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Abstract The aim of this paper is to introduce a Dunkl generalization of the oper-
ators including two-variable Hermite polynomials which are defined by Krech and
to investigate approximating properties for these operators by means of the classical
modulus of continuity, second modulus of continuity and Peetre’s K -functional.
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1 Introduction

Up to now, linear positive operators and their approximation properties have been
studied by many research workers, see for example [3–6,8,9,14,15,22,25,27] and
references therein. Also, linear positive operators defined via generating functions
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and their further extensions are intensively studied by a large number of authors. For
various extensions and further properties, we refer for example Altin et al. [1], Dogru
et al. [7], Olgun et al. [18], Sucu et al. [24], Tasdelen et al. [26], Varma et al. [28,29].

Recently, linear positive operators generated by a Dunkl generalization of the expo-
nential function have been stated by many authors. In [23], Dunkl analogue of Szász
operators by using Dunkl analogue of exponential function was given as follows

S∗
n (g; x) = 1

eν (nx)

∞∑

k=0

(nx)k

γν (k)
g

(
k + 2νθk

n

)
; n ∈ N, ν, x ∈ [0,∞), (1.1)

for g ∈ C[0,∞), where Dunkl analogue of exponential function is defined by

eν (x) =
∞∑

k=0

xk

γν (k)
(1.2)

for k ∈ N0 and ν > − 1
2 and the coefficients γν are as follows

γν (2k) = 22kk!� (k + ν + 1/2)

� (ν + 1/2)
and γν (2k + 1) = 22k+1k!� (k + ν + 3/2)

� (ν + 1/2)
(1.3)

in [20]. Also, the coefficients γν verify the recursion relation

γν (k + 1)

γν (k)
= (2νθk+1 + k + 1) , k ∈ N0, (1.4)

where

θk =
{
0, i f k = 2p
1, i f k = 2p + 1

(1.5)

for p ∈ N0. Similarly, Stancu-type generalization of Dunkl analogue of Szá sz-
Kantorovich operators and Dunkl generalization of Szász operators via q-calculus
have been defined in [10,11] and for other research see [16,17].

The two-variable Hermite Kampe de Feriet polynomials Hn(ξ, α) are defined by
(see [2])

∞∑

n=0

Hn(ξ, α)

n! tn = eξ t+αt2

from which, it follows

Hn(ξ, α) = n!
[ n
2

]
∑

k=0

αkξn−2k

k!(n − 2k)! .
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In a recent paper, Krech [13] has introduced the class of operators Gα
n given by

Gα
n ( f ; x) = e−(

nx+αx2
) ∞∑

k=0

xk

k! Hk(n, α) f

(
k

n

)
, x ∈ [0,∞) ,

f ∈ C[0,∞), n ∈ N , α ≥ 0 (1.6)

in terms of two-variable Hermite polynomials and investigated approximation prop-
erties of Gα

n .
In the present paper, we first give the Dunkl generalization of two-variable Hermite

polynomials and then we define a class of operators by using the Dunkl generaliza-
tion of two-variable Hermite polynomials. We give the rates of convergence of the
operators Tn to f by means of the classical modulus of continuity, second modulus
of continuity and Peetre’s K -functional and in terms of the elements of the Lipschitz
class LipM (α) .

2 The Dunkl Generalization of Two-Variable Hermite Polynomials

The Dunkl generalization of two-variable Hermite polynomials is defined by

∞∑

n=0

Hμ
n (ξ, α)

n! tn = eαt2eμ(ξ t) (2.1)

from which, we conclude

Hμ
n (ξ, α) = n!

[ n
2

]
∑

k=0

αkξn−2k

k!γμ(n − 2k)
,

which gives the two-variable Hermite polynomials as μ = 0. For our purpose, we
denote

hμ
n (ξ, α) = γμ(n)Hμ

n (ξ, α)

n!
and we can write that the polynomials hμ

n (ξ, α) are generated by

∞∑

n=0

hμ
n (ξ, α)

γμ(n)
tn = eαt2eμ(ξ t), (2.2)

where

hμ
n (ξ, α) = γμ(n)

[ n
2

]
∑

k=0

αkξn−2k

k!γμ(n − 2k)
.
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In order to obtain some properties of hμ
n (ξ, α), we remind the following definition

and lemma given in [20].

Definition 1 [20] Let μ ∈ C0 (C0 := C\ {− 1
2 ,− 3

2 , ...
}
, x ∈ C and let ϕ be entire

function. The linear operator Dμ is defined on all entire functions ϕ on C by

Dμ(ϕ(x)) = ϕ
′
(x) + μ

x
(ϕ(x) − ϕ(−x)), x ∈ C. (2.3)

We use the notation Dμ,x since Dμ is acting on functions of the variable x . Thus,
Dμ,x (ϕ(x)) = (

Dμϕ
)
(x).

Lemma 1 [20] Let ϕ,ψ be entire functions. For the linear operatorDμ, the following
statements hold

(i) D
j
μ : xn → γμ(n)

γμ(n− j) x
n− j , j = 0, 1, 2, ..., n (n ∈ N); D

j
μ : 1 → 0,

(i i) Dμ(ϕψ) = Dμ(ϕ)ψ + ϕDμ(ψ), where ϕ is an even function,

(i i i) Dμ : eμ(λx) → λeμ(λx).

By using these definition and lemma, we can state the next result.

Lemma 2 For theDunkl generalizationof two-variableHermite polynomials hμ
n (ξ, α),

the following results hold true

(i)
∞∑
n=0

hμ
n+1(ξ,α)

γμ(n)
tn = (ξ + 2αt)eαt2eμ(ξ t),

(i i)
∞∑
n=0

hμ
n+2(ξ,α)

γμ(n)
tn = (ξ2 + 4ξαt + 4α2t2 + 2α)eαt2eμ(ξ t) + 4αμeαt2eμ(−ξ t).

Proof Applying the linear operator Dμ in view of Lemma 1 , we have

Dμ(teμ(ξ t)) = (tξ + 1)eμ(ξ t) + 2μeμ(−ξ t),

Dμ(eαt2) = 2αteαt2 .
(2.4)

Also applying the linear operator Dμ to both side of generating function (2.2), we
have

∞∑

n=0

hμ
n (ξ, α)

γμ(n)
Dμ(tn) = Dμ(eαt2eμ(ξ t)).

By using (2.4) and Lemma 1 (i), we get the first relation. Similarly, if we apply the
linear operator Dμ to the relation in (i), we get

∞∑

n=0

hμ
n+1(ξ, α)

γμ(n)
Dμ(tn) = Dμ

[
(ξ + 2αt)eαt2eμ(ξ t)

]
.
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From (2.4) and Lemma 1, it follows

∞∑

n=0

hμ
n+2(ξ, α)

γμ(n)
tn = (ξ2 + 4ξαt + 4α2t2 + 2α)eαt2eμ(ξ t) + 4αμeαt2eμ(−ξ t). �	

Definition 2 With the help of the Dunkl generalization of two-variable Hermite poly-
nomials given in (2.2), we introduce the operators Tn( f ; x), n ∈ N given by

Tn( f ; x) := 1

eαx2eμ(nx)

∞∑

k=0

hμ
k (n, α)

γμ(k)
xk f

(
k + 2μθk

n

)
, (2.5)

where α ≥ 0, μ ≥ 0, f ∈ C[0,∞) and x ∈ [0,∞) . Operators (2.5) are linear and
positive. In the case of μ = 0, it gives Gα

n given by (1.6).

Lemma 3 For the operators Tn( f ; x), we can obtain the following equations:

(i) Tn(1; x) = 1,

(i i) Tn(t; x) = x + 2αx2
n ,

(i i i) Tn(t2; x) = x2 + 4α
n2
x2 + 4α

n x3 + 4α2

n2
x4 + x

n + 2μx
n

eμ(−nx)
eμ(nx) .

Proof By using the generating function in (2.2), the relation (i) holds. For the proof
of (i i), in view of the recursion relation in (1.4), we get

Tn(t; x) = 1

neαx2eμ(nx)

∞∑

k=1

hμ
k (n, α)

γμ(k − 1)
xk .

When we replace k by k + 1, we obtain (ii) by use of Lemma 2 (i). For the proof of
(i i i), by using (1.4), we have

Tn(t
2; x) = x

n2eαx2eμ(nx)

∞∑

k=0

(k + 1 + 2μθk+1)
hμ
k+1(n, α)

γμ(k)
xk .

From the equation

θk+1 = θk + (−1)k, (2.6)
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it yields

Tn(t
2; x) = x

n2eαx2eμ(nx)

∞∑

k=0

(k + 2μθk)
hμ
k+1(n, α)

γμ(k)
xk

+ x

n2eαx2eμ(nx)

∞∑

k=0

(1 + 2μ(−1)k)
hμ
k+1(n, α)

γμ(k)
xk .

Using the recursion relation in (1.4) in the first series, it follows

Tn(t
2; x) = x2

n2eαx2eμ(nx)

∞∑

k=0

hμ
k+2(n, α)

γμ(k)
xk + x

n2eαx2eμ(nx)

∞∑

k=0

hμ
k+1(n, α)

γμ(k)
xk

+ 2μx

n2eαx2eμ(nx)

∞∑

k=0

(−x)k
hμ
k+1(n, α)

γμ(k)
.

From Lemma 2 (i) and (ii), we complete the proof of (iii). �	
Lemma 4 As a consequence of Lemma 3, we can give the next results for Tn operators

�1 = Tn(t − x; x) = 2αx2

n
,

�2 = Tn((t − x)2 ; x) = 1

n2
x

(
4x3α2 + 4αx + n

)
+ 2μx

n

eμ(−nx)

eμ(nx)
. (2.7)

Theorem 1 For Tn operators and any uniformly continuous bounded function g on
the interval [0,∞), we can give

Tn (g; x)
uniformly

⇒ g (x)

on each compact set A ⊂ [0,∞) when n → ∞.

Proof From Korovkin Theorem in [12], when n → ∞, we have Tn (g; x)
uniformly

⇒
g (x) on A ⊂ [0,∞) which is each compact set because limn→∞ Tn(ei ; x) = xi ,
for i = 0, 1, 2, which is uniformly on A ⊂ [0,∞) with the help of using Lemma 4. �	
Theorem 2 The operator Tn maps CB[0,∞) into CB[0,∞) and ‖Tn ( f )‖ ≤ ‖ f ‖
for each f ∈ CB[0,∞) where CB is the space of uniformly continuous and bounded
functions on [0,∞).

3 Convergence of Operators in (2.5)

In what follows, we give some rates of convergence of the operators Tn . Firstly, we
recall some definitions as follows. Let LipM (α) Lipschitz class of order α. If g ∈
LipM (α), the inequality
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|g (s) − g (t)| ≤ M |s − t |α

holds where s, t ∈ [0,∞), 0 < α ≤ 1 and M > 0. C̃[0,∞) is the space of uniformly
continuous on [0,∞). The modulus of continuity g ∈ C̃[0,∞) is denoted by

ω (g; δ) := sup
s,t∈[0,∞)
|s−t |≤δ

|g (s) − g (t)| . (3.1)

We first estimate the rates of convergence of the operators Tn by using modulus of
continuity and in terms of the elements of the Lipschitz class LipM (α) .

Theorem 3 If h ∈ LipM (α), we have

|Tn (h; x) − h (x)| ≤ M (�2)
α/2 ,

where �2 is given in Lemma 4.

Proof Since h ∈ LipM (α), it follows from linearity

|Tn (h; x) − h (x)| ≤ Tn (|h (t) − h (x)| ; x) ≤ MTn
(|t − x |α ; x) .

From Lemma 4 and Hölder’s famous inequality, we can write

|Tn (h; x) − h (x)| ≤ M [�2]
α
2 .

Thus, we find the required inequality. �	
Theorem 4 The operators in (2.5) verify the inequality

|Tn (g; x) − g (x)| ≤
(
1 +

√
1

n
x

(
4x3α2 + 4xα + n

) + 2μx
eμ(−nx)

eμ(nx)

)
ω

(
g; 1√

n

)
,

where g ∈ C̃[0,∞).

Proof The proof is clear from the result of Shisha and Mond in [21]. �	
Let CB[0,∞) denote the space of uniformly continuous and bounded functions on

[0,∞). Also

C2
B[0,∞) = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)} (3.2)

with the norm

‖g‖C2
B [0,∞) = ‖g‖CB [0,∞) + ∥∥g′∥∥

CB [0,∞)
+ ∥∥g′′∥∥

CB [0,∞)

for all g in C2
B[0,∞).
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Lemma 5 For h ∈ C2
B[0,∞), the following inequality holds true

|Tn (h; x) − h (x)| ≤ [�1 + �2] ‖h‖C2
B [0,∞) , (3.3)

where �1 and �2 are given by in Lemma 4.

Proof From the Taylor’s series of the function h,

h (s) = h (x) + (s − x) h′ (x) + (s − x)2

2! h′′ (�) , � ∈ (x, s) .

Applying the operator Tn to both sides of this equality and then using the linearity of
the operator, we have

Tn (h; x) − h (x) = h′ (x) �1 + h′′ (�)

2
�2.

From Lemma 4, it yields

|Tn (h; x) − h (x)| ≤ 2αx2

n

∥∥h′∥∥
CB [0,∞)

+
[
1

n2
x

(
4x3α2 + 4αx + n

)
+ 2μx

n

eμ(−nx)

eμ(nx)

] ∥∥h′′∥∥
CB [0,∞)

≤ [�1 + �2] ‖h‖C2
B [0,∞) ,

which finishes the proof. �	

Now we recall that the second order of modulus continuity of f on CB[0,∞) is
given as

ω2 ( f ; δ) := sup
0<s≤δ

‖ f (. + 2s) − 2 f (. + s) + f (.)‖CB [0,∞) .

Peetre’s K -functional of the function f ∈ CB [0,∞) is as follows

K ( f ; δ) := inf
g∈C2

B [0,∞)

{
‖ f − g‖CB

+ δ ‖g‖C2
B

}
. (3.4)

The relation between K and ω2 is as

K ( f ; δ) ≤ M
{
w2

(
f ;√

δ
)

+ min (1, δ) ‖ f ‖CB

}
(3.5)

for all δ > 0. Here M is a positive constant. Now, we can give the important theorem.
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Theorem 5 For the operators defined by (2.5), the following inequality holds

|Tn (g; x) − g (x)| ≤ 2M

{
min

(
1,

χn (x)

2

)
‖g‖CB [0,∞) + ω2

(
g;

√
χn (x)

2

)}

(3.6)

where for all g inCB[0,∞), x ∈ [0,∞), M is a positive constantwhich is independent
of n and χn (x) = �1 + �2.

Proof For any f ∈ C2
B[0,∞), from the triangle inequality, we can write

� = |Tn (g; x) − g (x)| ≤ |Tn (g − f ; x)| + |Tn ( f ; x) − f (x)| + |g (x) − f (x)|

from Lemma 5, which follows

� ≤ 2 ‖g − f ‖CB [0,∞) + χn (x) ‖ f ‖C2
B [0,∞)

= 2
{
‖g − f ‖CB [0,∞) + χn

2
(x) ‖ f ‖C2

B [0,∞)

}
.

From (3.4), we have

� ≤ 2K

(
g; χn (x)

2

)
,

which holds

� ≤ 2M

{
min

(
1,

χn (x)

2

)
‖g‖CB [0,∞) + ω2

(
g;

√
χn (x)

2

)}

from (3.5). �	

Similar to the proof of above theorem, simple computations give the next theorem.

Theorem 6 If g ∈ CB[0,∞) and x ∈ [0,∞), we get

|Tn (g; x) − g (x)| ≤ Mω2

(
g; 1

2

√
1

n2
x

(
8x3α2 + 4xα + n

) + 2μx

n

eμ(−nx)

eμ(nx)

)

+ω

(
g; 2αx

2

n

)

where M is a positive constant.

123



2804 R. Aktaş et al.

Remark 1 Similar results to Theorem 6 can be obtained using the theorem by Paltanea
(see [19]).

Remark 2 The case of μ = 0 in Theorem 6 gives the result given in [13].
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