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1 Introduction

1.1 Motivation

The classical 3D incompressible micropolar fluid model was firstly derived by Erin-
gen [13], which was used to describe the fluids consisting of randomly oriented
particles suspended in a viscous medium. The model is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
− (ν + νr )�u − 2νr rotω + (u · ∇)u + ∇ p = f,

∇ · u = 0,
∂ω

∂t
− (ca + cd )�ω + 4νrω + (u · ∇)ω − (c0 + cd − ca)∇divω − 2νr rotu = f̃ ,

(1.1)

where u = (u1, u2, u3) is the velocity, ω = (ω1, ω2, ω3) is the angular velocity
field of rotation of particles, p represents the pressure, and f = ( f1, f2, f3) and
f̃ = ( f̃1, f̃2, f̃3) stand for the external force and moment, respectively. The positive
parameters ν, νr , c0, ca and cd are viscous coefficients. Actually, ν represents the usual
Newtonian viscosity and νr is called microrotation viscosity.

Micropolar fluidmodel plays an important role in the fields of applied and computa-
tionalmathematics. There is awide literature on themathematical theory ofmicropolar
fluidmodel (1.1). The existence, uniqueness and regularity of solutions for themicrop-
olar fluids have been investigated in [11,20]. Also, lots of works are devoted to the
long time behavior of solutions for the micropolar fluids. More precisely, in the case
of 2D bounded domains, Chen, Chen and Dong proved the existence of H2-global
attractor in [6] and verified the existence of uniform attractor in [7]. Łukaszewicz
and Tarasińska [22] proved the existence of H1-pullback attractor. Recently, Zhao
and Sun et al. [36] established the L2-pullback attractor and H1-pullback attractor of
solutions for the universe given by a temper condition, respectively. For the case of
2D unbounded domains, Dong and Chen [9] investigated the existence and regularity
of global attractors. Later, they [10] obtained the L2 time decay rate for global solu-
tions of the 2D micropolar equations via the Fourier splitting method. Zhao, Zhou
and Lian [34] established the existence of H1-uniform attractor and further proved
the L2-uniform attractor belongs to the H1-uniform attractor. Also some efforts are
focused on the 2D micropolar equations with partial dissipation. For example, Dong
and Zhang [11] examined the microrotation viscosity, namely ca +cd = 0. The global
regularity problem for this partial dissipation case is not trivial due to the presence of
the term ∇ × ω in the velocity equation. Dong and Zhang overcame the difficulty by
making full use of the quantity ∇ × u − 2νr

ν+νr
ω, which obeys a transport–diffusion

equation. When the parameters ν = 0 and νr �= ca + cd , the global well posedness
of the micropolar fluid equations was obtained in the frame work of Besov spaces
in [33]. More recently, Dong, Li and Wu [12] studied the global regularity and large
time behavior of solutions to the 2D micropolar equations with only angular viscosity
dissipation.

In the real world, delay terms appear naturally, for instance as effects in wind tunnel
experiments (see [26]), in the equations describing the motions of the fluids. The
delay situations may also occur, for example, when we want to control the system via

123



Pullback Attractor for the 2D Micropolar Fluid Flows… 2809

applying a force which considers not only the present state but also the history state of
the system. To the best of our knowledge, the delays for ordinary differential equations
(ODE) were first studied by Hale (see [17,18]). As regards the partial differential
equations (PDE) with delays including finite delays (constant, variable, distributed,
etc.) and infinite delays. Different types of delays need to be treated by different
approaches. To this respect, there are lots of important foundational works, particularly
in the case of random dynamical systems. For the case where the delays are finite,
one can refer to [3–5,8,21]. For the other case where the delays are infinite, one can
see [2,19,23], etc.

However, to our knowledge, there is little literature for micropolar fluid with
delay. Zhao and Sun [37] established the global well posedness of the weak solu-
tions and proved the existence of pullback attractors for the micropolar fluid flows
with infinite delay on 2D bounded domains. Furthermore, Zhou et al. [38] verified
the H2-boundedness of the pullback attractors obtained in [37]. Nowadays, Sun [30]
proved the global well posedness for the micropolar fluid flows with delay on 2D
unbounded domains.

The purpose of this paper is to study the pullback asymptotic properties of the
global solutions obtained by Sun [30]. The main objective is to show the existence of
pullback attractor for the universe given by a tempered condition. As a consequence,
the existence of pullback attractor for the universe of fixed bounded sets follows.
Giving suitable assumptions for external force, the consistent relationship between
two pullback attractors and the tempered property of the pullback attractors is easily
obtained by the means of [16,27].

We mention that the asymptotic compactness is needed to achieve our goal and
the method we want to address here is called energy equation method. For many
physical systems there are energy equations (or their analogues) in the sense that the
changing rate of energy equals the rate that energy is pumped into the system minus
the energy dissipation rate due to various dissipation mechanisms. As far as we know,
the method was first observed in 1922 by Ball (for weakly damped, driven semilinear
wave equations) that such energy equations may be used to derive the asymptotic
compactness of the solution semigroup, and he then wrote it up and published in [1].
Themethod has now been used in a variety of applications. For example, it was applied
to a weakly damped, driven Korteweg–de Vries (KdV) equation by Ghidaglia [14],
to weakly damped, driven hyperbolic-type equations by Wang [31], to parabolic-type
problem by Rosa [28]. At almost the same time, Moise et al. [24] used this method to
derive the asymptotic compactness property of the semigroup and presented a general
formulation that can handle a number of weakly damped hyperbolic equations and
parabolic equations on either bounded or unbounded spatial domains. In this paper,
for the lack of compactness of the usual Sobolev embedding in unbounded domains.
Inspired by [15,25,37], we apply the technique of the decomposition of spatial domain
to overcome the difficulty. It also is worth mentioning that some new techniques are
needed to deal with the term of delay, which is more complex than the case without
delay.
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1.2 Formation of Problem

In this paper, we consider the special situation that the velocity component in the x3-
direction is zero and the axes of rotation of particles are parallel to the x3 axis. That
is, u = (u1, u2, 0), ω = (0, 0, ω3), f = ( f1, f2, 0), f̃ = (0, 0, f̃3), g = (g1, g2, 0)
and g̃ = (0, 0, g̃3). Let� ⊆ R

2 be an open set with boundary � that is not necessarily
bounded but satisfies the following Poincaré inequality:

There exists λ1 > 0 such that λ1‖ϕ‖2L2(�)
� ‖∇ϕ‖2L2(�)

, ∀ϕ ∈ H1
0 (�). (1.2)

Then, we discuss the following 2D incompressible micropolar fluid model with
delay

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− (ν + νr )�u − 2νr∇ × ω + (u · ∇)u + ∇ p

= f (t, x) + g(t, ut ), in (τ,+∞) × �,
∂ω

∂t
− ᾱ�ω + 4νrω − 2νr∇ × u + (u · ∇)ω

= f̃ (t, x) + g̃(t, ωt ), in (τ,+∞) × �,

∇ · u = 0, in (τ,+∞) × �,

u = 0, ω = 0, on (τ,+∞) × �,

(u(τ ), ω(τ)) = (uin, ωin), (u(t), ω(t))
= (φin

1 (t − τ), φin
2 (t − τ)), t ∈ (τ − h, τ ),

(1.3)

where ᾱ := ca +cd , x := (x1, x2) ∈ �, g and g̃ stand for the external force containing
some hereditary characteristics ut and ωt , which are defined on (−h, 0) as follows

ut (s) := u(t + s), ωt (s) := ω(t + s), ∀t � τ, s ∈ (−h, 0). (1.4)

(φin
1 , φin

2 ) represents the initial data in the interval of time (−h, 0), where h is a positive
fixed number, and

∇ × u := ∂u2
∂x1

− ∂u1
∂x2

, ∇ × ω :=
(

∂ω

∂x2
,− ∂ω

∂x1

)

.

For the sake of convenience, we introduce the following useful operators

⎧
⎨

⎩

〈Aw,φ〉 := (ν + νr )(∇u,∇) + ᾱ(∇ω,∇φ3), ∀w = (u, ω), φ = (, φ3) ∈ V̂ ,

〈B(u, w), φ〉 := ((u · ∇)w, φ), ∀u ∈ V, w = (u, ω) ∈ V̂ , ∀φ ∈ V̂ ,

N (w) := (−2νr∇ × ω,−2νr∇ × u + 4νrω), ∀w = (u, ω) ∈ V̂ .

(1.5)

Then, we can formulate the weak version of Eq. (1.3) as follows
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂w

∂t
+ Aw + B(u, w) + N (w) = F(t, x) + G(t, wt ), in (τ,+∞) × �,

∇ · u = 0, in (τ,+∞) × �,

w = (u, ω) = 0, on (τ,+∞) × �,

w(τ) = win = (uin, ωin), w(t) = φin(t − τ)

= (φin
1 (s), φin

2 (s)), t ∈ (τ − h, τ ), s ∈ (−h, 0),

(1.6)

where
⎧
⎨

⎩

w(t, x) := (u(t, x), ω(t, x)),
F(t, x) := ( f (t, x), f̃ (t, x))
G(t, wt ) := (g(t, ut ), g̃(t, ωt )).

1.3 Notation

Throughout this paper, we denote the usual Lebesgue space and Sobolev space by
L p(�) andWm,p(�) endowedwith norms ‖·‖p and ‖·‖m,p, respectively. Particularly,
we denote Hm(�) := Wm,2(�).

V :=V(�) := {
ϕ ∈ C∞

0 (�) × C∞
0 (�)| ϕ = (ϕ1, ϕ2),∇ · ϕ = 0

}
,

V̂ :=V̂(�) := V × C∞
0 (�),

H :=H(�) := closure of V in L2(�)

× L2(�), with norm ‖ · ‖H and dual space H∗,
V :=V (�) := closure of V in H1(�)

× H1(�), with norm ‖ · ‖V and dual space V ∗,
Ĥ :=Ĥ(�) := closure of V̂ in L2(�)

× L2(�) × L2(�), with norm ‖ · ‖Ĥ and dual space Ĥ∗,
V̂ :=V̂ (�) := closure of V̂ in H1(�)

× H1(�) × H1(�), with norm ‖ · ‖V̂ and dual space V̂ ∗.

(·, ·)− the inner product in L2(�), H or Ĥ , 〈·, ·〉− the dual pairing between V and
V ∗ or between V̂ and V̂ ∗. Throughout this article, we simplify the notations ‖ · ‖2,
‖ · ‖H and ‖ · ‖Ĥ by the same notation ‖ · ‖ if there is no confusion. Furthermore, we
denote

L p(I ; X) := space of strongly measurable functions on the closed interval I,

with values in the Banach space X, endowed with norm

‖ϕ‖L p(I ;X) :=
(∫

I
‖ϕ‖p

Xdt

)1/p

, for 1 � p < ∞,

C(I ; X) := space of continuous functions on the interval I,

with values in the Banach space X, endowed with the usual norm,
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L2
loc(I ; X) := space of locally square integrable functions on the interval I,

with values in the Banach space X, endowed with the usual norm,

↪→↪→ − the compact embedding between spaces.

Following the above notations, we additionally denote

L2
Ĥ

:= L2(−h, 0; Ĥ), L2
V̂

:= L2(−h, 0; V̂ ),

E2
Ĥ

:= Ĥ × L2
Ĥ

, E2
V̂

:= V̂ × L2
V̂
, E2

Ĥ×L2
V̂

:= Ĥ × L2
V̂
.

The norm ‖ · ‖X for X ∈ {E2
Ĥ

, E2
V̂
, E2

Ĥ×L2
V̂

} is defined as

‖(w, v)‖E2
Ĥ

:= (‖w‖2 + ‖v‖2
L2
Ĥ

)1/2, ‖(w, v)‖E2
V̂

:= (‖w‖2 + ‖v‖2
L2
V̂

)1/2,

‖(w, v)‖E2
Ĥ×L2

V̂

:= (‖w‖2 + ‖v‖2
L2
V̂

)1/2.

The rest of this paper is organized as follows. In Sect. 2, we make some preliminar-
ies. Section 3 is devoted to proving the existence of pullback attractor for the universe
given by a tempered condition. In Sect. 4, we aim at some properties of the pullback
attractor obtained in Sect. 3.

2 Preliminaries

In this section, we recall some key results about the non-autonomous micropolar fluid
flows and introduce some notations and definitions about pullback attractor. To begin
with, we list some useful estimates and properties for the operators A, B(·) and N (·)
defined in (1.5), which have been established in works [25,30,34,37] .

Lemma 2.1 1. Theoperator A is linear continuous both from V̂ to V̂ ∗ and from D(A)

to Ĥ , and so is for the operator N (·) from V̂ to Ĥ , where D(A) := V̂ ∩(
H2(�)

)3
.

2. The operator B(·, ·) is continuous from V × V̂ to V̂ ∗. Moreover, for any u ∈ V
and w ∈ V̂ , there holds

〈B(u, ψ), ϕ〉 = −〈B(u, ϕ), ψ〉, ∀ u ∈ V, ∀ψ ∈ V̂ , ∀ϕ ∈ V̂ . (2.1)

Lemma 2.2 1. There are two positive constants c1 and c2 such that

c1〈Aw,w〉 � ‖w‖2
V̂

� c2〈Aw,w〉, ∀w ∈ V̂ . (2.2)

2. There exists some positive constant α0 which depends only on�, such that for any
(u, ψ, ϕ) ∈ V × V̂ × V̂ there holds

|〈B(u, ψ), ϕ〉| �
{

α0‖u‖ 1
2 ‖∇u‖ 1

2 ‖ϕ‖ 1
2 ‖∇ϕ‖ 1

2 ‖∇ψ‖,
α0‖u‖ 1

2 ‖∇u‖ 1
2 ‖ψ‖ 1

2 ‖∇ψ‖ 1
2 ‖∇ϕ‖. (2.3)

Moreover, if (u, ψ, ϕ) ∈ V × D(A) × D(A), then
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|〈B(u, ψ), Aϕ〉| � α0‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇ψ‖ 1
2 ‖Aψ‖ 1

2 ‖Aϕ‖. (2.4)

3. There exists a positive constant c(νr ) such that

‖N (ψ)‖ � c(νr )‖ψ‖V̂ , ∀ψ ∈ V̂ . (2.5)

In addition,

−〈N (ψ), Aψ〉 � 1

4
‖Aψ‖2 + c2(νr )‖ψ‖2

V̂
, ∀ψ ∈ D(A), (2.6)

δ1‖ψ‖2
V̂

� 〈Aψ,ψ〉 + 〈N (ψ), ψ〉, ∀ψ ∈ V̂ , (2.7)

where δ1 := min{ν, ᾱ}.
Then, we recall the global well posedness of solutions established in [30].

Assumption 2.1 Assume that G : R × L2(−h, 0; Ĥ) �→ (L2(�))3 satisfies:

(i) For any ξ ∈ L2(−h, 0; Ĥ), the mapping R � t �→ G(t, ξ) ∈ (L2(�))3 is
measurable.

(ii) G(·, 0) = (0, 0, 0).
(iii) There exists a constant LG > 0 such that for any t ∈ R and any ξ, η ∈

L2(−h, 0; Ĥ),

‖G(t, ξ) − G(t, η)‖ � LG‖ξ − η‖L2(−h,0;Ĥ).

(iv) There existsCG ∈ (0, δ1) such that, for any t � τ and anyw, v ∈ L2(τ−h, t; Ĥ),

∫ t

τ

‖G(θ, wθ ) − G(θ, vθ )‖2dθ � C2
G

∫ t

τ−h
‖w(θ) − v(θ)‖2dθ.

Moreover, for any t � τ , there exists a γ ∈ (0, 2δ1 − 2CG) such that

∫ t

τ

eγ θ‖G(θ, wθ )‖2dθ � C2
G

∫ t

τ−h
eγ θ‖w(θ)‖2dθ, ∀w ∈ L2(τ − h, t; Ĥ).

Theorem 2.1 Assume F(t, x) ∈ L2
loc(R; V̂ ∗), ∀ t � τ, τ ∈ R, and G satisfies

Assumption 2.1. Then, for any (win, φin) ∈ E2
Ĥ
, there is a unique weak solution

w(·) := w(·; τ,win, φin) of system (1.6), which satisfies

w ∈ C([τ, T ]; Ĥ) ∩ L2(τ, T ; V̂ ) and w′ ∈ L2(τ, T ; V̂ ∗), ∀ T > τ.

Moreover, let v(·) := v(·; τ, vin, ψ in) be another weak solution corresponding to the
initial value (vin, ψ in) ∈ E2

Ĥ
, then, for all t � τ , we have

‖w(t) − v(t)‖2 �r1‖(win − vin, φin − ψ in)‖2
E2
Ĥ

· eσ(w(t)), (2.8)
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∫ t

τ

‖w(θ) − v(θ)‖2
V̂
dθ �δ−1

1 r1‖(win − vin, φin − ψ in)‖2
E2
Ĥ

(
1 + σ(w(t)) · eσ(w(t))), (2.9)

where

r1 := max{1, 2a2C2
G}, σ (w(t)) :=

∫ t

τ

(
δ−1
1 α2

0‖w(s)‖2
V̂

+ 2a1 + 2a2C
2
G

)
ds,

where the positive constants a1, a2 satisfy a1a2 � 1
4 .

On the basis of Theorem 2.1, the biparametric map defined by

U (t, τ ) : (win, φin) �→ (w(t; τ,win, φin), wt (·; τ,win, φin)), ∀ t � τ, (2.10)

generates a continuous process in E2
Ĥ
and E2

V̂
, respectively, which satisfies the fol-

lowing properties:

(i)U (τ, τ )(win, φin) = (win, φin),

(ii)U (t, s)U (s, τ )(win, φin) = U (t, τ )(win, φin).

Finally, we end this section with some notations and definitions concerning the
pullback attractors for non-autonomous dynamical systems in the following. On can
refer to [16,27,35].

We denote by X the space Ĥ or V̂ and by P(X) the family of all nonempty subsets
of X . A universeD(X) in P(X) represents the class of families parameterized in time
B̂(X) = {B(t) | t ∈ R} ⊆ P(X).

Definition 2.1 A family of sets B̂0 = {B0(t)| t ∈ R} ⊆ P(X) is called pullback
D-absorbing for the process {U (t, τ )}t�τ in X if for any t ∈ R and any B̂ = {B(t)| t ∈
R} ∈ D, there exists a τ0(t, B̂) � t such thatU (t, τ )B(τ ) ⊆ B0(t) for all τ � τ0(t, B̂).

Definition 2.2 The process {U (t, τ )}t�τ is said to be pullback B̂0-asymptotically
compact in X if for any t ∈ R, any sequences {τn} ⊆ (−∞, t] and {xn} ⊆ X satisfying
τn → −∞ as n → ∞ and xn ∈ B0(τn) for all n, the sequence {U (t, τn; xn)} is
relatively compact in X . {U (t, τ )}t�τ is called pullbackD-asymptotically compact in
X if it is pullback B̂-asymptotically compact for any B̂ ∈ D.

Definition 2.3 A family of sets ÂX = {AX (t)| t ∈ R} ⊆ P(X) is called a pullback
D-attractor for the process {U (t, τ )}t�τ on X if it has the following properties:

• Compactness: for any t ∈ R,AX (t) is a nonempty compact subset of X ;
• Invariance: U (t, τ )AX (τ ) = AX (t), ∀ t � τ ;
• Pullback attracting: ÂX is pullback D attracting in the following sense:

lim
τ→−∞ distX (U (t, τ )B(τ ),AX (t)) = 0, ∀B̂ = {B(s)| s ∈ R} ∈ D, t ∈ R,

• Minimality: the family of sets ÂX is the minimal in the sense that if
Ô = {O(t)| t ∈ R} ⊆ P(X) is another family of closed sets such that
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lim
τ→−∞ distX (U (t, τ )B(τ ), O(t)) = 0, for any B̂ = {B(t)| t ∈ R} ∈ D,

then AX (t) ⊆ O(t) for t ∈ R.

Remark 2.1 If the processU possesses a pullbackD-absorbing set B̂0 and is pullback
B̂0-asymptotically compact in X , we can construct the pullback attractor by the stan-
dard method introduced by García-Luengo et al. [16, Proposition 9] and Marín-Rubio
and Real in [27, Theorem 18]

3 Existence of Pullback Attractor for the UniverseDγ

In the section, we investigate the pullback attractor for the universe Dγ given by a
tempered condition in space E2

Ĥ
. To begin with, in order to construct the universeDγ ,

we give some useful energy estimates.

Lemma 3.1 For any t � τ , assume that F ∈ L2(τ, t; V̂ ∗) and G satisfies Assump-
tion 2.1. Then, for any (win, φin) ∈ E2

Ĥ
, we have

‖w(t)‖2 + βe−γ t
∫ t

τ

eγ θ‖w(θ)‖2
V̂
dθ

�(1 + CG)e−γ (t−τ)‖(win, φin)‖2
E2
Ĥ

+ α−1e−γ t
∫ t

τ

eγ θ‖F(θ)‖2
V̂ ∗dθ, (3.1)

where α ∈ (0, 2δ1 − 2CG − γ ), β := 2δ1 − 2CG − γ − α > 0.

Proof Let us denote w(·) = w(·; τ,win, φin). Testing (1.6)1 by w(t), we obtain
from (2.1) and (2.7) that

1

2

d

dt
‖w(t)‖2 + δ1‖w(t)‖2

V̂
� 〈F(t), w(t)〉 + (G(t, wt ), w(t)),

which implies

d

dt
(eγ t‖w(t)‖2) − γ eγ t‖w(t)‖2 + 2δ1e

γ t‖w(t)‖2
V̂

� 2eγ t 〈F(t), w(t)〉 + 2eγ t (G(t, wt ), w(t)).

Let τ � θ � t . Replacing the time variable t in the above inequality with θ , then
integrating it with respect to θ over [τ, t] gives

eγ t‖w(t)‖2 + (2δ1 − γ )

∫ t

τ

eγ θ‖w(θ)‖2
V̂
dθ

�eγ τ‖win‖2 + 2
∫ t

τ

eγ θ 〈F(θ), w(θ)〉dθ + 2
∫ t

τ

eγ θ (G(θ, wθ ), w(θ))dθ. (3.2)
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By the Young’s inequality and Assumption 2.1, we deduce

2
∫ t

τ

eγ θ (G(θ, wθ ), w(θ))dθ � 2
∫ t

τ

eγ θ‖G(θ, wθ‖‖w(θ)‖dθ

� 2

(∫ t

τ

eγ θ‖G(θ, wθ‖2dθ
) 1

2
(∫ t

τ

eγ θ‖w(θ)‖2dθ
) 1

2

� CG

∫ τ

τ−h
eγ θ‖w(θ)‖2dθ + 2CG

∫ t

τ

eγ θ‖w(θ)‖2dθ

� CGe
γ τ‖φin‖2

L2
Ĥ

+ 2CG

∫ t

τ

eγ θ‖w(θ)‖2dθ, (3.3)

and

2
∫ t

τ

eγ θ 〈F(θ), w(θ)〉dθ �2
∫ t

τ

eγ θ‖F(θ)‖V̂ ∗‖w(θ)‖V̂ dθ

�α−1
∫ t

τ

eγ θ‖F(θ)‖2
V̂ ∗dθ + α

∫ t

τ

eγ θ‖w(θ)‖2
V̂
dθ, (3.4)

where α ∈ (0, 2δ1 − γ − 2CG). Substituting (3.3) and (3.4) into (3.2), yields (3.1).
This completes the proof. ��
As a consequence of Lemma 3.1, we immediately have

Proposition 3.1 Under the conditions of Lemma 3.1, for any t � T + τ, T > 0 and
(win, φin) ∈ E2

Ĥ
, it holds that

∫ t

t−T
‖w(θ; τ,win, φin)‖2

V̂
dθ

�β−1(1 + CG)e−γ (t−T−τ)‖(win, φin)‖2
E2
Ĥ

+ (αβ)−1e−γ (t−T )

∫ t

τ

eγ θ‖F(θ)‖2
V̂ ∗dθ,

(3.5)

where α and β come from (3.1).

Proof For t � T + τ , we have

∫ t

τ

eγ θ‖w(θ)‖2
V̂
dθ �

∫ t

t−T
eγ θ‖w(θ)‖2

V̂
dθ � eγ (t−T )

∫ t

t−T
‖w(θ)‖2

V̂
dθ (3.6)

From (3.1), it follows that

β

∫ t

τ

eγ θ‖w(θ)‖2
V̂
dθ � (1 + CG)eγ τ‖(win, φin)‖2

E2
Ĥ

+ α−1
∫ t

τ

eγ θ‖F(θ)‖2
V̂ ∗dθ,

which together with (3.6) implies (3.5). The proof is complete. ��
Now, we can construct the universe Dγ in the following.
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Definition 3.1 (Definition of universe Dγ )
Set

Rγ := {ρ(t) : R �→ R+ | lim
t→−∞ eγ tρ2(t) = 0}.

We denote by Dγ the class of all families D̂ = {D(t) | t ∈ R} ⊆ P(E2
Ĥ

) such that

D(t) ⊆ B̄E2
Ĥ
(0, ρD̂(t)), for some ρD̂(t) ∈ Rγ ,

where B̄E2
Ĥ
(0, ρD̂(t)) represents the closed ball in E2

Ĥ
centered at zero with radius

ρD̂(t).

3.1 Pullback Dγ -Absorbing Set

In this subsection, we prove existence of the pullback Dγ -absorbing set.

Assumption 3.1 Assume that F(t, x) ∈ L2
loc(R; V̂ ∗), ∀ t � τ, τ ∈ R, and

∫ t

−∞
eγ θ‖F(θ, x)‖2

V̂ ∗dθ < +∞, sup
t∈R

∫ t+1

t
‖F(θ, x)‖2dθ < +∞. (3.7)

Lemma 3.2 (Pullback Dγ -absorbing set)
Assume that Assumptions 2.1 and 3.1 hold. Then the family B̂ := {B(t) | t ∈ R}

with

B(t) := {
(ϕ, ψ) ∈ E2

Ĥ×L2
V̂

| ‖(ϕ, ψ)‖E2
Ĥ×L2

V̂

� R1(t), ‖ψ ′(s)‖L2
V̂∗ � R2(t)

}

(3.8)

is a pullback Dγ -absorbing set for the process {U (t, τ )}t�τ , where

R2
1(t) :=1 + (1 + β−1eγ h)α−1e−γ t

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ, (3.9)

R2
2(t) :=4η2β−1[2 + λ−1

1 C2
Ge

γ h + α−1e−γ (t−h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ
]

· [
1 + α−1e−γ (t−h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ
] + 4η2

∫ t

t−h
‖F(θ)‖2

V̂ ∗dθ,

(3.10)

where β comes from (3.1), α ∈ (0, 2δ1 − γ − 2CG) and η := max{1, α0, λ
− 1

2
1 ,

c−1
1 + c(νr )λ

− 1
2

1 }.
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Proof By (3.7) and (3.9), it is clear that lim
t→−∞ eγ tR2

1(t) = 0. Consequently,

B(t) ⊂ {(ϕ, ψ) ∈ E2
Ĥ

| ‖(ϕ, ψ)‖2
E2
Ĥ

� ρ2(t), lim
t→−∞ ρ2(t) = 0}, and therefore B̂ ∈ Dγ .

Taking T = h in Proposition 3.1, and for any t � τ + h, we have

‖wt (·; τ,win, φin)‖2
L2
V̂

�β−1(1 + CG)e−γ (t−h−τ)‖(win, φin)‖2
E2
Ĥ

+ (αβ)−1e−γ (t−h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ,

which together with (3.1) gives

‖U (t, τ )(win, φin)‖2E
Ĥ×L2

V̂

= ‖w(t; τ,win, φin)‖2 + ‖wt (·; τ,win, φin)‖2
L2
V̂

� (1 + β−1eγ h)(1 + CG)e−γ (t−τ)‖(win, φin)‖2
E2
Ĥ

+ (1 + β−1eγ h)α−1e−γ t
∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ, (3.11)

In addition, it follows from (1.2), (1.6)1, (2.2), (2.3) and (2.5) that

|〈w′(θ), v〉| �|〈Aw(θ), v〉| + |〈B(u(θ), w(θ)), v〉| + |〈N (w(θ)), v〉|
+ |〈F(θ), v〉| + |〈G(θ, wθ ), v〉|

�
(
c−1‖w(θ)‖V̂ + α0‖u(θ)‖ 1

2 ‖∇u(θ)‖ 1
2 ‖w(θ)‖ 1

2 ‖∇w(θ)‖ 1
2

+ c(νr )λ
− 1

2
1 ‖w(θ)‖V̂

+ ‖F(θ)‖V̂ ∗ + λ
− 1

2
1 ‖G(θ, wθ )‖

)‖v‖V̂ , ∀ v ∈ V̂ . (3.12)

Since ‖u(θ)‖ � ‖w(θ)‖ and ‖∇u(θ)‖ � ‖∇w(θ)‖ � ‖w(θ)‖V̂ , (3.12) implies

‖w′(θ)‖V̂ ∗ � η
(‖w(θ)‖V̂ + ‖w(θ)‖‖w(θ)‖V̂ + ‖F(θ)‖V̂ ∗ + ‖G(θ, wθ )‖

)
,

where η := max{1, α0, λ
− 1

2
1 , c−1

1 + c(νr )λ
− 1

2
1 }. Integrating the above inequality and

using the Cauchy inequality yield

∫ t

t−h
‖w′(θ)‖2

V̂ ∗dθ �4η2
∫ t

t−h

(‖w(θ)‖2
V̂

+ ‖w(θ)‖2‖w(θ)‖2
V̂

+ ‖F(θ)‖2
V̂ ∗ + ‖G(θ, wθ )‖2

)
dθ. (3.13)

Under Assumption 2.1, it holds that
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∫ t

t−h
‖G(θ, wθ )‖2dθ � C2

G

∫ t

t−2h
‖w(θ)‖2dθ � λ−1

1 C2
G

∫ t

t−2h
‖w(θ)‖2

V̂
dθ. (3.14)

From (3.1), we have

sup
θ∈[t−h,t]

‖w(θ)‖2 �(1 + CG)e−γ (t−h−τ)‖(win, φin)‖2
E2
Ĥ

+ α−1e−γ (t−h)

∫ t

−∞
eγ s‖F(s)‖2

V̂ ∗ds. (3.15)

Taking T = 2h in (3.5) yields

∫ t

t−2h
‖w(θ)‖2

V̂
dθ �β−1(1 + CG)e−γ (t−2h−τ)‖(win, φin)‖2

E2
Ĥ

+ (αβ)−1e−γ (t−2h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ. (3.16)

Now, taking (3.13)–(3.16) into account and writing

M(t, τ, win, φin) :=(1 + CG)e−γ (t−h−τ)‖(win, φin)‖2
E2
Ĥ

+ α−1e−γ (t−h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ,

we obtain

‖w′
t (s)‖L2

V̂∗ =
∫ t

t−h
‖w′(θ)‖2

V̂ ∗dθ

�4η2
[
1 + (1 + CG)e−γ (t−h−τ)‖(win, φin)‖2

E2
Ĥ

+ α−1e−γ (t−h)

∫ t

−∞
eγ s‖F(s)‖2

V̂ ∗ds
]

× [
β−1(1 + CG)e−γ (t−h−τ)‖(win, φin)‖2

E2
Ĥ

+ (αβ)−1e−γ (t−h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ
]

+ 4η2λ−1
1 C2

G

[
β−1(1 + CG)e−γ (t−2h−τ)‖(win, φin)‖2

E2
Ĥ

+ (αβ)−1e−γ (t−2h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ
]

+ 4η2
∫ t

t−h
‖F(θ)‖2

V̂ ∗dθ

=4η2β−1[1 + λ−1
1 C2

Ge
γ h + M(t, τ, win, φin)

]
M(t, τ, win, φin)

+ 4η2
∫ t

t−h
‖F(θ)‖2

V̂ ∗dθ. (3.17)
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Therefore, from (3.11) and (3.17), we conclude that the family B̂ given by (3.8) is a
pullback Dγ -absorbing set for the process {U (t, τ )}t�τ . This completes the proof. ��

3.2 Pullback Dγ -Asymptotic Compactness

This subsection is to prove the pullback Dγ -asymptotic compactness of the process
{U (t, τ )}t�τ . Since the lack of compactness for Sobolev imbedding in unbounded
domains, we first establish the tail estimate with respect to the unbounded domains.

Lemma 3.3 (Tail estimate of unbounded domains)
Assume that Assumptions 2.1 and 3.1 hold. Then, for any ε > 0, t ∈ R and D̂ =

{D(t) | t ∈ R} ∈ P(E2
Ĥ

), there exist l0 := l0(ε, t, D̂) > 0 and τ0 := τ0(ε, t, D̂) < t

such that, for any l � l0, τ � τ0 and (win, φin) ∈ D(τ ), there holds

‖w(t; τ,win, φin)‖L2(�\�l )
� ε, (3.18)

where �l := {x ∈ � | |x | < l}.
Proof Let the truncation function χ(·) ∈ C2(R2), χ(x) ∈ [0, 1] satisfies for some
constant c0

χ(x) =
{
0, |x | � 1,
1, |x | � 2,

‖∇χ(x)‖L∞(R2) � c0, ‖D2χ(x)‖L∞(R2) � c0.

In particular, set χl(x) = χ( xl ) with l � 1, we have

‖∇χl(x)‖L∞(R2) � c0
l

, ‖D2χl(x)‖L∞(R2) � c0
l2

. (3.19)

Taking the inner product of (1.6)1 yields

1

2

d

dt
‖χlw‖2 + 〈A(χlw), χlw〉 − (ν + νr )

∫

�

|u∇χl |2dx − ᾱ

∫

�

|ω∇χl |2dx
+ ((u · ∇)w, χ2

l w) + 〈N (χlw), χlw〉 + (∇ p, χ2
l u)

=〈F(t, x), χ2
l w〉 + (G(t, wt ), χ

2
l w). (3.20)

It follows from (3.19) and the Hölder inequality that

(ν + νr )

∫

�

|u∇χl |2dx � (ν + νr )‖∇χl‖2L∞(�)‖u‖2 � c20(ν + νr )l
−2‖u‖2. (3.21)

Similarly, it holds that

ᾱ

∫

�

|ω∇χl |2dx � ᾱ‖∇χl‖2L∞(�)‖ω‖2 � c20ᾱl
−2‖ω‖2. (3.22)

Using integrating by parts and the fact ∇ · u = 0, we obtain
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((u · ∇)w, χ2
l w) =

2∑

i, j=1

∫

�

ui
∂u j

∂xi
χ2
l u jdx +

2∑

i=1

∫

�

ui
∂ω

∂xi
χ2
l ωdx

= −
2∑

i, j=1

(∫

�

uiu jχ
2
l

∂u j

∂xi
dx + 2

∫

�

uiu
2
jχl

∂χl

∂xi
dx

)

−
2∑

i=1

(∫

�

uiωχ2
l

∂ω

∂xi
dx + 2

∫

�

uiω
2χl

∂χl

∂xi
dx

)

= − ((u · ∇)w, χ2
l w) − 2

2∑

i, j=1

∫

�

uiu
2
jχl

∂χl

∂xi
dx

− 2
2∑

i=1

∫

�

uiω
2χl

∂χl

∂xi
dx,

which together with (3.19), the Hölder inequality, the Gagliardo–Nirenberg inequality
and the Young’s inequality yield

|((u · ∇)w, χ2
l w)| = ∣

∣
2∑

i, j=1

∫

�

uiu
2
jχl

∂χl

∂xi
dx +

2∑

i=1

∫

�

uiω
2χl

∂χl

∂xi
dx

∣
∣

�‖∇χl‖L∞(�)‖u‖‖w‖2
L4(�)

� c0l
−1‖u‖‖w‖‖w‖V̂ � c0

l
(‖w‖4 + ‖w‖2

V̂
). (3.23)

From (3.19) and the fact ∇ · u = 0, we also have

|(∇ p, χ2
l u)| =∣

∣
2∑

i=1

∫

�

∂p

∂xi
χ2
l uidx

∣
∣ = ∣

∣
2∑

i=1

∫

�

2pχl
∂χl

∂xi
uidx

∣
∣

�2‖p‖‖∇χl‖L∞(�)‖χlu‖ � 2c0l
−1‖p‖‖χlu‖. (3.24)

Taking (1.2), (2.7), (3.20)–(3.24) and Lemma 3.2 into account, we deduce that there
exists τ1 such that, for any τ � τ1,

1

2

d

dt
‖χlw‖2 + δ1‖χlw‖2

V̂
� 1

2

d

dt
‖χlw‖2 + 〈A(χlw), χlw〉 + 〈N (χlw), χlw〉

�c20(ν + νr )

l2
‖u‖2 + c20ᾱ

l2
‖ω‖2 + c0

l
(‖w‖4 + ‖w‖2

V̂
) + ‖χl F‖V̂ ∗‖χlw‖V̂

+ (G(t, wt ), χ
2
l w) + 2c0

l
‖p‖‖χlu‖

�c20 · max{ν + νl , ᾱ}
l2

‖w‖2 + c0
l
R4

1 + c0
l

‖w‖2
V̂

+ 1

4β1
‖χl F‖2

V̂ ∗ + β1‖χlw‖2
V̂

+ (G(t, wt ), χ
2
l w) + c0

l
(‖p‖2 + ‖χlu‖2),
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where the constant β1 ∈ (0, 2δ1−2CG−γ
2 ]. Hence, there exists constant c3 > 0 such

that

d

dt
‖χlw‖2 + 2(δ1 − β1)‖χlw‖2 � d

dt
‖χlw‖2 + 2(δ1 − β1)‖χlw‖2

V̂

� c3
l2
R2

1 + 2c0
l
R4

1 + 2c0
l

‖w‖2
V̂

+ 1

2β1
‖χl F‖2

V̂ ∗ + 2(G(t, wt ), χ
2
l w) + 2c0

l
(‖p‖2 + ‖χlu‖2).

Further, it holds that

d

dt
(eγ t‖χlw(t)‖2) + [2(δ1 − β1) − γ ]eγ t‖χlw(t)‖2

� c3
l2
eγ tR2

1(t) + 2c0
l
eγ tR4

1(t) + 2c0
l
eγ t‖w(t)‖2

V̂

+ 1

2β1
eγ t‖χl F‖2

V̂ ∗ + 2eγ t (G(t, wt ), χ
2
l w(t))

+ 2c0
l
eγ t (‖p‖2 + ‖χlw(t)‖2).

Integrating the above inequality yields

eγ t‖χlw(t)‖2 + [2(δ1 − β1) − γ ]
∫ t

τ

eγ s‖χlw(s)‖2ds

� eγ τ‖χlw
in‖2 + c3

l2

∫ t

τ

eγ sR2
1(s)ds + 2c0

l

∫ t

τ

eγ sR4
1(s)ds

+ 2c0
l

∫ t

τ

eγ s‖w(s)‖2
V̂
ds

+ 1

2β1

∫ t

τ

eγ s‖χl F(s)‖2
V̂ ∗ds + 2

∫ t

τ

eγ s(G(s, ws), χ
2
l w(s))ds

+ 2c0
l

∫ t

τ

eγ s‖p‖2ds + 2c0
l

∫ t

τ

eγ s‖χlw(s)‖2ds. (3.25)

Similar to (3.3), we have

2
∫ t

τ

eγ s(G(s, ws), χ
2
l w(s))ds � CGe

γ τ‖χlφ
in‖2

L2
Ĥ

+ 2CG

∫ t

τ

eγ s‖χlw(s)‖2ds.
(3.26)

Inserting (3.26) into (3.25), noting that 2(δ1 − β1 − CG) − γ � 0, we deduce that

‖χlw(t)‖2 �eγ (τ−t)‖χlw
in‖2 + CGe

γ (τ−t)‖χlφ
in‖2

L2
Ĥ

+
(
c3
l2

+ 2c0
l

)

e−γ t
∫ t

τ

eγ sR2
1(s)ds
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+ 2c0
l
e−γ t

∫ t

τ

eγ sR4
1(s)ds + 2c0

l
e−γ t

∫ t

τ

eγ s‖w(s)‖2
V̂
ds

+ l

2β1
e−γ t

∫ t

τ

eγ s‖χl F‖2
V̂ ∗ds + 2c0

l
e−γ t

∫ t

τ

eγ s‖p‖2ds. (3.27)

For any ε > 0, there exists a τ2 := τ2(ε, t, D̂) such that

eγ (τ−t)‖χlw
in‖2 + CGe

γ (τ−t)‖χlφ
in‖2

L2
Ĥ

� ε

6
for any τ � τ1. (3.28)

Note that (3.7) implies, see [32],

lim
l→∞

∫ t

−∞
eγ θ‖F(θ, x)‖2

V̂ ∗(�\�l )
dθ = 0, ∀ t ∈ R. (3.29)

Then, under Assumption 3.1, taking Lemma 3.1, Lemma 3.2 and (3.29) into account,
we conclude that there exists l1 := l1(ε, t, D̂) such that for any l � l1,

⎧
⎪⎪⎨

⎪⎪⎩

(
c3
l2

+ 2c0
l

)

e−γ t
∫ t

τ

eγ sR2
1(s)ds � ε

6
,

2c0
l
e−γ t

∫ t

τ

eγ sR4
1(s)ds � ε

6
,

2c0
l
e−γ t

∫ t

τ

eγ s‖w(s)‖2
V̂
ds � ε

6
,

(3.30)

and

1

2β1
e−γ t

∫ t

τ

eγ s‖χl F‖V̂ ∗ds = 1

2β1
e−γ t

∫ t

τ

eγ s‖F‖V̂ ∗(�\�l )
ds � ε

6
. (3.31)

It follows from (1.3)1 that ∇ p ∈ L2
loc(τ,+∞;H−1(�)), which implies p ∈

L2
loc(τ,+∞; L2(�)),

∫ t

τ

eγ s‖p‖2ds � c
∫ t

τ

eγ s‖w(s)‖2
V̂
ds, where c is a positive constant.

Consequently, we deduce that there exists l2 := l2(ε, t, D̂) such that for any l � l2, it
holds that

2c0
l
e−γ t

∫ t

τ

eγ s‖p‖2ds � 2cc0
l

e−γ t
∫ t

τ

eγ s‖w(s)‖2
V̂
ds � ε

6
. (3.32)

Substituting (3.28)–(3.32) into (3.27), we immediately obtain (3.18) with
τ0 = min{τ1, τ2} and l0 = max{l1, l2}. This completes the proof. ��

In order to prove the pullback asymptotic compactness, we need to improve the
regularity of solutions.
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Lemma 3.4 (see [29]) Let Y0,Y be two Banach spaces such that Y0 is reflexive,
and the inclusion Y0 ⊂ Y is continuous. Assume that {wn} is a bounded sequence in
L∞(t0, T ; Y0) such that wn ⇀ w weakly in L p(t0, T ; Y0) for some p ∈ [1,+∞) and
w ∈ C(t0, T ; Y ). Then w(t) ∈ Y0 and

‖w(t)‖Y0 � lim inf
n→∞ ‖wn‖L∞(t0,T ;Y0), ∀ t ∈ [t0, T ].

Lemma 3.5 (Regularity estimate) Assume that Assumptions 2.1 and 3.1 hold, then,
for any t ∈ R and D̂ = {D(s) | s ∈ R} ∈ Dγ , there exists a τ ∗(D̂, t) such that, for any
τ � τ ∗(D̂, t), the weak solution w(t) with initial data (win

0 , φin
0 ) ⊂ D(τ ) is bounded

in V̂ .

Proof We consider the Galerkin approximate solutions. For each integer n � 1, we
denote by

wn(t) = wn(t; τn, w
n
0 , φ

n
0 ) :=

n∑

i=1

ξni (t)ei , wnt (·) = wn(t + ·; τn, w
n
0 , φ

n
0 ),

(3.33)

the Galerkin approximation of the solution w(t) of system (1.6), where ξni (t) is the
solution of the following Cauchy problem of ODEs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt
(wn(t), ei ) + 〈Awn(t) + B(un, wn) + N (wn(t)), ei 〉

= 〈F(t), ei 〉 + (G(t, wnt ), ei ),
(wn(τ ), ei ) = (wn

0 , ei ), (wn(s), ei )
= (φn

0 , ei ), s ∈ (τ − h, τ ), i = 1, 2, . . . , n,

(3.34)

where {ei : i � 1} ⊆ D(A), which forms a Hilbert basis of V̂ and is orthonormal in
Ĥ . Multiplying equation (3.34)1 by Aξni (t) and summing them for i = 1 to n, we
obtain

1

2

d

dt
〈Awn(t), wn(t)〉 + ‖Awn(t)‖2 + 〈B(un(t), wn(t)), Awn(t)〉

+ 〈N (wn(t)), Awn(t)〉
= (F(t), Awn(t)) + (G(t, wnt ), Awn(t)). (3.35)

From (2.4) and the facts ‖un‖2 � ‖wn‖2, ‖∇un‖2 � ‖wn‖2V̂ , and using the Young’s
inequality, we deduce that

−〈B(un, wn), Awn〉 � |〈B(un, wn), Awn〉| � α0‖un‖ 1
2 ‖∇un‖ 1

2 ‖∇wn‖ 1
2 ‖Awn‖ 3

2

� 1

4
‖Awn‖2 + 43α4

0‖wn‖2‖wn‖4V̂ ,

which together with (2.6), (3.35) and Assumption 2.1 implies
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1

2

d

dt
〈Awn, wn〉 = −‖Awn‖2 + (F, Awn) + (G(t, wnt ), Awn)

− 〈B(un, wn), Awn〉 − 〈N (wn), Awn〉
� −‖Awn‖2 + 1

4
‖Awn‖2 + ‖F(t)‖2 + ‖G(t, wnt )‖2 + 1

4
‖Awn‖2

+ 1

4
‖Awn‖2 + 43α4

0‖wn‖2‖wn‖4V̂
+ c2(νr )‖wn‖2V̂ + 1

4
‖Awn‖2

= ‖F(t)‖2 + ‖G(t, wnt )‖2 + ‖wn‖2V̂
(
43α4

0‖wn‖2‖wn‖2V̂ + c2(νr )
)
.

Further, from (2.2) and the above inequality, we have

d

dt
〈Awn(t), wn(t)〉
� 2‖F(t)‖2 + 2‖G(t, wnt )‖2 + 〈Awn(t), wn(t)〉

(
27c2α

4
0‖wn(t)‖2‖wn(t)‖2V̂

+ 2c2c
2(νr )

)
. (3.36)

Let us set

Hn(θ) := 〈Awn(θ), wn(θ)〉, In(θ) := 2(‖F(θ)‖2 + ‖G(θ, wnθ )‖2),
Kn(θ) := 27c2α

4
0‖wn(θ)‖2‖wn(θ)‖2

V̂
+ 2c2c

2(νr ).

Replacing the variable t with θ in (3.36), we get

d

dθ
Hn(θ) � Kn(θ)Hn(θ) + In(θ). (3.37)

Using the Gronwall inequality to (3.37), for all τ � t − h � s � t , we have

Hn(t) �
(
Hn(s) +

∫ t

t−h
In(θ)dθ

) · exp
{∫ t

t−h
Kn(θ)dθ

}

. (3.38)

Integrating (3.38) from s = t − h to s = t , we obtain that

hHn(t) �
(∫ t

t−h
Hn(s)ds + h

∫ t

t−h
In(θ)dθ

)

· exp
{∫ t

t−h
Kn(θ)dθ

}

. (3.39)

In addition, it follows from (2.2), Lemma 3.2 and Assumption 2.1 that

∫ t

t−h
Hn(s)ds + h

∫ t

t−h
In(θ)dθ =

∫ t

t−h
〈Awn(s), wn(s)〉ds

+ h
∫ t

t−h
2(‖F(θ)‖2 + ‖G(θ, wnθ )‖2)dθ
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� c1
−1

∫ t

t−h
‖wn(s)‖2V̂ ds + 2h

∫ t

t−h
‖F(θ)‖2dθ + 2hC2

G

∫ t

t−2h
‖w(θ)‖2dθ

� c−1
1 R2

1(t) + 4h2C2
GR2

1(t) + 2h
∫ t

t−h
‖F(θ)‖2dθ � c4

(R2
1(t)

+
∫ t

t−h
‖F(θ)‖2dθ)

,

where c4 := max{2h, c−1
1 + 4h2C2

G}. From (3.1) and Lemma 3.2, it holds that

∫ t

t−h
Kn(θ)dθ =

∫ t

t−h
(27c2α

4
0‖wn(θ)‖2‖wn(θ)‖2

V̂
+ 2c2c

2(νr ))dθ

� 27c2α
4
0 sup

θ∈[t−h,t]
‖wn(θ)‖2

∫ t

t−h
‖wn(θ)‖2

V̂
dθ + 2c2hc

2(νr )

� 27c2α
4
0

[
(1 + CG)eγ (h+τ−t)‖(wn

0 , φ
n
0 )‖2

E2
Ĥ

+ α−1eγ (h−t)
∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ
]R2

1(t) + 2c2hc
2(νr ).

With the aid of (2.2), substituting the above two inequalities into (3.39), yields

‖wn(t)‖2V̂ � c2Hn(t)

� c2c4h
−1(R2

1(t) +
∫ t

t−h
‖F(θ)‖2dθ)

× exp
{
c5

(
eγ (τ−t)‖(wn

0 , φ
n
0 )‖2

E2
Ĥ

+ e−γ t
∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ
)R2

1(t) + 2c2hc
2(νr )

}
, (3.40)

where c5 := 27c2α4
0e

γ h ·max{(1+CG), α−1}. Under Assumption 3.1, it is clear that
there exists a constant M̄ such that

∫ t

t−h
‖F(θ)‖2dθ � M̄, ∀ t ∈ R,

which together with (3.40), Lemma 3.4 implies the boundedness of ‖w(t; τ,win
0 ,

φin
0 )‖V̂ for all τ � τ ∗(D̂, t). The proof is complete. ��
On the basis of the above results, we are ready to prove the pullbackDγ -asymptotic

compactness of the process {U (t, τ )}t�τ .

Lemma 3.6 (pullbackDγ -asymptotic compactness)
Under the conditions of Lemma 3.3, the process {U (t, τ )}t�τ generated by (2.10) is

pullback Dγ -asymptotically compact in Ĥ .
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Proof For any fixed t ∈ R, and family D̂ = {D(s) | s ∈ R} ∈ Dγ , any sequences
{τn} ⊆ (−∞, t] satisfying τn → −∞ as n → +∞ and {(win

n , φin
n )} ⊂ D(τn). It

suffice to show the sequence {(wn(t), wn
t (·))}n�1 defined by

(wn(t), wn
t (·)) := U (t, τn)(w

in
n , φin

n ) = (w(t; τn, w
in
n , φin

n ), wt (·; τn, w
in
n , φin

n ))

is relatively compact in E2
Ĥ
.

Step 1 (the sequence {wn(t)}n�1 is relatively compact in Ĥ )
In fact, by Lemma 3.2, there exists a time τ1 := τ1(D̂, t) < t such that, for

any τ � τ1, U (t, τ )D(τ ) ⊂ B(t). Moreover, (3.8)–(3.10) implies B(t) is uniformly
bounded with respect to t . Consequently, D(t) is uniformly bounded in E2

Ĥ×L2
V̂

with

respect to t . Since E2
Ĥ×L2

V̂

is a reflexive Banach space, we can extract a subsequence

(denoting by the same symbol) {(win
n , φin

n )}n�1 and some (w, φ) ∈ E2
Ĥ×L2

V̂

such that

U (t, τn)(w
in
n , φin

n ) ⇀ (w, φ) weakly in E2
Ĥ×L2

V̂

as n → ∞, (3.41)

which implies

wn(t) ⇀ w(t) weakly in Ĥ as n → ∞. (3.42)

Moreover, from Lemma 3.3, we conclude that, for any ε > 0, there exist τ3 :=
τ3(ε, t, D̂) and l3 := l3(ε, t, D̂) > 0 such that

‖wn(t)‖L2(�\�l )
= ‖wn(t; τn, w

in
n , φin

n )‖L2(�\�l )
� ε

3
, ∀ τn � τ3, l � l3. (3.43)

Observe that, for any fixed t ∈ R, w(t) ∈ Ĥ is fixed. Hence, for the above ε > 0,
there exists l4 > 0 such that

‖w(t)‖L2(�\�l )
� ε

3
, ∀ τn � τ3, l � l4. (3.44)

Now, we define the restrictions of wn and w in �l , respectively, as

wn(t)
∣
∣
�l

:=
{

wn(t), x ∈ �l ,

0, x ∈ �\�l ,
w(t)

∣
∣
�l

:=
{

w(t), x ∈ �l ,

0, x ∈ �\�l .

It follows from Lemma 3.5 that, for any l > 0, the sequence {wn(t)
∣
∣
�l

}n�1 is bounded

in V̂ (�l). Since V̂ (�l) ↪→↪→ Ĥ(�l), there exists a subsequence (denoting by the
same symbol) {wn(t)

∣
∣
�l

}n�1 satisfying

‖wn(t) − w(t)‖Ĥ(�l )
→ 0, as n → ∞, (3.45)
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which combine with (3.43) and (3.44) implies that there exists a N0 ∈ N such that,
for any n � N0,

‖wn(t) − w(t)‖Ĥ =‖wn(t) − w(t)‖Ĥ(�l )
+ ‖wn(t) − w(t)‖L2(�\�l )

�‖wn(t) − w(t)‖Ĥ(�l )
+ ‖wn(t)‖L2(�\�l )

+ ‖w(t)‖L2(�\�l )
� ε. (3.46)

Therefore, the sequence {wn(t)}n�1 is relatively compact in Ĥ .
Step 2 (the sequence {wn

t (·)}n�1 is relatively compact in L2
Ĥ
)

Let us denote {θ j } j�0 the sequence of all rational numbers from the interval [−h, 0].
From the above argument, we deduce that there exists a subsequence (denoting by the
same symbol) {(win

n , φin
n )}n�1 such that for each j there exists a w j ∈ Ĥ satisfying

w(t + θ j ; τn, w
in
n , φin

n ) → w j strongly in Ĥ as n → ∞. (3.47)

Then for any t1, t2 ∈ [t − h, t] with t1 < t2, we have

wn(t2) − wn(t1) =
∫ t2

t1
(wn)′(s)ds

=
∫ t2

t1

[ − Awn(s) − B(un(s), wn(s)) − N (wn(s))

+ F(s) + G(s, wn
s )

]
ds.

Hence, from (2.2), (2.3) and (2.5), it follows that

‖wn(t2) − wn(t1)‖V̂ ∗

�
∫ t2

t1

(‖Awn(s)‖V̂ ∗ + ‖B(un(s), wn(s))‖V̂ ∗ + ‖N (wn(s))‖V̂ ∗ + ‖F(s)‖V̂ ∗

+ ‖G(s, wn
s )‖V̂ ∗

)
ds

� c
∫ t2

t1

(‖wn(s)‖V̂ + ‖wn(s)‖‖wn(s)‖V̂ + ‖F(s)‖V̂ ∗ + ‖G(s, wn
s )‖

)
ds.

(3.48)

Moreover, applying the Cauchy inequality and Assumption 2.1, we have

∫ t2

t1
‖G(s, wn

s )‖ds �CG(t2 − t1)
1
2

(∫ t2

t1−h
‖wn(s)‖2ds

) 1
2

�CG(t2 − t1)
1
2

(∫ t

t−2h
‖wn(s)‖2

V̂
ds

) 1
2

. (3.49)

Similar to (3.49), it also holds that
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∫ t2

t1
‖F(s)‖V̂ ∗ds �(t2 − t1)

1
2

(∫ t

t−h
‖F(s)‖2

V̂ ∗ds

) 1
2

, (3.50)

∫ t2

t1
‖wn(s)‖V̂ ds �(t2 − t1)

1
2

(∫ t2

t1
‖wn(s)‖2

V̂
ds

) 1
2

, (3.51)

and

∫ t2

t1
‖wn(s)‖‖wn(s)‖V̂ ds � sup

s∈[t−h,t]
‖wn(s)‖

∫ t2

t1
‖wn(s)‖V̂ ds

�(t2 − t1)
1
2 sup
s∈[t−h,t]

‖wn(s)‖
(∫ t2

t1
‖wn(s)‖2

V̂
ds

) 1
2

.

(3.52)

(3.48)–(3.52) imply

‖wn(t2) − wn(t1)‖V̂ ∗ � c(t2 − t1)
1
2

[(

1 + sup
s∈[t−h,t]

‖wn(s)‖
)

×
(∫ t

t−2h
‖wn(s)‖2

V̂
ds

) 1
2 +

(∫ t

t−h
‖F(s)‖2

V̂ ∗ds

) 1
2
]

. (3.53)

It follows from (3.1) that for all s ∈ [t − h, t],

‖wn(s)‖2 �(1 + CG)e−γ (s−τn)‖(win
n , φin

n )‖2
E2
Ĥ

+ α−1e−γ s
∫ s

τn

eγ θ‖F(θ)‖2
V̂ ∗dθ

�(1 + CG)eγ (h+τn−t)‖(win
n , φin

n )‖2
E2
Ĥ

+ α−1eγ (h−t)
∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ. (3.54)

In addition, (3.5) gives

∫ t

t−2h
‖wn(s)‖2

V̂
ds �β−1(1 + CG)e−γ (t−2h−τn)‖(win

n , φin
n )‖2

E2
Ĥ

+ (αβ)−1e−γ (t−2h)

∫ t

−∞
eγ θ‖F(θ)‖2

V̂ ∗dθ. (3.55)

Since eγ τn‖(win
n , φin

n )‖2
E2
Ĥ

is bounded, taking Assumption 3.1 and (3.53)–(3.55) into

account, we conclude that

the sequence {wn(·)}n�1 is equicontinuous in C([t − h, t]; V̂ ∗).

123



2830 W. Sun, G. Liu

Next, observe that for any r ∈ [t − h, t]\Q, where Q represents the set of all rational
number,

‖wn(r) − wm(r)‖V̂ ∗ �‖wn(r) − wn(t + θ j )‖V̂ ∗ + ‖wn(t + θ j ) − wm(t + θ j )‖V̂ ∗

+ ‖wm(t + θ j ) − wm(r)‖V̂ ∗ , ∀ j � 1.

On the one hand, by the equicontinuity of {wn(s)}n�1, there exist a subsequence
{θ j k} ⊂ {θ j } such that

‖wn(r) − wn(t + θ j k)‖V̂ ∗ → 0 as k → ∞,

‖wm(t + θ j k) − wm(r)‖V̂ ∗ → 0 as k → ∞.

On the other hand, (3.47) implies

‖wn(t + θ j k) − wm(t + θ j k)‖V̂ ∗ → 0 as n, m → ∞.

Therefore, for any θ ∈ [t − h, t]\Q,

the sequence {wn(r)}n�1 is a Cauchy sequence of V̂ ∗.

Thus, for each r ∈ [t − h, t], there exists some v(θ) ∈ V̂ ∗ such that

wn(θ) → v(θ) strongly in V̂ ∗ as n → ∞.

Based on the continuous injection of Ĥ into V̂ ∗ and (3.54), we conclude that the
sequence {wn(·)} is bounded in C([t − h, t]; V̂ ∗). Then, applying the Lebesgue dom-
inated convergence theorem, we obtain

wn(·) → v(·) strongly in L2(t − h, t; V̂ ∗) as n → ∞.

So

wn(t + ·) =: wn
t (·; τn, w

in
n , φin

n ) → vt (·) := v(t + ·) strongly in L2
V̂ ∗ as n → ∞.

(3.56)

From (3.41) and the uniqueness of limit, (3.56) implies

wn
t (·; τn, w

in
n , φin

n ) → φ strongly in L2
V̂ ∗ as n → ∞. (3.57)

Further, we conclude that
∫ 0

−h
‖wn

t (s) − φ(s)‖2ds =
∫ 0

−h
〈wn

t (s) − φ(s), wn
t (s) − φ(s)〉ds

�‖wn
t (s) − φ(s)‖L2

V̂∗ ‖w
n
t (s) − φ(s)‖L2

V̂
→ 0 as n → ∞,

which together with (3.46) gives the pullback Dγ -asymptotic compactness. ��
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3.3 Existence of Pullback Attractor for the Universe Dγ

Theorem 3.1 Assume thatAssumptions2.1and3.1hold, then theprocess {U (t, τ )}t�τ

in (2.10) has a unique pullbackDγ -attractor ÂDγ
= {ADγ

(t) | t ∈ R} for the universe
Dγ .

Proof Define

ADγ
(t) =

⋂

τ0�t

⋃

τ�τ0

U (t, τ )D(τ ), D̂ = {D(t) | t ∈ R} ∈ Dγ . (3.58)

According to [16, Proposition 9] or [27, Theorem 18], Lemmas 3.2 and 3.6 imply
ÂDγ

= {ADγ
(t) | t ∈ R} in (3.58) is the unique pullback attractor for the universe

Dγ . ��

4 Some Properties of Pullback Attractor for the UniverseDγ

In this section, we conclude some properties of pullback attractor for the universeDγ .
The first property is that pullback attractor for the universe Dγ is consistent with that
for the universe of fixed bounded sets. The other property is the tempered behavior.

4.1 Consistency with Pullback Attractor for the Universe of Fixed Bounded Sets

Let us denote DF the class of all families

D̂F = {
DF (t) = D | t ∈ R, D is some bounded set in E2

Ĥ

}
.

It is clear that DF ⊂ Dγ . Then we consider the universe DF in P(E2
Ĥ

).

Theorem 4.1 Under Assumptions 2.1 and 3.1, the process {U (t, τ )}t�τ in (2.10) has
a unique pullback DF-attractor ÂDF = {ADF (t) | t ∈ R}, Moreover,

ADF (t) = ADγ
(t), ∀ t ∈ R. (4.1)

Proof The existence of pullback DF -attractor ÂDF is as a consequence of Theo-
rem 3.1. Under Assumption 3.1, (4.1) follows from [27, Proposition 23]. ��
Remark 4.1 By the pullback attracting property of the pullback attractor ÂDγ

and (4.1), we can check that, for any D̂ = {D(t) | t ∈ R} ∈ Dγ , there holds

lim
τ→−∞ distE2

Ĥ
(U (t, τ )D(τ ),ADF (t)) = lim

τ→−∞ distE2
Ĥ
(U (t, τ )D(τ ),ADγ

(t)) = 0,

which implies that ÂDF not only attracts any bounded sets but also attracts some
tempered sets in the pullback sense.
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4.2 Tempered Behavior of the Pullback Attractor

Theorem 4.2 Under the conditions of Assumptions 2.1 and 3.1, it holds that

lim
t→−∞

(

eγ t sup
(w,φ)∈ADγ (t)

‖(w, φ)‖E2
Ĥ

)

= 0, (4.2)

lim
t→−∞

(

eγ t sup
(w,φ)∈ADγ (t)

‖(w, φ)‖E2
V̂

)

= 0. (4.3)

Proof By Definition 3.1 of universe Dγ , we have

ÂDγ
∈ Dγ .

Thus, (4.2) holds.
Moreover, (4.3) is a consequence of Lemmas 3.2, 3.5 and Assumption 3.1. ��
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