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Abstract The aim of this paper is to introduce a Dunkl generalization of the oper-
ators including two-variable Hermite polynomials which are defined by Krech and
to investigate approximating properties for these operators by means of the classical
modulus of continuity, second modulus of continuity and Peetre’s K -functional.
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1 Introduction

Up to now, linear positive operators and their approximation properties have been
studied by many research workers, see for example [3-6,8,9,14,15,22,25,27] and
references therein. Also, linear positive operators defined via generating functions
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and their further extensions are intensively studied by a large number of authors. For
various extensions and further properties, we refer for example Altin et al. [1], Dogru
et al. [7], Olgun et al. [18], Sucu et al. [24], Tasdelen et al. [26], Varma et al. [28,29].
Recently, linear positive operators generated by a Dunkl generalization of the expo-
nential function have been stated by many authors. In [23], Dunkl analogue of Szdsz
operators by using Dunkl analogue of exponential function was given as follows

e S (k206
Sn(g,x)_ev(nx)];mk)g( - ),neN,v,xe[O,oo), (1.1)

for g € C[0, oo), where Dunkl analogue of exponential function is defined by

o k

X
e, (x) = (1.2)
' ,; v (k)
fork € Npandv > —3 L and the coefficients yy are as follows
22K (k4 v 4+ 1/2) 22KHAT (k + v 4 3/2)
2k) = d 2k +1) =
v (2K) rotiy  dw @D T+ 1/2)
(1.3)
in [20]. Also, the coefficients y, verify the recursion relation
k+1
M = Qvbgyr1 +k+1), k € Ny, (1.4)
v (k)
where
|0, ifk=2p
9k_{1,ifk=2p+1 (1.5)

for p € Ny. Similarly, Stancu-type generalization of Dunkl analogue of Szd sz-
Kantorovich operators and Dunkl generalization of Szdsz operators via g-calculus
have been defined in [10,11] and for other research see [16,17].

The two-variable Hermite Kampe de Feriet polynomials H, (&, «) are defined by
(see [2])

i Hy (é 0‘) e§t+at2
n=0

from which, it follows

(2]

H, (€, @) ="‘,§OM'

Olkfn_Zk
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In a recent paper, Krech [13] has introduced the class of operators G¢ given by

o0

G, (fix) = o (mter?) Z X! Hk(” o) f (k) , X €10,00),
k=0
feCl0,0),neN ,a>0 (1.6)

in terms of two-variable Hermite polynomials and investigated approximation prop-
erties of G¥ .

In the present paper, we first give the Dunkl generalization of two-variable Hermite
polynomials and then we define a class of operators by using the Dunkl generaliza-
tion of two-variable Hermite polynomials. We give the rates of convergence of the
operators T, to f by means of the classical modulus of continuity, second modulus
of continuity and Peetre’s K -functional and in terms of the elements of the Lipschitz
class Lipy («) .

2 The Dunkl Generalization of Two-Variable Hermite Polynomials

The Dunkl generalization of two-variable Hermite polynomials is defined by

s G 5“) = e, (1) @1

n=0

from which, we conclude

—
(N
—

ak5n72k

H'¢E a)=ny ———
" — kly,(n — 2k)

which gives the two-variable Hermite polynomials as 4 = 0. For our purpose, we
denote

_ y/l(n)H#(Ev a)
n n!

hi (&, )

and we can write that the polynomials /!, (£, «) are generated by
o
hly (&,
3 WAL e, (D), (2.2)

e (n)

where

(3]

hi(E @) = _—,
() yu(n)l; Ty 20

O[k%-n—Zk
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In order to obtain some properties of ht (&, «), we remind the following definition
and lemma given in [20].

Definition 1 [20] Let 2 € Co (Co := C\{—3,—3, ...}, x € C and let ¢ be entire

function. The linear operator D, is defined on all entire functions ¢ on C by

/ 1%
Dy (px)) = ¢ (x) + ;((P(X) —¢(=x)), x € C. (2.3)
We use the notation D, , since ID,, is acting on functions of the variable x. Thus,
Dy (9(x)) = (Dpe) (x).

Lemma 1 [20] Let ¢, v be entire functions. For the linear operator D, the following
statements hold

() DJ:x" - y:gn—(ﬁ)j)x"—/,j =0,1,2,...n(neN); D}, : 10,

(i) Dy(ey) =Du(@)y + oDy, (), where ¢ is an even function,
@@ii) Dy : e (Ax) — Aey (Ax).

By using these definition and lemma, we can state the next result.

Lemma 2 Forthe Dunkl generalization of two-variable Hermite polynomials hly (€, ),
the following results hold true

(i) Z n+1(§ Ol) (§+2at)ewzeu($t),

Ty

(i) Z ";jfi)“) = (2 + 4Eat + 40212 + 2)e e, (E1) + dorpe® e, (—E1).

Proof Applying the linear operator D, in view of Lemma 1, we have

Dy(ten(§0)) = (15 + Dep(§1) + 2pen (—61),

2.4
Dﬂ(e"’z) = Dare®”’, 24

Also applying the linear operator D, to both side of generating function (2.2), we
have

()

ey Pk = D (¢%" e, (61)).

n=0

By using (2.4) and Lemma 1 (i), we get the first relation. Similarly, if we apply the
linear operator D, to the relation in (i), we get

>y (€,
Y 28D, ) = b, [ + 20meeen)]

=0 V(1)
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From (2.4) and Lemma 1, it follows

hﬂ+2(5 0‘) 2 2,2 i ar?
Z V(D) = (&7 +4kat +4a”t” + 20)e e, (E1) + dape® e, (—E1).
n=0 H

Definition 2 With the help of the Dunkl generalization of two-variable Hermite poly-
nomials given in (2.2), we introduce the operators 7, (f; x), n € N given by

TLu(f:x) =

1 > ht(n, k+2ub
k( a)xk < + /Lk>’ 2.5)

e e, (nx) Pt Y (k) n

where o > 0, 0 > 0, f € C[0, 00) and x € [0, co) . Operators (2.5) are linear and
positive. In the case of u = 0, it gives G§ given by (1.6).

Lemma 3 For the operators T, (f; x), we can obtain the following equations:

@) T,(1;x)=1,
(ii) T,(t: x) =x+ 202

(iii) T, (t2 X) =x24 40‘)(2 + 4‘1x3 _|_ 2 x + + 2pux eu(—nx)

n ey(nx) °

Proof By using the generating function in (2.2), the relation (i) holds. For the proof
of (ii), in view of the recursion relation in (1.4), we get

1 h“(n o) o

Tn(l;X) = ne(xx 5 (nx) y (k — l)
5 k=1 "H

When we replace k by k 4+ 1, we obtain (ii) by use of Lemma 2 (i). For the proof of
(iii), by using (1.4), we have

X k+1(n’ a) k

T, (t%; x) = 0
m

—_— k+142ub
e o) 2 Z( WOk+1)

From the equation

Oks1 = O + (=D, (2.6)
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it yields

(n,a)
k 2 0 k+1 k
Z( + 2uf) o)

hig(n.e)
Vu(k)

T,(% x) =

e‘”ze (nx

5 Z(1+2 (—=DH

+—
n2eax? ey (nx)

Using the recursion relation in (1.4) in the first series, it follows

2. . x2 ad h;:+2(nva) k X as h;il,](nva) k
T,(t"; x) = Cpme) Ly X
n*e®e, (nx) =5 Y (k) n*e® e, (nx) =5 Vi (k)
2ux > hyyq(n, o)
o, o (0 e
n<e“*"e, (nx) = Vi
From Lemma 2 (i) and (ii), we complete the proof of (iii). O

Lemma 4 As a consequence of Lemma 3, we can give the next results for T, operators

2ox?
A =Tt —x:x)= )
n

1 2
Ay =T,((t — )c)2 1X) = —X (4)c3t)l2 + dax + n) + EM 2.7
n n  eyu(nx)

Theorem 1 For T, operators and any uniformly continuous bounded function g on
the interval [0, 00), we can give

uniformly

T(g:x) = gk

on each compact set A C [0, 00) when n — oo.

uniformly
Proof From Korovkin Theorem in [12], when n — oo, we have T,, (g; x) = .
g (x) on A C [0, co) which is each compact set because lim,_, o, T, (e;; X) = x',
fori =0, 1, 2, which is uniformly on A C [0, co) with the help of using Lemma 4. O

Theorem 2 The operator T,, maps Cp[0, 00) into Cg[0, 0o) and || T,, () < | fIl
foreach f € Cgl0, 00) where Cp is the space of uniformly continuous and bounded
functions on [0, 00).

3 Convergence of Operators in (2.5)
In what follows, we give some rates of convergence of the operators 7;,. Firstly, we

recall some definitions as follows. Let Lipys () Lipschitz class of order «. If g €
Lipy (@), the inequality
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lg(s) —g I < Mls—1|*

holds where s, € [0,00), 0 <@ < land M > 0. 5[();00) is the space of uniformly
continuous on [0, c0). The modulus of continuity g € C[0, co) is denoted by

w(g;8):= sup |g(s)—g()]. 3.D
s,lte[Ol,OSO)
s—t|<

We first estimate the rates of convergence of the operators 7,, by using modulus of
continuity and in terms of the elements of the Lipschitz class Lipys («) .

Theorem 3 Ifh € Lipy (), we have
T, (hs ) = h ()] < M (82)*2,
where Ay is given in Lemma 4.
Proof Since h € Lipy (), it follows from linearity
T (hs x) = h (0)] < T, (Jh (1) = h (x)] 5 x) < MT, (Jt —x|%; x) .
From Lemma 4 and Holder’s famous inequality, we can write
| T (s x) = h ()] < M[Ag]7 .

Thus, we find the required inequality. O

Theorem 4 The operators in (2.5) verify the inequality

|T, (g;x) —g (x)| < (1 + \/%x (4x3cx2 +dxa + n) ~|—2/wa) ) <g; L) ,

e, (nx)

where g € 5[0, 00).
Proof The proof is clear from the result of Shisha and Mond in [21]. O

Let Cp[0, co) denote the space of uniformly continuous and bounded functions on
[0, 00). Also

C3[0, 00) = {g € C[0,00) : ¢, g" € Cp[0, 00)} (3.2)
with the norm
||g||c§[o,oo) = lgllcg0.00) + ||g/”CB[O,OO) + ||g,/||CB[0,OO)

for all g in C3[0, 00).

@ Springer



2802 R. Aktag et al.

Lemma$s Forh e C 123 [0, 00), the following inequality holds true
T (3 x) = ()] < [A1+ Axl 12l 2 0,00) - (3.3)

where A1 and A, are given by in Lemma 4.

Proof From the Taylor’s series of the function 4,

(s —x)°

h(s)=h@)+@E—=x)h @) +—F— o

——h" (@), 0.

Applying the operator T}, to both sides of this equality and then using the linearity of
the operator, we have

Tﬂ(h,x)_h(x)=h/(x)A1+h (Q)A

2.

From Lemma 4, it yields

T (h; x) — h (x)| =

1 2ux e, (—nx)
— x(4:3a% + 4 ) e Ter 7
+|:n2x( x a” +4ax +n)+ n e () || ||CB[0,OO)
< (A1 + Aol 210,00y -
which finishes the proof. O

Now we recall that the second order of modulus continuity of f on Cpg[0, o) is
given as

w2 (f38) = sup [ f(+25)=2f(+95)+ fOllcyo00 -

0<s<$§

Peetre’s K -functional of the function f € Cp [0, 00) is as follows

K(ioy= it {If—glc, +3lglc ] - (3:4)
g€C2[0,00) B

The relation between K and w> is as
K (f:8) = M {wn (£ V3) +min (1,8) [ fllc, } (3.5)
for all § > 0. Here M is a positive constant. Now, we can give the important theorem.
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Theorem 5 For the operators defined by (2.5), the following inequality holds

|T, (g;x) —g ()] <2M {min <1, an(X)) Igllcp10,00) + @2 (g; XHZ(X)>}

(3.6)

whereforall g in Cp[0, 00), x € [0, 00), M is a positive constant which is independent
ofnand x, (x) = A1 + As.

Proof Forany f € C % [0, 00), from the triangle inequality, we can write

O=IT(gx) =g =ITh(@— [0+ ITu (fix) = f O]+ g (x) = f ()]

from Lemma 5, which follows

0<2|lg- f”CB[O,oo) + xn (x) ”f”C%g[O,oo)

Xn
=2{lIg = Fllcsto.00 + 5 ) 1f lczi000 | -

From (3.4), we have

which holds

. Xn (X) Xn (X)
® <2M {mln (1, n2 ) lgllcyi0.00) + @2 (g; nT

from (3.5). O

Similar to the proof of above theorem, simple computations give the next theorem.

Theorem 6 If g € Cp[0, 00) and x € [0, 00), we get

1 /1 2 —
Ty (g;x) — g (X)| < Man <g; 5\/—2x (8x3a? +4xa +n) + ﬂM)
n

n  eyu(nx)
( 2otx2>
+o|g;
n

where M is a positive constant.
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Remark 1 Similar results to Theorem 6 can be obtained using the theorem by Paltanea
(see [19]).

Remark 2 The case of u = 0 in Theorem 6 gives the result given in [13].
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