)

Proof It is analogous to the proof of Lemma 3.1 in [8]. ��
Lemma 7 There exists an operator R+

ε : H1
0 (Q+

ε ) → H1
0 (Λε) such that

1. ϕ ∈ H1
0 (Λε)

3 ⇒ R+
ε (ϕ) = ϕ,

2. div ϕ = 0 ⇒ divR+
ε (ϕ) = 0.

3. For any ϕ ∈ H1
0 (Qε)

3, we have

‖R+
ε (ϕ)‖L2(Λε)3

≤ C
(
‖ϕ‖L2(Q+

ε )3 + ε‖Dϕ‖L2(Q+
ε )3×3

)
,

‖DR+
ε (ϕ)‖L2(Λε)3×3 ≤ C

(1
ε
‖ϕ‖L2(Q+

ε )3 + ‖Dϕ‖L2(Q+
ε )3×3

)
,

with constant C independent of ϕ and ε.

Proof For any ϕ̃ ∈ H1
0 (Π+)3 such that ϕ̃ = 0 on Γ +, Lemma 8 allows us to define

R+(ϕ̃) ∈ H1(Π+)3 by

R+(ϕ̃) =
⎧⎨
⎩

ϕ̃ if y ∈ Y+
f ,

w̃+ if y ∈ Y+
m ,

0 if y ∈ Y+
s ,

which satisfies
∫

Π+
|R+(ϕ̃)|2 dy +

∫

Π+
|DyR

+(ϕ̃)|2 dy ≤ C

(∫

Π+
|ϕ̃|2 dy +

∫

Π+
|Dy ϕ̃|2 dy

)
.(67)

For every k′ ∈ Tε, by the change of variables

k′ + y′ = x ′

ε
, y3 = x3

ε
, dy = dx

ε3
, ∂y = ε ∂x , (68)

we rescale (71) fromΠ+ to Q+
k′,ε. This yields that, for every function ϕ ∈ H1(Q+

k′,ε)
3,

one has
∫

Q+
k′,ε

|R+(ϕ)|2 dx + ε2
∫

Q+
k′,ε

|Dx R
+(ϕ)|2 dx
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Fig. 2 Basic cell Π+

y

y3

h+
max

y3 = h−(y )

h−
min

Π+

S−

Y −
f

Y −
m

Γ−

≤ C

(∫

Q+
k′,ε

|ϕ|2 dx + ε2
∫

Q+
k′,ε

|Dx ′ϕ|2 dx .
)

Wedefine R+
ε by applying R+ to each period Q+

k′,ε. Summing the previous inequalities
for all the periods Qk′,ε, and taking into account that from (H2) we have Qε =
∪k′∈Tε

Qk′,ε, gives

∫

Q+
ε

|R+
ε (ϕ)|2 dx + ε2

∫

Q+
ε

|Dx R
+
ε (ϕ)|2 dx

≤ C

(∫

Q+
ε

|ϕ|2 dx + ε2
∫

Q+
ε

|Dxϕ|2 dx
)

. (69)

Obviously, R+
ε (ϕ) lies in H1

0 (Λε)
3 and is equal to ϕ if ϕ is zero on Q+

ε \Λε, so we get
the estimates in 3. Moreover, the second item is obvious from (66)2 and the definition
of R+

ε . ��
We make a few more assumptions on the geometrical structure. Thus, we consider

a smooth surface included in Π+ and surrounding the hump such that Π+ is split into
two areas Y−

f and Y−
m (see Fig. 2 for more details). We also assume that ∂Y−

m is a C1

manifold.
We note

Π = Y ′ × (h−
min, h

+
max), S− = ∂Y−

m ∩ ∂Y−
f .

Analogously, we have the following result.

Lemma 8 For given ϕ̃ ∈ H1(Π)3 such that ϕ̃ = 0 onΓ −, there exists w̃− ∈ H1(Y−
m )3

such that:

w̃−
|S− = ϕ̃|S− and w̃−

|
∂Y−

m \S− .
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Moreover, there exists a constant C which does not depend on ϕ̃ such that:
{ ‖w̃−‖H1(Y−

m )3 ≤ C‖ϕ̃‖H1(Π)3 ,

divεϕ̃ = 0 ⇒ divεw̃
− = 0.

(70)

Finally, we give the properties of the operator Rε.

Lemma 9 There exists an operator Rε : H1
0 (Qε) → H1

0 (Λε) such that

1. ϕ ∈ H1
0 (Λε)

3 ⇒ Rε(ϕ) = ϕ,
2. div ϕ = 0 ⇒ divRε(ϕ) = 0.
3. For any ϕ ∈ H1

0 (Qε)
3, we have

‖Rε(ϕ)‖L2(Λε)3
≤ C

(
‖ϕ‖L2(Qε)3

+ ε‖Dϕ‖L2(Qε)3×3

)
,

‖DRε(ϕ)‖L2(Λε)3×3 ≤ C
(1

ε
‖ϕ‖L2(Qε)3

+ ‖Dϕ‖L2(Qε)3×3

)
,

with constant C independent of ϕ and ε.

Proof For any ϕ̃ ∈ H1
0 (Π)3 such that ϕ̃ = 0 on Γ −, Lemma 8 allows us to define

R(ϕ̃) ∈ H1(Π)3 by

R(ϕ̃) =
⎧⎨
⎩

R+(ϕ̃) if y ∈ Y−
f ,

w̃− if y ∈ Y−
m ,

0 if y ∈ Y−
s ,

which satisfies

∫

Π
|R(ϕ̃)|2 dy +

∫

Π
|Dy R(ϕ̃)|2 dy ≤ C

(∫

Π
|R+(ϕ̃)|2 dy +

∫

Π
|Dy R

+(ϕ̃)|2 dy
)

.

(71)

For every k′ ∈ Tε, by the change of variables (68), we rescale (71) fromΠ to Qk′,ε.
This yields that, for every function ϕ ∈ H1(Qk′,ε)3, one has

∫

Qk′,ε
|R(ϕ)|2 dx + ε2

∫

Qk′,ε
|Dx R(ϕ)|2 dx

≤ C

(∫

Qk′,ε
|R+(ϕ)|2 dx + ε2

∫

Qk′,ε
|Dx R

+(ϕ)|2 dx .
)

We define Rε by applying R to each period Qk′,ε. Summing the previous inequalities
for all the periods Qk′,ε, and taking into account that from (H2) we have Qε =
∪k′∈Tε

Qk′,ε, gives
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∫

Qε

|Rε(ϕ)|2 dx + ε2
∫

Qε

|Dx Rε(ϕ)|2 dx

≤ C

(∫

Qε

|R+
ε (ϕ)|2 dx + ε2

∫

Qε

|Dx R
+
ε (ϕ)|2 dx

)
,

which thanks to (69) gives

∫

Qε

|Rε(ϕ)|2 dx + ε2
∫

Qε

|Dx Rε(ϕ)|2 dx ≤ C

(∫

Qε

|ϕ|2 dx + ε2
∫

Qε

|Dxϕ|2 dx
)

,

Obviously, Rε(ϕ) lies in H1
0 (Λε)

3 and is equal to ϕ if ϕ is zero on Qε \ Λε, so
we get the estimates in 3. Moreover, the second item is obvious from (70)2 and the
definition of Rε. ��

We obtain the following a priori estimates for the extension (vε, Pε) in the domain
Qε.

Lemma 10 There exists a constant C independent of ε, such that the extension
(vε, Pε) ∈ H1

0 (Qε)
3 × L2

0(Qε) of a solution (uε, pε) of problem (51), (52) satis-
fies

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, the following estimates hold

‖vε‖L2(Qε)3
≤ Cε

5
2 , (72)

‖Pε‖L2(Qε)
≤ Cε

1
2 . (73)

(ii) if Kε � ε2, the following estimates hold

‖vε‖L2(Qε)3
≤ Cε

5
2 , (74)

‖Pε‖L2(Qε)
≤ C

ε
5
2

Kε

. (75)

(iii) if Kε � ε2, the following estimates hold

‖vε‖L2(Qε)3
≤ Cε

3
2 K

1
2
ε , (76)

‖Pε‖L2(Qε)
≤ Cε

1
2 . (77)

Moreover, in every case it holds

‖Dvε‖L2(Qε)3×3 ≤ Cε
3
2 . (78)

Proof We first estimate the velocity. Taking into account Lemma 5, it is clear that,
after extension, (72), (74), (76) and (78) hold.
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The mapping Rε defined in Lemma 7 allows us to extend the pressure pε to Qε

introducing Fε in H−1(Qε)
3:

〈Fε, ϕ〉Qε = 〈∇ pε, R
ε(ϕ)〉Λε , for any ϕ ∈ H1

0 (Qε)
3. (79)

We calculate the right-hand side of (79) by using (51) to obtain

〈Fε, ϕ〉Qε
= −μe

∫

Λε

Duε : DRε(ϕ) dx − μ

Kε

∫

Λε

uε · Rε(ϕ) dx

+
∫

Λε

f ′ · Rε
p(ϕ) dx − ρ

φ2

∫

Λε

(uε · ∇)uε R
ε(ϕ) dx . (80)

Moreover, divϕ = 0 implies

〈Fε, ϕ〉Qε
= 0,

and the DeRham theorem (see, e.g., [16]) gives the existence of Pε in L2
0(Qε) with

Fε = ∇Pε.
We introduce ϕε as the function solution of the auxiliary problem

div ϕε = Pε ∈ L2
0(Qε) in Qε, ϕε = 0 on ∂Qε.

According to Lemma 2, such problem has at least one solution such that

‖ϕε‖L2(Ωε)3
≤ C‖Pε‖L2(Qε)

, ‖Dϕε‖L2(Ωε)3×3 ≤ C

ε
‖Pε‖L2(Qε)

.

Thus, we get

‖Pε‖L2(Qε)
=

∣∣∣∣
∫

Qε

Pε div ϕε dx

∣∣∣∣

≤ μe

∣∣∣∣
∫

Λε

Duε : DRε(ϕ) dx

∣∣∣∣ +
∣∣∣∣

μ

Kε

∫

Λε

uε · Rε(ϕε) dx

∣∣∣∣

+
∣∣∣∣
∫

Λε

f ′ · Rε(ϕ) dx

∣∣∣∣ +
∣∣∣∣

ρ

φ2

∫

Λε

(uε · ∇)uε R
ε(ϕ) dx

∣∣∣∣ . (81)

Taking into account Lemma7 iii) andLemma2 applied to the domain Qε , we conclude

‖Rε(ϕε)‖L2(Λε)3
≤ C

(
‖ϕε‖L2(Qε)3

+ ε‖Dϕε‖L2(Qε)3×3

)
≤ C‖Pε‖L2(Qε)

,

‖DRε(ϕε)‖L2(Λε)3×3 ≤ C
(1

ε
‖ϕε‖L2(Qε)3

+ ‖Dϕε‖L2(Qε)3×3

)
≤ C

ε
‖Pε‖L2(Qε)

.

Finally, proceeding as in the proof of Lemma 2, we deduce the desired estimates of
the pressure in every case. ��
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Applying dilatation (10), we obtain the following a priori estimates for the extension
(ṽε, P̃ε) in Λ̃.

Corollary 3 For the extension (ṽε, P̃ε) satisfying system (53), (54), we have

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, the following estimates hold

‖ṽε‖L2(Λ̃)3 ≤ Cε2, (82)

‖P̃ε‖L2(Λ̃) ≤ C . (83)

(ii) if Kε � ε2, the following estimates hold

‖ṽε‖L2(Λ̃)3 ≤ Cε2, (84)

‖P̃ε‖L2(Λ̃) ≤ C
ε2

Kε

. (85)

(iii) if Kε � ε2, the following estimates hold

‖ṽε‖L2(Λ̃)3 ≤ CεK
1
2
ε , (86)

‖P̃ε‖L2(Λ̃) ≤ C . (87)

Moreover, in every case it holds

‖Dx ′ ṽε‖L2(Λ̃)3×2 ≤ Cε, ‖∂y3 ṽε‖L2(Λ̃)3 ≤ Cε2. (88)

Adaptation of the Unfolding Method: The change of variable (10) does not provide
the information we need about the behavior of ũε in the microstructure associated with
Λ̃ε. To solve this difficulty, we introduce an adaptation of the unfolding method (see
[6,14] for more details). First, we explain the notation used in the sequel. Recalling
that Y ′ = (−1/2, 1/2)2, Yk′,ε = εk′ + εY ′, for every k′ ∈ Tε, and that the basic cell
is given by

Y =
{
y ∈ R

3 : y′ ∈ Y ′, h−(y′) < y3 < h+(y′)
}

,

we define Yk′,ε = Y ′
k′,ε × (h−(y′), h+(y′)) for every k′ ∈ Tε. We also define the

extension of the basic cell by

Π = Y ′ × (h−
min, h

+
max).

The corresponding cubes of size ε and height ε(h+
max − h−

min) are given by Qk′,ε
= Y ′

k′,ε × (εh−
min, εh

+
max) and Q̃k′,ε = Y ′

k′,ε × (h−
min, h

+
max).
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Given ũε ∈ H1
0 (Λ̃ε)

3 a solution of the rescaled system (53), extended by zero
outside of Λ̃ε, we define ûε, by

ûε(x
′, y) = ũε

(
εκ

(
x ′

ε

)
+ εy′, y3

)
, a.e. (x ′, y) ∈ ω × Y . (89)

Here, the function κ is defined as follows: For k′ ∈ Z
2, we define κ : R2 → Z

2 by

κ(x ′) = k′ ⇐⇒ x ′ ∈ Y ′
k′,1.

Note that κ is well defined up to a set of zero measure in R
2 (the set ∪k′∈Z2∂Y ′

k′,1).
Moreover, for every ε > 0, we have

κ

(
x ′

ε

)
= k′ ⇐⇒ x ′ ∈ Y ′

k′,ε.

In the same sense, given the extension of the pressure P̃ε ∈ L2
0(Λ̃), we define P̂ε

by

P̂ε(x
′, y) = P̃ε

(
εκ

(
x ′

ε

)
+ εy′, y3

)
, a.e. (x ′, y) ∈ ω × Π. (90)

Remark 1 For k′ ∈ Tε, the restrictions of ûε to Y ′
k′,ε × Y and P̂ε to Y ′

k′,ε × Π do not

depend on x ′. As a function of y, it is obtained from (ũε, P̃ε) by using the change of
variables

y′ = x ′ − εk′

ε
, (91)

transforming Yk′,ε into Y and Q̃k′,ε into Π , respectively.

Lemma 11 There exists a constant C independent of ε, such that (ûε, P̂ε) defined by
(89), (90) satisfies

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, the following estimates hold

‖ûε‖L2(ω×Y )3 ≤ Cε2, (92)

‖P̂ε‖L2(ω×Π) ≤ C . (93)

(ii) if Kε � ε2, the following estimates hold

‖ûε‖L2(ω×Y )3 ≤ Cε2, (94)

‖P̂ε‖L2(ω×Π) ≤ C
ε2

Kε

. (95)
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(iii) if Kε � ε2, the following estimates hold

‖ûε‖L2(ω×Y )3 ≤ CεK
1
2
ε , (96)

‖P̂ε‖L2(ω×Π) ≤ C . (97)

Moreover, in every case it holds

‖Dy′ ûε‖L2(ω×Y )3×2 ≤ Cε2, ‖∂y3 ûε‖L2(ω×Y )3 ≤ Cε2. (98)

Proof Let us first derive some estimates for the sequence ûε defined by (89).We obtain

∫

ω×Y

∣∣Dy′ ûε(x
′, y)

∣∣2 dx ′dy

=
∑
k′∈Tε

∫

Y ′
k′,ε

∫

Y

∣∣Dy′ ûε(x
′, y)

∣∣2 dx ′dy

=
∑
k′∈Tε

∫

Y ′
k′,ε

∫

Y ′

∫ h+(y′)

h−(y′)

∣∣Dy′ ũε(εk
′ + εy′, y3)

∣∣2 dx ′dy′dy3.

We observe that ũε does not depend on x ′ so we deduce
∫

ω×Y

∣∣Dy′ ûε(x
′, y)

∣∣2 dx ′dy

= ε2
∑
k′∈Tε

∫

Y ′

∫ h+(y′)

h−(y′)

∣∣Dy′ ũε(εk
′ + εy′, y3)

∣∣2 dy′dy3.

Using the change of variables (91) and the Y ′-periodicity of h− and h+, we get
∫

ω×Y

∣∣Dy′ ûε(x
′, y)

∣∣2 dx ′dy

= ε2
∑
k′∈Tε

∫

Y ′
k′,ε

∫ h+( x
′

ε
−k′)

h−( x
′

ε
−k′)

∣∣Dx ′ ũε(x
′, y3)

∣∣2 dx ′dy3

= ε2
∑
k′∈Tε

∫

Y ′
k′,ε

∫ h+( x
′

ε
)

h−( x
′

ε
)

∣∣Dx ′ ũε(x
′, y3)

∣∣2 dx ′dy3

= ε2
∫

Λ̃ε

∣∣Dx ′ ũε(x
′, y3)

∣∣2 dx ′dy3.

Employing estimate (65)1, we deduce (98)1.
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Similarly, using Remark 1 and definition (89), we have

∫

ω×Y

∣∣∂y3 ûε(x
′, y)

∣∣2 dx ′dy ≤ ε2
∑
k′∈Tε

∫

Y

∣∣∂y3 ũε(εk
′ + εy′, y3)

∣∣2 dy.

Using the change of variables (91) and estimate (65)2, we obtain

∫

ω×Y

∣∣∂y3 ûε(x
′, y)

∣∣2 dx ′dy ≤
∫

Λ̃ε

∣∣∂y3 ũε(x
′, y3)

∣∣2 dx ′dy3 ≤ Cε4,

proving (98)2.
Similarly, using definition (89), the change of variables (91) and estimates (63) and

(64), we have in the cases Kε ≈ ε2 and Kε � ε2 that

∫

ω×Y

∣∣ûε(x
′, y)

∣∣2 dx ′dy ≤ Cε4,

whereas, in the case Kε � ε2, it holds

∫

ω×Y

∣∣ûε(x
′, y)

∣∣2 dx ′dy ≤ Cε2Kε,

implying (92), (94) and (96).
Finally, let us obtain some estimates for the sequence P̂ε defined by (90).Weobserve

that using definition (90) of P̂ε, we obtain

∫

ω×Π

∣∣∣P̂ε(x
′, y)

∣∣∣
p′
dx ′dy ≤

∑
k′∈Tε

∫

Y ′
k′,ε

∫

Y ′

∫ h+
max

h−
min

∣∣∣P̃ε(εk
′ + εy′, y3)

∣∣∣
2
dx ′dy.

We also note that P̃ε does not depend on x ′ so we have

∫

ω×Π

∣∣∣P̂ε(x
′, y)

∣∣∣
2
dx ′dy ≤ ε2

∑
k′∈Tε

∫

Y ′

∫ h+
max

h−
min

∣∣∣P̃ε(εk
′ + εy′, y3)

∣∣∣
2
dy′dy3.

By the change of variables (91), we get

∫

ω×Π

∣∣∣P̂ε(x
′, y)

∣∣∣
2
dx ′dy ≤

∫

Λ̃

∣∣∣P̃ε(x
′, y3)

∣∣∣
2
dx ′dy3.

Taking into account (83), (85) and (87), we deduce (93), (95) and (97), respectively. ��
Some compactness results: From the a priori estimates of the extension (ṽε, P̃ε), we
can deduce the following compactness results.
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Lemma 12 Consider the extension ṽε of ũε satisfying system (53), (54). Then, there
exists ṽ ∈ H1(h−

min, h
+
max; L2(ω))3 where ũ3 = 0 and ũ = 0 on y3 = h−

min, h
+
max,

such that

ṽε

ε2
⇀(ṽ′, 0) in H1(h−

min, h
+
max; L2(ω))3, as ε → 0, (99)

divx ′

(∫ h+
max

h−
min

ṽ′(x ′, y3)dy3

)
= 0 in ω,

(∫ h+
max

h−
min

ṽ′(x ′, y3)dy3

)
· n = 0 on ∂ω.

(100)

We omit the proof since it is similar to the proof of Lemma 3 considering the domain
Λ̃ instead of Ω .

Lemma 13 Consider the extension P̃ε of p̃ε satisfying system (53), (54). Then,

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞ of Kε � ε2, then there exists

P̃ ∈ L2
0(Λ̃) such that

P̃ε⇀P̃ in L2(Λ̃), as ε → 0. (101)

(ii) if Kε � ε2, then there exists P̃ ∈ L2
0(Λ̃) such that

Kε

ε2
P̃ε⇀P̃ in L2(Λ̃), as ε → 0. (102)

Again we omit the proof since it is similar to the proof of Lemma 4 considering the
domain Λ̃ instead of Ω .
Next, from the a priori estimates of (ûε, P̂ε), we can prove the following compactness
results:

Lemma 14 For a subsequence of ε still denoted by ε, there exists û ∈ L2(ω; H1
� (Y )3),

with
∫
Y û3 dy = 0 and û = 0 on y3 = h−, h+, such that

ε−2ûε⇀û in L2(ω; H1(Y )3), as ε → 0, (103)

divy û = 0 in ω × Y . (104)

Moreover, we have

divx ′
(∫

Y
û′(x ′, y)dy

)
= 0 in ω,

(∫

Y
û′(x ′, y)dy

)
· n = 0 on ∂ω. (105)
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Proof We start with the case Kε ≈ ε2. Estimates (92) and (98) imply the existence of
û : ω × Y → R

3, such that, up to a subsequence, (103) holds. By the semicontinuity
and estimates given in (92) and (98), we have∫

ω×Y

∣∣û∣∣2 dx ′dy ≤ C,

∫

ω×Y

∣∣Dyû
∣∣2 dx ′dy ≤ C,

confirming that û ∈ L2(ω; H1(Y )3).
It remains to prove the Y ′-periodicity of û in y′. This can be accomplished by

proceeding as in Lemma 5.4 from Casado-Díaz et al. [11].
Since divεũε = 0 in Λ̃ε, by definition of ûε we have ε−1divy′ û′

ε + ε−1∂y3 ûε,3 = 0.
Multiplying by ε−1, we obtain

ε−2divy′ û′
ε + ε−2∂y3 ûε,3 = 0, in ω × Y ,

which, combined with (103), proves (104).
Observe that the case Kε � ε2 is analogous to the previous one, so we omit the proof.

For the case Kε � ε2, estimates (96) and (98) imply that ε−1K−1/2
ε ûε tends to

zero and we have the same result as in the previous cases.
Finally, in order to prove (105), let us first prove the following relation between ṽ

and û,

1

|Y ′|
∫

Y
û(x ′, y)dy =

∫ hmax

h−
min

ṽ(x ′, y3)dy3. (106)

For this, let us consider ϕ ∈ C1
c (ω). We observe that, using definition (89) of ûε, we

obtain

ε−2
∫

ω

∫

Y
ûε(x

′, y)ϕ(x ′)dydx ′

= ε−2
∑
k′∈Tε

∫

Y ′
k′,ε

∫

Y
ũε(εk

′ + εy′, y3) ϕ(εk′ + εy′)dydx ′ + Oε.

Further, we note that ũε and ϕ do not depend on x ′ so we have

ε−2
∫

ω

∫

Y
ûε(x

′, y)ϕ(x ′)dydx ′

= |Y ′|
∑
k′∈Tε

∫

Y ′

∫ h+(y′)

h−(y′)
ũε(εk

′ + εy′, y3) ϕ(εk′ + εy′)dy3dy′ + Oε.

Using the change of variables (91) and the Y ′-periodicity of h±, we get

ε−2
∫

ω

∫

Y
ûε(x

′, y)ϕ(x ′)dydx ′

= ε−2|Y ′|
∑
k′∈Tε

∫

Y ′
k′,ε

∫ h+(x ′/ε)

h−(x ′/ε)
ũε(x

′, y3) ϕ(x ′)dy3dx ′ + Oε
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= ε−2|Y ′|
∑
k′∈Tε

∫

Y ′
k′,ε

∫ hmax

h−
min

ṽε(x
′, y3) ϕ(x ′)dy3dx ′ + Oε

= ε−2|Y ′|
∫

Ω

ṽε(x
′, y3) ϕ(x ′)dy3dx ′ + Oε.

Taking into account (99) and (103), we obtain (106). Since ṽ3 = 0, we deduce that∫
Y û3 dy = 0 a.e. in ω. Finally, relation (106) together with (100) yields (105). ��
Lemma 15 For a subsequence of ε still denoted by ε,

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞ of Kε � ε2, then there exists

P̂ ∈ L2(ω × Π) such that

P̂ε⇀P̂ in L2(ω × Π), as ε → 0. (107)

(ii) if Kε � ε2, then there exists P̂ ∈ L2(ω × Π) such that

Kε

ε2
P̂ε⇀P̃ in L2(ω × Π), as ε → 0. (108)

Effective problems: The idea is to multiply system (53) by a test function having the
form of the limit û (as explicated in Lemma 14).

Theorem 3 It holds:

(i) if Kε ≈ ε2, with Kε/ε
2 → K, 0 < K < +∞, then (ε−2ûε, P̂ε) converges, as ε

tends to zero, to the unique solution (û(x ′, y), P̃(x ′)) in L2(ω; H1(Y )3)×L2
0(ω),

with
∫
Y û3 dy = 0, of the effective problem

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−μeΔy û + ∇yq̂ + μ
K û = f ′ − ∇x ′ P̃ in ω × Y ,

divy û = 0 in ω × Y ,

û = 0 on y3 = h−(y′), h+(y′),
divx ′

(∫
Y û′(x ′, y)dy

) = 0 in ω,(∫
Y û′(x ′, y)dy

) · n = 0 on ∂ω,

y′ → û, q̂ Y ′ − periodic.

(109)

(ii) if Kε � ε, then (ε−2ûε, Kε/ε
2 P̂ε) converges, as ε tends to zero, to the unique

solution (û(x ′, y), P̃(x ′)) in L2(ω; H1(Y )3) × L2
0(ω), with

∫
Y û3dy = 0, of the

effective problem

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ û + ∇yq̂ = −∇x ′ P̃ in ω × Y
divy û′ = 0 in ω × Y ,

û′ = 0 on y3 = h−(y′), h+(y′),
divx ′

(∫
Y û′(x ′, y)dy

) = 0 in ω,(∫
Y û′(x ′, y)dy

) · n = 0 on ∂ω,

y′ → û′, q̂ Y ′ − periodic.

(110)
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(iii) if Kε � ε2, then (ε−2ûε, P̂ε) converges, as ε tends to zero, to the unique solution
(û(x ′, y), P̃(x ′)) in L2(ω; H1(Y )3)× L2

0(ω), with
∫
Y û3 dy = 0, of the effective

problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−μeΔy û + ∇yq̂ = f ′ − ∇x ′ P̃ in ω × Y ,

divy û = 0 in ω × Y ,

û = 0 on y3 = h−(y′), h+(y′),
divx ′

(∫
Y û′(x ′, y)dy

) = 0 in ω,(∫
Y û′(x ′, y)dy

) · n = 0 on ∂ω,

y′ → û, q̂ Y ′ − periodic.

(111)

Proof First of all, we choose a test function ϕ(x ′, y) ∈ D(ω;C∞
� (Y )3). Multiplying

(53) by ϕ(x ′, x ′/ε, y3), integrating by parts and taking into account the same reasoning
as in (42), we get

∫

Λ̃ε

(ũε · ∇ε)ũε ϕ dx ′dy3 = Oε.

As a result,

μe

∫

Λ̃ε

Dεũε :
(
Dx ′ϕ + 1

ε
Dyϕ

)
dx ′dy3 +

∫

Λ̃ε

∇ε p̃ε ϕ dx ′dy3

+ μ

Kε

∫

Λ̃ε

ũε · ϕ dx ′dy3 =
∫

Λ̃ε

f ′ · ϕ′ dx ′dy3 + Oε.

Taking into account the prolongation of the pressure, we have

∫

Λ̃ε

∇ε p̃ε ϕ′ dx ′dy3 =
∫

Λ̃

∇ε P̃ε ϕ dx ′dy3,

and so

μe

∫

Λ̃ε

Dεũε :
(
Dx ′ϕ + 1

ε
Dyϕ

)
dx ′dy3 −

∫

Λ̃

P̃ε divx ′ϕ′ dx ′dy3

−1

ε

∫

Λ̃

P̃ε divyϕ dx ′dy3 + μ

Kε

∫

Λ̃ε

ũε · ϕ dx ′dy3 =
∫

Ω̃ε

f ′ · ϕ′ dx ′dy3 + Oε.

(112)

By the change of variables given in Remark 1, we obtain

μe

ε2

∫

ω×Y
Dyûε : Dyϕ dx ′dy −

∫

ω×Π

P̂ε divx ′ϕ′ dx ′dy − 1

ε

∫

ω×Π

P̂ε divyϕ dx ′dy

− μ

Kε

∫

ω×Y
ûε · ϕ dx ′dy =

∫

ω×Y
f ′ · ϕ′ dx ′dy + Oε. (113)
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This variational formulation will prove useful in the following steps.
Step 1 Case Kε ≈ ε2, with Kε/ε

2 → K , 0 < K < +∞.
First, we prove that P̂ does not depend on the microscopic variable y. To do this,

we consider as the test function ϕε(x ′, y3) = εϕ(x ′, x ′/ε, y3) in (113). Passing to the
limit and using convergences (103) and (107), we get

∫

ω×Π

P̂ divyϕ dx ′dy = 0,

implying that P̂ does not depend on y.
We consider now ϕ ∈ D(ω;C∞

� (Y )3) with divy′ϕ = 0 in ω × Y and
divx ′(

∫
Y ϕ′ dy) = 0 in ω. Then, when passing to the limit in (113) and taking into

account (103), (107), the second term contributes nothing because the limit of P̂ε does
not depend on y and û′ satisfies divx ′(

∫
Y ϕ′ dy) = 0. Now, if we pass to the limit in

(113), we get

μe

∫

ω×Y
Dyû : Dyϕ dx ′dy + μ

K

∫

ω×Y
û · ϕ dx ′dy =

∫

ω×Y
f ′ · ϕ′ dx ′dy. (114)

By density, this holds for every function ϕ in the Hilbert space V defined by

V =

⎧
⎪⎪⎨
⎪⎪⎩

ϕ(x ′, y) ∈ L2(ω; H1
� (Y )3), such that

divyϕ(x ′, y) = 0 in ω × Y , divx ′
(∫

Y ϕ(x ′, y) dy
) = 0 in ω,(∫

Y
ϕ(x ′, y) dy

)
· n = 0 on ω

⎫
⎪⎪⎬
⎪⎪⎭

.

ByLax–Milgram lemma, variational formulation (114) in theHilbert space V admits a
unique solution û inV . Reasoning as in [1], the orthogonal ofV with respect to the usual
scalar product in L2(ω × Y ) is made of gradients of the form ∇x ′q(x ′) + ∇yq̂(x ′, y),
with q(x ′) ∈ L2

0(ω) and q̂(x ′, y) ∈ L2(ω; H1
� (Y )). Therefore, by integration by parts,

variational formulation (114) is equivalent to the effective system (109). It remains to
prove that the pressure P̃(x ′), arising as a Lagrange multiplier of the incompressibility
constraint divx ′(

∫
Y û(x ′, y)dy) = 0, is the same as the limit of the pressure P̃ε. This

can be easily done by multiplying Eq. (53) by a test function with divy equal to
zero, and identifying limits. Since (109) admits a unique solution, then the complete
sequence (ε−2ûε, P̂ε) converges to the solution (û(x ′, y), P̂(x ′)).

Step 2 Case Kε � ε2. First, taking as test ϕε(x ′, y3) = Kε/εϕ(x ′, x ′/ε, y3) in
(113) and passing to the limit, taking into account convergences (103) and (108), we
prove that P̂ε does not depend on y. Moreover, similarly to the Step 1, if we pass to
the limit in (113), we get

μ

∫

ω×Y
û · ϕ dx ′dy = 0. (115)

By density, and reasoning as in Step 1, this problem is equivalent to the effective
system (110).
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Step 3 Case Kε � ε2. First, taking as test function of the form ϕε(x ′, y3) =
εϕ(x ′, x ′/ε, y3) in (113) and passing to the limit taking into account convergences
(103) and (107), we prove that P̂ε does not depend on y. Moreover, similarly to the
Step 1, if we pass to the limit in (113), we get

μe

∫

ω×Y
Dyû : Dyϕ dx ′dy =

∫

ω×Y
f ′ · ϕ′ dx ′dy. (116)

By density, and reasoning as in Step 1, this problem is equivalent to the effective
system (111).

Now, the proof of Theorem 3.1 can be conducted as follows:

Proof (Proof of Theorem 2) The derivation of (55), (58) and (60) from the effective
problems (109), (110) and (111), respectively, is straightforward, and we leave it
to the reader as an easy algebra exercise. It should be mentioned that the problems
(55), (58) and (60) are well-posed problems since they consist of simple second-order
elliptic equations for the pressure P̃ (endowed with Neumann boundary condition).

As it is well known (see [29]), the corresponding local problems are also well posed
with periodic boundary condition, and it can be easily checked, by integration by parts
that

(AM )i j =
∫

Y
Dyw

i (y) : Dyw
j (y) dy =

∫

Y
wi (y)e jdy, i = 1, 2, j = 1, 2, 3.

The definition implies that AM is symmetric and positive definite. Observe that the
condition

∫
Y wi

3 dy = 0, i = 1, 2, implies that (AM )i3 = 0 and since AM is symmet-
ric, we have that (AM )3i = 0. Then, AM ∈ R

2×2. It happens the same with A∞ and
A0. ��
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