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1 Introduction

In this paper, we will use standard notations from the value distribution theory of
meromorphic functions (see [12,14]).We suppose that f (z) is ameromorphic function
in the whole complex plane C and denote its order by σ( f ) and hyper-order by

σ2( f ) = lim sup
r→∞

log log T (r, f )

log r
.

Consider the second-order homogeneous linear differential equation

f ′′ + P(ez) f ′ + Q(ez) f = 0, (1)

where P(z) and Q(z) are polynomials in z and not both constants. It is well known
that every solution f of (1) is entire.

Suppose f �≡ 0 is a solution of (1). If f satisfies the condition

lim sup
r→∞

log T (r, f )

r
= 0,

then we say that f is a nontrivial subnormal solution of (1).
Wittich [13], Gundersen and Steinbart [10], Chen and Shon [4,6], etc., have inves-

tigated the subnormal solutions of (1) and obtained some excellent results.
Wittich [13] gave the detailed form of all subnormal solutions of (1). Gundersen

and Steinbart [10] refined Wittich’s result by analyzing the degree of the coefficients
P(z) and Q(z). They also considered the form of subnormal solutions of the more
general differential equation

f ′′ + P(ez) f ′ + Q(ez) f = R1(e
z) + R2(e

−z), (2)

where P(z), Q(z), and Rd(z) (d = 1, 2) are polynomials in z.
For the higher-order linear homogeneous differential equation

f (k) + Pk−1(e
z) f (k−1) + · · · + P0(e

z) f = 0, (3)

where Pj (z) ( j = 0, · · · , k − 1) are polynomials in z, many papers were devoted
to the investigation of the nonexistence of its nontrivial subnormal solutions under
certain conditions, see, e.g., [3,5,10]. In [7], Chen and Shon gave an example to show
that in other case the Eq. (3) might have subnormal solutions. Further, they estimated
the number and growth of this kind of solutions and all other solutions and obtained
the following result.

Theorem A ([7]) Let Pj (z)( j = 0, · · · , k−1) be polynomials in z and deg Pj = m j .
Suppose that there exists ms(s ∈ {0, . . . , k − 1}) satisfying

ms > max{m j : j = 0, . . . , s − 1, s + 1, . . . , k − 1}.

123



Some Results on the Solutions of Higher-Order Linear... 2773

Then

(i) every subnormal solution f0 of (3) satisfies σ( f0) = 1 or is a polynomial with
deg f ≤ s − 1, and any other solution f not of the above two forms satisfies
σ2( f ) = 1;

(ii) Equation (3) possesses at most s linearly independent subnormal solutions.

We set

A(z) = dnz
n + dn−1z

n−1 + · · · + d0, dn �= 0, n(≥ 1) is an integer,

throughout the rest of this paper. Then it is natural to askwhat will happen if we change
exp{z} in the coefficients of (3) into exp{A(z)}?

In this paper, we consider the above problem and go on studying the solutions of
the following higher-order linear differential equation

f (k) + Pk−1(e
A(z)) f (k−1) + · · · + P0(e

A(z)) f = 0, (4)

where Pj (z) = a jm j z
m j + · · · + a j1z + a j0 ( j = 0, 1, . . . , k − 1), a jm j , . . . , a j0,

are complex constants such that a jm j �= 0, m j are nonnegative integers, and obtain
Theorem 1.1.

We need the following definition in order to state our results. Suppose f �≡ 0 is a
solution of differential equation. If f satisfies the condition

lim sup
r→∞

log T (r, f )

rn
= 0, (5)

then we say that the equation has a nontrivial n-subnormal solution.

Theorem 1.1 Let Pj (z) ( j = 0, · · · , k − 1), A(z) be polynomials in z with deg
Pj = m j and deg A = n. Suppose that there exists an integer s (s ∈ {0, · · · , k − 1})
satisfying

ms > max{m j : j = 0, . . . , k − 1, j �= s} = m̃, (6)

then

(i) every n-subnormal solution f0 of (4) satisfies σ( f0) = n or is a polynomial with
deg f ≤ s − 1, and any other solution f not of the above two forms satisfies
σ2( f ) = n;

(ii) Equation (4) possesses at most s linearly independent n-subnormal solutions.

In paper [10], Gundersen and Steinbart also activated a new direction for the study
on the nontrivial subnormal solutions to Eq. (2) and raised the question that can the
results they obtained be generalized to equation

f ′′ + [P1(ez) + P2(e
−z)] f ′ + [Q1(e

z) + Q2(e
−z)] f = R1(e

z) + R2(e
−z), (7)

where Pj (z), Q j (z), R j (z) ( j = 1, 2) are polynomials in z?
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Many papers focus on the above problem, see, e.g., [2,4,6,11]. In [4], Chen and
Shon considered this problem and investigated the existence of subnormal solutions
of Eq. (7) and its corresponding homogeneous form under certain conditions on the
degree of the coefficients Pj (z) and Q j (z) ( j = 1, 2). In [6], they generalized their
results to the higher-order case. They considered the linear homogeneous equation

f (k) + (

Pk−1(e
z) + Qk−1(e

−z)
)

f (k−1) + · · · + (

P0(e
z) + Q0(e

−z)
)

f = 0, (8)

and linear nonhomogeneous equation

f (k)+(

Pk−1(e
z)+Qk−1(e

−z)
)

f (k−1)+· · ·+(

P0(e
z)+Q0(e

−z)
)

f = R1(e
z)+R2(e

−z),

(9)
where Pj , Q j ( j = 0, 1, . . . , k − 1), R1, R2 are polynomials in z, and obtained the
following theorems.

Theorem B ([6]) Let Pj (z), Q j (z) ( j = 0, . . . , k − 1) be polynomials in z with
deg Pj = m j , deg Q j = n j , and P0 + Q0 �≡ 0. If there exist ms, nd (s, d ∈
{0, . . . , k − 1}) satisfying both of the inequalities

{

ms > max{m j : j = 0, . . . , s − 1, s + 1, . . . , k − 1},
nd > max{n j : j = 0, . . . , d − 1, d + 1, . . . , k − 1}, (10)

then the linear homogeneous Eq. (8) has no nontrivial subnormal solution, and every
solution of (8) is of hyper-order σ2( f ) = 1.

Theorem C ([6]) Let Pj (z), Q j (z) ( j = 0, · · · , k − 1) be defined as in Theorem B;
let Ri (z) (i = 1, 2) be polynomials in z. If there exist ms, nd (s, d ∈ {0, · · · , k − 1})
satisfying both of the inequalities in (10), then

(i) Equation (9) has at most one nontrivial subnormal solution f0, and f0 is of form

f (z) = S1(e
z) + S2(e

−z),

where S1(z) and S2(z) are polynomials in z;
(ii) all other solutions f of (9) satisfy σ2( f ) = 1 except the possible subnormal

solution in (i).

In [11], Huang and Sun changed exp{z} in the coefficients of (8) into exp{R(z)},
where R(z) is a nonconstant polynomial, and obtained the following result.

Theorem D ([11]) Let A j = Pj
(

eR(z)
) + Q j

(

e−R(z)
)

for j = 1, . . . , k − 1, where
Pj (z), Q j (z), and R(z) = cs zs+· · ·+c1z+c0 (s(≥ 1) is an integer) are polynomials.
Suppose that P0(z) + Q0(z) �≡ 0 and there exists d (0 ≤ d ≤ k − 1) such that for
j �= d, deg Pd > deg Pj and deg Qd > deg Q j . Then every solution f (z) of

f (k) + Ak−1 f
(k−1) + · · · + A0 f = 0, k ≥ 2,

is of infinite order and satisfies σ2( f ) = s.
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It is natural to ask can the condition “deg Pd > deg Pj and deg Qd > deg Q j ( j �=
d)” in Theorem D be weakened?

In this paper, we consider the above problem, investigate the solutions of the linear
homogeneous equation

f (k) +
(

Pk−1

(

eA(z)
)

+ Qk−1

(

e−A(z)
))

f (k−1) + · · · +
(

P0
(

eA(z)
)

+Q0

(

e−A(z)
))

f = 0, (11)

where Pj
(

eA(z)
)+ Q j

(

e−A(z)
) = a jm j e

m j A(z) +· · ·+ a j1eA(z) + c j0 + b j1e−A(z) +
· · · + b jn j e

−n j A(z), a jm j , . . . , a j1, c j0, b jn j , . . . , b j1 are constants, m j , n j (≥ 0)
are integers, a jm j �= 0, b jn j �= 0, and obtain the following results.

Theorem 1.2 Let Pj (z), Q j (z) ( j = 0, . . . , k − 1) and A(z) be polynomials in z
with deg Pj = m j , deg Q j = n j , deg A = n, and P0 + Q0 �≡ 0. If there exist
ms, nd (s, d ∈ {0, . . . , k − 1}) satisfying both of the inequalities

{

ms > max{m j : j = 0, . . . , k − 1, j �= s} = m̃,

nd > max{n j : j = 0, . . . , k − 1, j �= d} = ñ,
(12)

then the linear homogeneous Eq. (11) has no nontrivial n-subnormal solution, and
every solution of (11) is of σ2( f ) = n.

It is obvious from lim supr→∞
log T (r, f )

r = 0 that we can deduce lim supr→∞
log T (r, f )

rn = 0 easily. So if (11) has no nontrivial n-subnormal solutions, we can
obtain that (11) has no nontrivial subnormal solutions. Thus, we get the following
corollary.

Corollary 1.3 Under the assumption of Theorem1.2, the linear homogeneousEq. (11)
has no nontrivial subnormal solutions, and every solution of (11) is of σ2( f ) = n.

Obviously, Theorem 1.2 and Corollary 1.3 improved Theorems B and D.
For the nonhomogeneous linear differential equation

f (k) +
(

Pk−1

(

eA(z)
)

+ Qk−1

(

e−A(z)
))

f (k−1) + · · ·
+

(

P0
(

eA(z)
)

+ Q0

(

e−A(z)
))

f = R(z), (13)

we obtain

Theorem 1.4 Let Pj (z), Q j (z) ( j = 0, . . . , k − 1) and A(z) be defined as in The-
orem 1.2. Let R(z) be entire function with σ2(R) ≤ n. If there exist ms, nd (s, d ∈
{0, . . . , k − 1}) satisfying both of the inequalities in (12), then

(i) Equation (13) has at most one nontrivial n-subnormal solution f0;
(ii) all other solutions f of (13) satisfy σ2( f ) = n except the possible n-subnormal

solution in (i).
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2 Preliminary Lemmas

Recall that

A(z) = dnz
n + dn−1z

n−1 + · · · + d1z + d0, dl = αl e
iθl , z = reiθ ,

we set δl(A, θ) = Re(dl(eiθ )l) = αl cos(θl + lθ), and

Hl,0 = {θ ∈ [0, 2π) : δl(A, θ) = 0}, Hl,+ = {θ ∈ [0, 2π) : δl(A, θ) > 0},
Hl,− = {θ ∈ [0, 2π) : δl(A, θ) < 0},

for l = 1, . . . , n, throughout the rest of this paper.
Obviously, if δn(A, θ) �= 0, as r → ∞, we get

∣

∣

∣eA(z)
∣

∣

∣ = eδn(A,θ)rn+···+δ1(A,θ)r+Red0 = eδn(A,θ)rn(1+o(1)).

Therefore, for j = 0, 1, . . . , k−1, as r → ∞ , the coefficients in Eq. (4), we have

∣

∣

∣Pj (e
A(z))

∣

∣

∣ =
{

|a jm j |em j δn(A,θ)(1+o(1))rn (1 + o(1)), δn(A, θ) > 0,

O(1), δn(A, θ) < 0; (14)

and the coefficients in equations (11) and (13), we have

∣

∣

∣Pj (e
A(z))+Q j (e

−A(z))

∣

∣

∣=
{

|a jm j |em j δn(A,θ)(1+o(1))rn (1+o(1)), δn(A, θ) > 0,

|b jn j |e−n j δn(A,θ)(1+o(1))rn (1+o(1)), δn(A, θ) < 0.

(15)

The following lemma plays an important role in uniqueness problems of meromor-
phic functions.

Lemma 2.1 ([14]) Let f j (z) ( j = 1, . . . , n) (n ≥ 2) be meromorphic functions, and
let g j (z) ( j = 1, . . . , n) be entire functions satisfying

(i)
∑n

j=1 f j (z)eg j (z) ≡ 0;
(ii) when 1 ≤ j < k ≤ n, then gi (z) − gk(z) is not a constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, f j ) = o{T (r, egh−gk )} (r → ∞, r /∈ E),

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.

Then, f j (z) ≡ 0 ( j = 1, . . . , n).

The following three lemmas are of great importance in estimating the growth of
the ratio of two derivatives of a meromorphic function.
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Lemma 2.2 ([9]) Let f (z) be an entire function, and suppose that | f (k)(z)| is
unbounded on some ray arg z = θ . Then, there exists an infinite sequence of points
zn = rneiθ (n = 1, 2, . . .), where rn → ∞, such that f (k)(zn) → ∞ and

∣

∣

∣

∣

∣

f ( j)(zn)

f (k)(zn)

∣

∣

∣

∣

∣

≤ |zn|(k− j)(1 + o(1)), j = 0, . . . , k − 1. (16)

Lemma 2.3 ([8]) Let f be a transcendental meromorphic function and α > 1 be a
given constant. Then there exist a set E ⊂ (1,∞) with finite logarithmic measure and
a constant B > 0 that depends only on α and i, j (0 ≤ i < j), such that for all z
satisfying |z| = r /∈ E ∪ [0, 1],

∣

∣

∣

∣

∣

f ( j)(z)

f (i)(z)

∣

∣

∣

∣

∣

≤ B

(

T (αr, f )

r
(logα r) log T (αr, f )

) j−i

. (17)

Remark 1 From the proof of Lemma 2.3 ([8, Theorem 3]), we can see that the excep-
tional set E equals {|z| : z ∈ (∪+∞

n=1O(an))}, where an(n = 1, 2, . . .) denote all zeros
and poles of f (i), and O(an) denote sufficiently small neighborhoods of an . Hence,
if f (z) is a transcendental entire function and z is a point that satisfies | f (z)| to be
sufficiently large, then the point z /∈ E thus (17) holds for these kinds of z.

Particularly, when σ( f ) < ∞, then we have the following result.

Lemma 2.4 ([8]) Let f (z) be a transcendental meromorphic function with
σ( f ) = σ < ∞, and let ε > 0 be a given constant. Then there exists a set E ⊂ [0, 2π)

of linear measure zero (or a set E1 ⊂ (1,∞) of finite logarithmic measure) such that
for all z = reiθ with r sufficiently large and θ ∈ [0, 2π) \ E (or r /∈ E1 ∪ [0, 1]), and
for all k, j, 0 ≤ j ≤ k, we have

∣

∣

∣

∣

∣

f (k)(z)

f ( j)(z)

∣

∣

∣

∣

∣

≤ |z|(k− j)(σ−1+ε). (18)

The following lemma is often used to prove that a function is polynomial and to
determine the degree of this polynomial.

Lemma 2.5 ([3]) Let f (z) be an entire function with σ( f ) = σ < ∞. Let there exist
a set E ⊂ [0, 2π) with linear measure zero such that for any arg z = θ0 ∈ [0, 2π)\ E,
| f (reiθ0)| ≤ Mrk (M = M(θ0) > 0 is a constant and k(> 0) is constant independent
of θ0). Then f (z) is a polynomial of deg f ≤ k.

The following lemma, which is a revised version of [7, Lemma 7], can estimate the
central index of an entire function.

Lemma 2.6 ([7]) Let f (z) be an entire function that satisfies σ( f ) = σ(n < σ <

∞); or σ( f ) = ∞ and σ2 = 0; or σ2 = α(0 < α < ∞), and a set E ⊂ [1,∞)

has a finite logarithmic measure. Then, there exists {zk = rkeiθk }, such that | f (zk)| =
M(rk, f ), θk ∈ [0, 2π), limk→∞ θk = θ0 ∈ [0, 2π), rk /∈ E, and rk → ∞, such that
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(i) if σ( f ) = σ(n < σ < ∞), then for any given ε1(0 < ε1 < σ−n
2 ),

rσ−ε1
k < ν(rk) < rσ+ε1

k ; (19)

(ii) if σ( f ) = ∞ and σ2( f ) = 0, then for any given ε2(0 < ε2 < 1
2 ), and any large

M(> 0), we have, as rk is sufficiently large,

r Mk < ν(rk) < exp{rε2
k }; (20)

(iii) if σ2( f ) = α(0 < α < ∞), then for any given ε3(0 < ε3 < α),

exp{rα−ε3
k } < ν(rk) < exp{rα+ε3

k }. (21)

Proof By σ( f ) = σ , we have

lim sup
r→∞

log ν(r)

log r
= σ.

Thus, there exists a sequence {r ′
k} (r ′

k → ∞) satisfying

lim
r ′
k→∞

log ν(r ′
k)

log r ′
k

= σ.

Set lmE = δ < ∞. Then the interval [r ′
k, (1 + eδ)r ′

k] meets the complement of E
since

∫ (1+eδ)r ′
k

r ′
k

dt

t
= log(1 + eδ)r ′

k − log r ′
k = log(1 + eδ) > δ.

Therefore, there exists a point rk ∈ [r ′
k, (1 + eδ)r ′

k] \ E . Because

log ν(rk)

log rk
≥ log ν(r ′

k)

log[(1 + eδ)r ′
k]

= log ν(r ′
k)

(

1 + log(1+eδ)

log r ′
k

)

log r ′
k

,

and

log ν(rk)

log rk
≤ log ν[(1 + eδ)r ′

k]
log r ′

k
= log ν[(1 + eδ)r ′

k]
(

1 − log(1+eδ)

log[(1+eδ)r ′
k ]

)

log[(1 + eδ)r ′
k]

,

we have

lim
rk→∞

log ν(rk)

log rk
= σ. (22)
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Now take zk = rkeiθk , θk ∈ [0, 2π) such that | f (zk)| = M(rk, f ). Thus, there
exists a subset of {θk}, for convenience, we still denote it by {θk}, and it satisfies
limk→∞ θk = θ0 ∈ [0, 2π). So we obtain (19) by (22).

Using a similar method as above, we can prove (ii) and (iii). �

The following two lemmas give relationships between the solutions and the coef-

ficients of some given linear differential equations.

Lemma 2.7 ([7]) Let A0, . . . , Ak−1 be entire functions of finite order. If f (z) is a
solution of equation

f (k) + Ak−1 f
(k−1) + · · · + A0 f = 0,

then σ2( f ) ≤ max{σ(A j ) : j = 0, . . . , k − 1}.
Lemma 2.8 ([14]) Let f1, . . . , fn be linearly independent meromorphic solutions of

f (n) + an−1 f
(n−1) + · · · + a0 f = 0

with meromorphic coefficients. Then the Wronskian determinant W ( f1, . . . , fn) sat-
isfies the differential equation W ′ + an−1(z)W = 0. In particular, if an−1 is an entire
function, then for someC ∈ C\{0}, W ( f1, . . . , fn) = C expϕ, where ϕ is a primitive
function of −an−1.

The following lemma is often used to exclude an exceptional set.

Lemma 2.9 ([1,12]) Let g : (0,+∞) → R and h : (0,+∞) → R be monotone
increasing functions such that g(r) ≤ h(r) outside of an exceptional set E of finite
logarithmic measure. Then, for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr)
holds for all r > r0.

Lemmas 2.10 and 2.11 are used to prove Theorem 1.1.

Lemma 2.10 Let Pj ,m j ,ms satisfy the hypotheses of Theorem 1.1. If f is a solution
of (4) and σ( f ) < n, then

(i) if P0 �≡ 0, then f ≡ 0;
(ii) if P0 ≡ P1 ≡ · · · ≡ Pd−1 ≡ 0 and Pd �≡ 0 (d < s), then f is a polynomial with

deg f ≤ d − 1.

Proof (i) Suppose that f is a solution of (4) with σ( f ) < n, then f is an entire
function. For convenience, we denote

Pj (e
A(z)) = a jms e

ms A(z) + · · · + a j (m j+1)e
(m j+1)A(z)

+ a jm j e
m j A(z) + · · · + a j1e

A(z) + a j0,

where a jm j �= 0 and a jms = · · · = a j (m j+1) = 0. Thus, (4) can be rewritten as

Qms (z)e
ms A(z) + Qms−1(z)e

(ms−1)A(z) + · · · + Q1(z)e
A(z) + Q0(z) = 0, (23)
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where
⎧

⎪

⎨

⎪

⎩

Qms (z) = asms f
(s)(z),

Q j (z) = ∑k−1
t=0 at j f

(t)(z), j = 1, . . . ,ms − 1,

Q0(z) = f (k)(z) + ∑k−1
t=0 at0 f

(t)(z).

(24)

Obviously, Qγ (γ = 0, 1, . . . ,ms) satisfy σ(Qγ ) < n. Since e(α−β)A(z) (α, β ∈
{0, . . . ,ms}, 0 ≤ β < α ≤ ms) is of regular growth, we have

T (r, Qγ ) = o{T (r, e(α−β)A(z))}, γ = 0, . . . ,ms .

Thus, by applying Lemma 2.1 to (23), we have

f (s)(z) ≡ 0, Qms−1(z) ≡ · · · ≡ Q1(z) ≡ Q0(z) ≡ 0. (25)

By f (s) ≡ 0, we get that f is a polynomial with deg f ≤ s − 1 if s > 0 and f ≡ 0
if s = 0. From P0 �≡ 0, we get that f cannot be a nonzero constant from (4). Let
deg f = h (1 ≤ h ≤ s − 1). It follows from (6), Equations (24), (25), and the facts

deg f > deg f ′ > · · · > deg f (h), f (h+1) ≡ f (h+2) ≡ · · · ≡ f (k) ≡ 0,

that a00 = a01 = · · · = a0m0 = 0 holds. Therefore, P0 ≡ 0, which contradicts our
assumption P0 �≡ 0. Hence, f ≡ 0.

(ii) Let f (d) = F , since P0 ≡ P1 ≡ · · · ≡ Pd−1 ≡ 0 and Pd �≡ 0 (d < s), from
(4) we get

F (k−d) + Pk−1(e
A(z))F (k−d−1) + · · · + Pd(e

A(z))F = 0.

By σ(F) = σ( f (d)) = σ( f ) < n and Pd �≡ 0, we apply the result from Lemma 2.10
(i) to conclude that f (d) = F ≡ 0. So, f is a polynomial with deg f ≤ d − 1. �

Lemma 2.11 Let Pj (z) ( j = 0, . . . , k − 1) be polynomials in z with deg Pj = m j .
Suppose that there exists an integer s (s ∈ {0, . . . , k − 1}) satisfying (6), and
let { f1, . . . , fk} be a fundamental solution set of (4). If each f j satisfies either
σ( f j ) ≤ n or σ2( f j ) = n, then there are at most s solutions, say f1, . . . , fs , satisfy
σ( f j ) ≤ n ( j = 1, . . . , s).

Proof Assume that f1, . . . , fs, fs+1 satisfy σ( f j ) ≤ n ( j = 1, . . . , s + 1), and
fs+2, . . . , fk satisfy σ2( f j ) = n ( j = s + 2, . . . , k). Now we apply the order reduc-
tion procedure and deduce a contradiction. For convenience, we use the notation uk
instead of f in equation (4), uk,1, . . . , uk,k instead of f1, . . . , fk , Pk,0, . . . , Pk,(k−1)
instead of P0, . . . , Pk−1, respectively. Thus,

σ(uk, j ) = σ( f j ) ≤ n, j = 1, . . . , s + 1, σ2(uk, j ) = σ2( f j ) = n, j = s + 2, . . . , k.

Set

uk−1(z) = d

dz

(

uk(z)

uk,1(z)

)

, uk−1, j (z) = d

dz

(

uk, j (z)

uk,1(z)

)

, j = 2, . . . , k.

123



Some Results on the Solutions of Higher-Order Linear... 2781

We denote u(−1)
k−1 to be the primitive function of uk−1. Thus,

(

u(−1)
k−1

)′ = uk−1, uk =
uk,1u

(−1)
k−1 , and

u( j)
k =

j
∑

t=0

Ct
j u

(t)
k,1u

( j−1−t)
k−1 , j = 0, . . . , k, (26)

where Ct
j are the binomial coefficients. Substituting (26) into (4), we obtain

k
∑

t=0

Ct
ku

(t)
k,1u

(k−1−t)
k−1 +

k−1
∑

j=1

Pk, j

j
∑

t=0

Ct
j u

(t)
k,1u

( j−1−t)
k−1 + Pk,0uk,1u

(−1)
k−1 = 0. (27)

Rearranging the sums of (27), we obtain

uk,1u
(k−1)
k−1 + (ku′

k,1 + Pk,k−1uk,1)u
(k−2)
k−1

+
k−3
∑

j=0

(

k− j−1
∑

t=0

Ct
j+1+t Pk, j+1+t u

(t)
k,1

)

u( j)
k−1

+u(−1)
k−1

(

u(k)
k,1 + Pk,k−1u

(k−1)
k,1 + · · · + Pk,0uk,1

)

= 0. (28)

Since uk,1 �≡ 0 is a solution of (4), by (28) we obtain

u(k−1)
k−1 + Pk−1,k−2(z)u

(k−2)
k−1 + · · · + Pk−1,0(z)uk−1 = 0, (29)

where

Pk−1, j (z) = Pk, j+1(z) +
k− j−1
∑

t=1

Ct
j+1+t Pk, j+1+t (z)

u(t)
k,1(z)

uk,1
, j = 0, . . . , k − 2.

Nowwe examine the growth of Pk−1, j ( j = 0, 1, . . . , k−2), particularly Pk−1,s−1.
Since σ(uk,1) ≤ n, by Lemma 2.4, there exists a set E ⊂ (1,+∞) with finite loga-
rithmic measure, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E ,

∣

∣

∣

∣

∣

u(t)
k,1(z)

uk,1(z)

∣

∣

∣

∣

∣

≤ rkn, t = 1, . . . , k − 1.

Take a ray arg z = θ ∈ Hn,+ . From (14), as r → ∞,

|Pk,s(z)| = |asms |emsδn(A,θ)(1+o(1))rn (1 + o(1)),

|Pk, j (z)| = O(em̃δn(A,θ)(1+o(1))rn ), j �= s.
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Therefore, we get that for all z satisfying arg z = θ ∈ Hn,+ , as r → ∞ and
r /∈ [0, 1] ∪ E ,

⎧

⎪

⎨

⎪

⎩

|Pk−1,s−1(z)| = |asms |emsδn(A,θ)(1+o(1))rn (1 + o(1)),

|Pk−1, j (z)| = O(rknem̃δn(A,θ)(1+o(1))rn ), j = s, . . . , k − 2;
|Pk−1, j (z)| = O(rknemsδn(A,θ)(1+o(1))rn ), j = 0, . . . , s − 2.

(30)

We now consider the growth order of uk−1, j = d
dz (

uk, j
uk,1

) ( j = 2, . . . , k). Since
σ(uk, j ) ≤ n ( j = 1, . . . , s + 1) and σ2(uk, j ) = n ( j = s + 2, . . . , k), we see that

σ(uk−1, j ) ≤ n, j = 2, . . . , s + 1, σ2(uk−1, j ) = n, j = s + 2, . . . , k. (31)

Suppose that c2, . . . , ck are constants such that

c2uk−1,2 + · · · + ckuk−1,k = c2

(

uk,2
uk,1

)′
+ · · · + ck

(

uk,k
uk,1

)′
= 0; (32)

by integrating both sides of (32), we get

c2uk,2 + · · · + ckuk,k + c1uk,1 = 0,

where c1 is a constant. Since uk,1, . . . , uk,k are linearly independent, c1 = . . . = ck =
0; hence, {uk−1,2, . . . , uk−1,k} is a fundamental solution set of (29).

Next, we repeat the order reduction procedure as above to Eq. (29). After s order
reduction procedures, we get

u(k−s)
k−s + Pk−s,k−s−1u

(k−s−1)
k−s + · · · + Pk−s,0uk−s = 0. (33)

On a ray arg z = θ ∈ Hn,+ , as r → ∞ and r /∈ [0, 1] ∪ E ,

{

|Pk−s,0(z)| = |asms |emsδn(A,θ)(1+o(1))rn (1 + o(1)),

|Pk−s, j (z)| = O(rknem̃δn(A,θ)(1+o(1))rn ), j = 1, . . . , k − s − 1.
(34)

Also,

uk−s, j = d

dz

(

uk−(s−1), j

uk−(s−1),s

)

, j = s + 1, . . . , k,

are k − s linearly independent solutions of (33) that satisfy

σ(uk−s,s+1) ≤ n, σ2(uk−s, j ) = n, j = s + 2, . . . , k. (35)

On the other hand, for a solution uk−s of (33), by Lemma 2.3, there exists a set E0 ⊂
(1,∞) with a finite logarithmic measure such that for all z satisfying r /∈ [0, 1] ∪ E0,

∣

∣

∣

∣

∣

u(t)
k−s(z)

uk−s(z)

∣

∣

∣

∣

∣

≤ M[T (2r, uk−s)]k−s+1, t = 1, . . . , k − s, (36)
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where M(> 0) is a constant. So by (33), (34), and (36), we obtain that for all z
satisfying arg z = θ ∈ Hn,+ , as r → ∞ and r /∈ [0, 1] ∪ E0,

|asms |emsδn(A,θ)(1+o(1))rn (1 + o(1)) = |Pk−s,0(z)|

≤
∣

∣

∣

∣

∣

u(k−s)
k−s (z)

uk−s(z)

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

Pk−s,k−s−1(z)
u(k−s−1)
k−s (z)

uk−s(z)

∣

∣

∣

∣

∣

+ · · · +
∣

∣

∣

∣

Pk−s,1(z)
u′
k−s(z)

uk−s(z)

∣

∣

∣

∣

≤ MM ′[T (2r, uk−s)]k−s+1rknem̃δn(A,θ)(1+o(1))rn , M ′(> 0) is a constant.

Thus, we have

|asms |r−kne(ms−m̃)δn(A,θ)(1+o(1))rn (1 + o(1)) ≤ MM ′[T (2r, uk−s)]k−s+1.

The above inequality and Lemma 2.9 imply that σ2(uk−s) ≥ n, i.e., all solutions uk−s

of (33) satisfy σ2(uk−s) ≥ n, which contradicts σ(uk−s,s+1) ≤ n. Thus, Lemma 2.11
is proved. �


3 Proof of Theorem 1.1

(i)First stepWeprove that every transcendental n-subnormal solution is of σ( f0) = n.
By Lemma 2.10, we see that if σ( f0) < n, then f0 is a polynomial with deg f0 ≤ s−1.
So σ( f0) ≥ n.

Suppose that σ( f0) > n, and we will show that this supposition will lead to a
contradiction next.

By Lemma 2.3, there exists a subset E1 ⊂ (1,∞) with finite logarithmic measure
such that for all z satisfying |z| = r /∈ E1 ∪ [0, 1],

∣

∣

∣

∣

∣

f ( j)
0 (z)

f (i)
0 (z)

∣

∣

∣

∣

∣

≤ M[T (2r, f0)]k+1, i, j ∈ {0, 1, . . . , k}, i < j, (37)

where M(> 0) is a constant.
By the Wiman-Valiron theory, there is a set E2 ⊂ (1,∞) with finite logarithmic

measure, such that for all z satisfying |z| = r /∈ E2 ∪ [0, 1], and | f0(z)| = M(r, f0),

f ( j)
0 (z)

f0(z)
=

(

ν(r)

z

) j

(1 + o(1)), j = 1, . . . , k. (38)

By Lemma 2.6 and σ( f0) > n, we see that there exists a sequence {zt = rt eiθt }
such that | f0(zt )| = M(rt , f0), θt ∈ [0, 2π), limt→∞ θt = θ0 ∈ [0, 2π), with
rt /∈ E1 ∪ E2 ∪ [0, 1], rt → ∞, {zt } satisfies (38), and for any given ε1 (0 < ε1 <

min{ 14 (σ − n), 1}),
ν(rt ) > rσ−ε1

t > rn+ε1
t ≥ r1+ε1

t > rt . (39)

Since θ0 may belong to Hn,+ , Hn,− , or Hn,0 , we divide this proof into three cases.
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Case 1 Suppose θ0 ∈ Hn,+ . Since δn(A, θ) = αn cos(θn + nθ) is a continuous
function of θ , and θt → θ0, thus we have limt→∞ δn(A, θt ) = δn(A, θ0) > 0.
Therefore, there exists a constant N (> 0), such that as t > N ,

δn(A, θt ) ≥ 1

2
δn(A, θ0) > 0.

By (5), for any given ε4 (0 < ε4 < 1
2n+2(k+1)

δn(A, θ0)),

[T (2rt , f0)]k+1 ≤ eε4(k+1)(2rt )n ≤ e
1
2 δn(A,θt )rnt (40)

holds for t > N .
By (37), (38), and (40), we see that

(

ν(rt )

rt

)k−s

(1+o(1)) =
∣

∣

∣

∣

∣

f (k−s)
0 (zt )

f0(zt )

∣

∣

∣

∣

∣

≤ M[T (2rt , f0)]k+1 ≤ Me
1
2 δn(A,θt )rnt . (41)

By (4), we get

− f (s)
0 (zt )

f0(zt )
Ps(e

A(zt )) = f (k)
0 (zt )

f0(zt )
+

k−1
∑

j=0, j �=s

Pj (e
A(zt ))

f ( j)
0 (zt )

f0(zt )
. (42)

Because δn(A, θt ) > 0 as t > N , from (14) we get that

|Ps(eA(zt ))| = |asms |emsδn(A,θt )(1+o(1))rnt (1 + o(1)), (43)

and

|Pj (e
A(zt ))| ≤ M0e

m̃δn(A,θt )(1+o(1))rnt , j =0, . . . , k−1, j �=s, M0(> 0)is a constant.
(44)

Substituting (38), (43), and (44) into (42), we get that for sufficiently large rt ,

(

ν(rt )

rt

)s

|asms |emsδn(A,θt )(1+o(1))rnt (1 + o(1)) ≤
(

ν(rt )

rt

)k

(1 + o(1))

+M0e
m̃δn(A,θt )(1+o(1))rnt

k−1
∑

j=0, j �=s

(

ν(rt )

rt

) j

(1 + o(1)). (45)

By (41), (45), and (39), we get

|asms |e(ms−m̃)δn(A,θt )(1+o(1))rnt (1 + o(1)) ≤ kM0

(

ν(rt )

rt

)k−s

(1 + o(1))

≤ kM0Me
1
2 δn(A,θt )rnt ,
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which yields a contradiction by ms − m̃ ≥ 1 > 1
2 , and δn(A, θt ) > 0.

Case 2 Suppose θ0 ∈ Hn,− . Then δn(A, θ0) < 0. By using the similar method as
in Case 1, we get that for sufficiently large t , δn(A, θt ) < 0 as θt → θ0. From (14),
there exists a constant M1 (> 0), such that

|Pj (e
A(zt ))| ≤ M1, j = 0, . . . , k − 1. (46)

By (4), (38), (39), and (46), we get

(

ν(rt )

rt

)k

(1 + o(1)) =
∣

∣

∣

∣

∣

f (k)
0 (zt )

f0(zt )

∣

∣

∣

∣

∣

≤ kM1

(

ν(rt )

rt

)k−1

(1 + o(1)),

i.e.,
ν(rt )(1 + o(1)) ≤ kM1rt (1 + o(1)),

which also yields a contradiction by (39).
Case 3 Suppose θ0 ∈ Hn,0 . Since θt → θ0, for any given ε5 (0 < ε5 < 1

10n ), we
see that there exists an integer N1 (> 0), as t > N1, θt ∈ [θ0 − ε5, θ0 + ε5], and

zt = rt e
iθt ∈ � = {z : θ0 − ε5 ≤ arg z ≤ θ0 + ε5} .

Now, we consider the growth of f0(reiθ ) on a ray arg z = θ ∈ � \ {θ0}.
By the properties of cosine function, we can easily see that when θ1 ∈ [θ0 − ε5, θ0)

and θ2 ∈ (θ0, θ0 + ε5], then δn(A, θ1)δn(A, θ2) < 0. Without loss of generality, we
suppose that δn(A, θ) > 0 for θ ∈ [θ0−ε5, θ0) and δn(A, θ) < 0 for θ ∈ (θ0, θ0+ε5].

For a fixed θ ∈ [θ0 − ε5, θ0), we have δn(A, θ) > 0. By (5), for any given ε6
satisfying 0 < ε6 < 1

2n+1(k+1)
δn(A, θ),

[T (2r, f0)]k+1 ≤ eε6(k+1)(2r)n ≤ e
1
2 δn(A,θ)rn . (47)

We assert that | f (s)
0 (reiθ )| is bounded on the ray arg z = θ . If | f (s)

0 (reiθ )| is unbounded
on it, then by Lemma 2.2, there exists a sequence {y j = R jeiθ }, such that as R j → ∞,

f (s)
0 (y j ) → ∞ and

∣

∣

∣

∣

∣

f (d)
0 (y j )

f (s)
0 (y j )

∣

∣

∣

∣

∣

≤ (R j )
s−d(1 + o(1)), d = 0, . . . , s − 1. (48)

By Remark 1, f (s)
0 (y j ) → ∞, we know that y j satisfies (37). By (37) and (47), we

see that for sufficiently large j ,

∣

∣

∣

∣

∣

f (d)
0 (y j )

f (s)
0 (y j )

∣

∣

∣

∣

∣

≤ M[T (2R j , f0)]k+1 ≤ Me
1
2 δn(A,θ)Rn

j , d = s + 1, . . . , k. (49)
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By (4), (43), (44), (48), (49), and δn(A, θ) > 0, we deduce that

|asms |emsδn(A,θ)(1+o(1))Rn
j (1 + o(1)) = |Ps(eA(y j ))|

≤ M2e
(m̃+ 1

2 )δn(A,θ)(1+o(1))Rn
j + M3e

m̃δn(A,θ)(1+o(1))Rn
j Rs

j

≤ max{M2, M3}Rs
j e

(m̃+ 1
2 )δn(A,θ)(1+o(1))Rn

j ,

whereM2, M3 (> 0) are constants, which yields a contradiction by the factsms−m̃ ≥
1 > 1

2 and δn(A, θ) > 0. Thus, | f (s)
0 (reiθ )| ≤ M4 (M4 > 0 is a constant) on the ray

arg z = θ . Since

f (s−1)
0 (reiθ ) = f (s−1)

0 (0) +
∫ r

0
f (s)
0 (teiθ )dt,

we have | f (s−1)
0 (reiθ )| ≤ M5r (M5 > 0 is a constant). By induction, we obtain

| f0(reiθ )| ≤ M6r
s, M6 (> 0) is a constant, (50)

on the ray arg z = θ ∈ [θ0 − ε5, θ0).
On the other hand, since {zt } satisfies | f0(zt )| = M(rt , f0) and σ( f0) > n, we see

that for sufficiently large rt and rt /∈ E1 ∪ E2 ∪ [0, 1],

| f0(zt )| ≥ exp{rnt }. (51)

By (50) and (51), we see that for sufficiently large t , θt /∈ [θ0 − ε5, θ0), i.e.,

θt ∈ [θ0, θ0 + ε5] . (52)

Suppose there are infinitely many θt in (θ0, θ0 + ε5]. Then we can choose a subse-
quence {θt j } of {θt } and a corresponding subsequence {zt j = rt j e

iθt j } of {zt }. For the
subsequence {zt j } ⊂ {z : θ0 < arg z ≤ θ0 + ε5), by using a similar method to that in
the proof of Case 2, we can get

ν(rt j ) ≤ kM1rt j ,

which yields a contradiction by (39).
Hence, there are only finitely many θt ∈ (θ0, θ0 + ε5], and for sufficiently large t ,

θt = θ0 and δn(A, θt ) = 0.
Next we consider the following three subcases. θ0 ∈ Hn−1,+ ; θ0 ∈ Hn−1,− ; θ0 ∈

Hn−1,0 . If θ0 ∈ Hn−1,+ or θ0 ∈ Hn−1,− , then by using a similar method as in Case 1
and Case 2, we can get a contradiction. If θ0 ∈ Hn−1,0 , then from the similar reasoning
as used in Case 3, the remaining case is θt = θ0 for sufficiently large t . This gives
that δn−1(A, θt ) = αn−1 cos(θn−1 + (n − 1)θt ) = 0 for sufficiently large t . On the
analogue by this, the remaining case is that δ j (A, θt ) = α j cos(θ j + jθt ) = 0 for
sufficiently large t , where j = 1, . . . , n − 2.
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Therefore, for sufficiently large t , we get

|Pj (e
A(zt ))| = |a jm j e

m j A(zt ) + · · · + a j1e
A(zt ) + a j0|

≤ |a jm j |em j |d0| + · · · + |a jm1 |e|d0| + |a j0|
≤ M7, j = 0, · · · , k − 1, (53)

where M7 (> 0) is a constant.
By (4), (38), (39), and (53), we get that

∣

∣

∣

∣

∣

−
(

ν(rt )

zt

)k

(1 + o(1))

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

− f (k)
0 (zt )

f0(zt )

∣

∣

∣

∣

∣

≤ kM7

(

ν(rt )

rt

)k−1

(1 + o(1)),

i.e.,
ν(rt )(1 + o(1)) ≤ kM7rt (1 + o(1)),

which also yields a contradiction by (39).
Second step We prove that all other solutions f of (4) satisfy σ2( f ) = n.

Suppose that f is not a n-subnormal solution, and σ2( f ) < n. Then clearly
lim supr→∞

log T (r, f )
rn = 0, i.e., f is a n-subnormal solution, a contradiction. So,

σ2( f ) ≥ n. By Lemma 2.7 and σ(Pj ) = n ( j = 0, . . . , k − 1), we have σ2( f ) ≤ n.
Hence, σ2( f ) = n.

(ii) By the assertion of (i), we see that a solution of (4) either is a polynomial, or
satisfies σ( f ) = n or σ2( f ) = n. Thus, by Lemma 2.11, we see (ii) holds.

4 Proof of Theorem 1.2

Suppose that f �≡ 0 is a solution of (11), then f is an entire function. Because
P0 + Q0 �≡ 0, f cannot be a constant. Suppose that f = bhzh + · · · + b1z + b0 (h ≥
1, bh, . . . , b0 are constants, bh �= 0) is a polynomial solution of (11), substituting this
polynomial solution into (11), we get that the coefficient of the highest degree of z,
i.e., zn , is

(

P0
(

eA(z)
) + Q0

(

e−A(z)
))

( �≡ 0), which yields a contradiction from (11).
Thus, we get the conclusion that f is transcendental.

Step one We prove that σ( f ) = ∞.
Suppose, to the contrary, that σ( f ) = σ < ∞. By Lemma 2.4, for any given ε > 0,

there exists a set E ⊂ [0, 2π) with linear measure zero, such that if θ ∈ [0, 2π) \ E,

then there exists a constant R0 = R0(θ) > 1, such that for all z satisfying arg z = θ

and |z| = r > R0, we have

∣

∣

∣

∣

∣

f ( j)(z)

f (s)(z)

∣

∣

∣

∣

∣

≤ r (σ−1+ε)( j−s), j = s + 1, . . . , k. (54)

Take a ray arg z = θ ∈ Hn,+ \ E , then δn(A, θ) > 0. We assert that | f (s)(reiθ )| is
bounded on the ray arg z = θ .
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If | f (s)(reiθ )| is unbounded on the ray arg z = θ , then, by Lemma 2.2, there exists
a sequence zt = rt eiθ , such that as rt → ∞, f (s)(zt ) → ∞, and

∣

∣

∣

∣

∣

f (i)(zt )

f (s)(zt )

∣

∣

∣

∣

∣

≤ r (s−i)
t (1 + o(1)), i = 0, . . . , s − 1. (55)

Because δn(A, θ) > 0, from (11), (15), (54), (55), we obtain that for sufficiently
large rt ,

|asms |emsδn(A,θ)(1+o(1))rnt (1 + o(1)) =
∣

∣

∣Ps
(

eA(zt )
)

+ Qs

(

e−A(zt )
)∣

∣

∣

≤
∣

∣

∣

∣

∣

f (k)(zt )

f (s)(zt )

∣

∣

∣

∣

∣

+
k−1
∑

j=0, j �=s

∣

∣

∣Pj

(

eA(zt )
)

+ Q j

(

e−A(zt )
)∣

∣

∣ ×
∣

∣

∣

∣

∣

f ( j)(zt )

f (s)(zt )

∣

∣

∣

∣

∣

≤ kMrk(σ+1)
t em̃δn(A,θ)(1+o(1))rnt , M > 0,

which yields a contradiction by ms > m̃ and δn(A, θ) > 0. So,

| f (reiθ )| ≤ M1r
s ≤ M1r

k, M1 > 0, (56)

on the ray arg z = θ ∈ Hn,+ \ E .
Now, we take a ray arg z = θ ∈ Hn,− \ E , then δn(A, θ) < 0. If | f (d)(reiθ )|

is unbounded on the ray arg z = θ , then, by Lemma 2.2, there exists a sequence
z′t = r ′

t e
iθ , such that as r ′

t → ∞, f (d)(z′t ) → ∞, and

∣

∣

∣

∣

∣

f (i)(z′t )
f (d)(z′t )

∣

∣

∣

∣

∣

≤ (r ′
t )

(d−i)(1 + o(1)), i = 0, . . . , d − 1.

Using a proof similar to above, we can obtain that for sufficiently large r ′
t ,

|bdnd |e−ndδn(A,θ)(1+o(1))(r ′
t )
n
(1 + o(1)) ≤ kM(r ′

t )
k(σ+1)e−ñδn(A,θ)(1+o(1))(r ′

t )
n

which also yields a contradiction by −ndδn(A, θ) > −ñδn(A, θ) > 0. Hence,

| f (reiθ )| ≤ M1r
d ≤ M1r

k, (57)

on the ray arg z = θ ∈ Hn,− \ E .
From Lemma 2.5, (56) and (57), we know that f (z) is a polynomial, which con-

tradicts the assertion that f (z) is transcendental. Therefore, σ( f ) = ∞.
Step two We prove that (11) has no nontrivial n-subnormal solutions. On the con-

trary, suppose that (11) has a nontrivial n-subnormal solution f0. We will deduce a
contradiction. By the conclusion in First step, f0 satisfies (11) and σ( f0) = ∞. By
Lemma 2.7, we see that σ2( f0) ≤ n. By Lemma 2.3, there exist a subset E1 ⊂ (1,∞)
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with finite logarithmic measure and a constant B > 0, such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E1, we have

∣

∣

∣

∣

∣

f ( j)
0 (z)

f (i)
0 (z)

∣

∣

∣

∣

∣

≤ B[T (2r, f0)]k+1, i, j ∈ {0, 1, . . . , k}, i < j. (58)

From theWiman-Valiron theory, there exists a set E2 ⊂ (1,∞)with finite logarithmic
measure, so that we can choose z satisfying |z| = r /∈ [0, 1] ∪ E2 and | f0(z)| =
M(r, f0). Selecting z this way, we obtain

f ( j)
0 (z)

f0(z)
=

(

ν(r)

z

) j

(1 + o(1)), j = 1, . . . , k. (59)

By Lemma 2.6 and σ( f0) = ∞, there exists a sequence {zt = rt eiθt }, such that
| f0(zt )| = M(rt , f0), θt ∈ [0, 2π), and limt→∞ θt = θ0 ∈ [0, 2π), with rt /∈
[0, 1] ∪ E1 ∪ E2, rt → ∞, and for any sufficiently large M2 (> 2k + 3),

ν(rt ) > rM2
t > rt . (60)

Case 1 Suppose θ0 ∈ Hn,+. Since δn(A, θ) = αn cos(θn + nθ) is a continuous
function of θ , by θt → θ0 we get limt→∞ δn(A, θt ) = δn(A, θ0) > 0. Therefore,
there exists a constant N (> 0), such that as t > N ,

δn(A, θt ) ≥ 1

2
δn(A, θ0) > 0.

By (5), for any given ε3 (0 < ε3 < 1
2n+2(k+1)

δn(A, θ0)), and t > N ,

[T (2rt , f0)]k+1 ≤ eε3(k+1)(2rt )n ≤ e
1
2 δn(A,θt )rnt . (61)

By (58), (59), and (61), we see that

(

ν(rt )

rt

)k−s

(1 + o(1)) =
∣

∣

∣

∣

∣

f (k−s)
0 (zt )

f0(zt )

∣

∣

∣

∣

∣

≤ B[T (2rt , f0)]k+1 ≤ Be
1
2 δn(A,θt )rnt . (62)

Because δn(A, θt ) > 0 as t > N , from (11), (15), and (59), we get, for sufficiently
large rt ,

(

ν(rt )

rt

)s

|asms |emsδn(A,θt )(1+o(1))rnt (1 + o(1))

=
∣

∣

∣

∣

∣

f (s)
0 (zt )

f0(zt )

(

Ps
(

eA(zt )
)

+ Qs

(

e−A(zt )
))

∣

∣

∣

∣

∣
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≤
∣

∣

∣

∣

∣

f (k)
0 (zt )

f0(zt )

∣

∣

∣

∣

∣

+
k−1
∑

j=0, j �=s

∣

∣

∣Pj

(

eA(zt )
)

+ Q j

(

e−A(zt )
)∣

∣

∣ ×
∣

∣

∣

∣

∣

f ( j)
0 (zt )

f0(zt )

∣

∣

∣

∣

∣

≤ 2

(

ν(rt )

rt

)k

+ 2Mem̃δn(A,θt )(1+o(1))rnt
k−1
∑

j=0, j �=s

(

ν(rt )

rt

) j

. (63)

Further, from (60), (62), and (63), we get that as rt → ∞, and rt /∈ [0, 1]∪E1∪E2,

|asms |e(ms−m̃)δn(A,θt )(1+o(1))rnt ≤ 4kM

(

ν(rt )

rt

)k−s

≤ 8kMBe
1
2 δn(A,θt )rnt ,

which yields a contradiction by ms − m̃ ≥ 1 > 1
2 and δn(A, θt ) > 0.

Case 2Suppose θ0 ∈ Hn,−. Since δn(A, θ) is a continuous function of θ , by θt → θ0
we get limt→∞ δn(A, θt ) = δn(A, θ0) < 0. Therefore, there exists a constant N (> 0),
such that as t > N ,

δn(A, θt ) ≤ 1

2
δn(A, θ0) < 0.

By (5), for any given ε′
3 (0 < ε′

3 < −1
2n+2(k+1)

δn(A, θ0)), and t > N ,

[T (2rt , f0)]k+1 ≤ eε′
3(k+1)(2rt )n ≤ e− 1

2 δn(A,θt )rnt .

Using a proof similar to that in Case 1, we can obtain that as rt → ∞,

|bdnd |e−(nd−ñ)δn(A,θt )(1+o(1))rnt ≤ 8kMBe− 1
2 δn(A,θt )rnt ,

which also yields a contradiction by −(nd − ñ)δn(A, θt ) > − 1
2δn(A, θt ) > 0.

Case 3 Suppose θ0 ∈ Hn,0. Since θt → θ0, for any given ε4
(

0 < ε4 < 1
10n

)

, there
exists an integer N (> 0), such that as t > N , θt ∈ [θ0 − ε4, θ0 + ε4], and

zt = rt e
iθt ∈ � = {z : θ0 − ε4 ≤ arg z ≤ θ0 + ε4}.

Now, we consider the growth of f0(reiθ ) on a ray arg z = θ ∈ � \ {θ0}.
By the properties of cosine function, as in the proof of Case 3 in Theorem 1.1,

we suppose without loss of generality that δn(A, θ) > 0 for θ ∈ [θ0 − ε4, θ0) and
δn(A, θ) < 0 for θ ∈ (θ0, θ0 + ε4].

Subcase 3.1 For a fixed θ ∈ (θ0, θ0 + ε4], we have δn(A, θ) < 0. By (5), for any
given ε5 satisfying 0 < ε5 < −1

2n+1(k+1)
δn(A, θ),

[T (2r, f0)]k+1 ≤ e− 1
2 δn(A,θ)rn . (64)

We assert that
∣

∣

∣ f
(d)
0 (reiθ )

∣

∣

∣ is bounded on the ray arg z = θ . If
∣

∣

∣ f (d)
0 (reiθ )

∣

∣

∣ is

unbounded on it, then by Lemma 2.2, there exists a sequence {y j = R jeiθ }, such
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that as R j → ∞, f (d)
0 (y j ) → ∞, and

∣

∣

∣

∣

∣

f (i)
0 (y j )

f (d)
0 (y j )

∣

∣

∣

∣

∣

≤ (R j )
d−i (1 + o(1)), i = 0, . . . , d − 1. (65)

By f (d)
0 (y j ) → ∞ and Remark 1, we know that y j satisfies (58). By (58) and (64),

we see that, for sufficiently large R j , and R j /∈ [0, 1] ∪ E1,

∣

∣

∣

∣

∣

f (i)
0 (y j )

f (d)
0 (y j )

∣

∣

∣

∣

∣

≤ B[T (2R j , f0)]k+1 ≤ Be− 1
2 δn(A,θ)Rn

j , i = d + 1, · · · , k. (66)

Because δn(A, θ) < 0, by (11), (15), (65), and (66), we deduce that for sufficiently
large R j , and R j /∈ [0, 1] ∪ E1,

|bdnd |e−ndδn(A,θ)(1+o(1))Rn
j (1 + o(1)) =

∣

∣

∣Pd
(

eA(y j )
)

+ Qd

(

e−A(y j )
)∣

∣

∣

≤ kMB(R j )
ke−(̃n+ 1

2 )δn(A,θ)(1+o(1))Rn
j ,

which yields a contradiction by nd − ñ ≥ 1 > 1
2 and δn(A, θ) < 0. So

∣

∣

∣ f0
(

reiθ
)∣

∣

∣ ≤ M1r
d , M1 > 0, (67)

on the ray arg z = θ ∈ (θ0, θ0 + ε4].
Subcase 3.2 For a fixed θ ∈ [θ0 − ε4, θ0), we have δn(A, θ) > 0. Using a proof

similar to that in Subcase 3.1, we obtain

∣

∣

∣ f0
(

reiθ
)∣

∣

∣ ≤ M1r
s, (68)

on the ray arg z = θ ∈ [θ0 − ε4, θ0).
By (67) and (68), we see that on the ray arg z = θ ∈ � \ {θ0},

∣

∣

∣ f0
(

reiθ
)∣

∣

∣ ≤ M1r
k . (69)

But since σ( f0
(

reiθ
)

) = ∞ and {zt = rt eiθt } satisfies | f0(zt )| = M(rt , f0), we
see that, for any large M3 (> k), as t is sufficiently large,

| f0(zt )| =
∣

∣

∣ f0
(

rt e
iθt

)∣

∣

∣ ≥ exp{rM3
t }. (70)

Since zt ∈ �, by (69) and (70), we see that θt = θ0 as t → ∞. Therefore,
δn(A, θt ) = 0 as t → ∞. On the analogue by this, we get δ j (A, θt ) = α j cos(θ j +
jθt ) = 0 as t → ∞, where j = 1, . . . , n − 1.
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Thus, there exists M4 (> 0), for sufficiently large t ,

∣

∣

∣Pj

(

eA(zt )
)

+ Q j

(

e−A(zt )
)∣

∣

∣ ≤ M4, j = 0, . . . , k − 1. (71)

By (11) and (59), we obtain that as rt → ∞ and rt /∈ [0, 1] ∪ E1 ∪ E2,

−
(

ν(rt )

zt

)k

(1 + o(1)) =
k−1
∑

j=0

(

Pj

(

eA(zt )
)

+ Q j

(

e−A(zt )
))

(

ν(rt )

zt

) j

(1 + o(1)).

(72)
By (60), (71), and (72), we obtain that as rt → ∞ and rt /∈ [0, 1] ∪ E1 ∪ E2,

ν(rt ) ≤ 2kM4rt , (73)

which yields a contradiction by (60). Hence, (11) has no nontrivial n-subnormal solu-
tions.

Third step We prove that all solutions of (11) satisfy σ2( f ) = n. If there is a
solution f1 that satisfies σ2( f1) < n, then f1 satisfies (5), i.e., f1 is a n-subnormal
solution. But this contradicts the conclusion in Second step. Hence, every solution f
satisfies σ2( f ) ≥ n, and by Lemma 2.7 and σ2( f ) ≤ n, we get that σ2( f ) = n. Thus,
Theorem 1.2 is proved.

5 Proof of Theorem 1.4

(i) Suppose that f1 and f2( �≡ f1) are nontrivial n-subnormal solutions of equation
(13). Then f1− f2( �≡ 0) is a n-subnormal solution of the corresponding homogeneous
equation (11). This contradicts the assertion of Theorem 1.2. Hence, equation (13) has
at most one nontrivial n-subnormal solution f0.

(ii) By Theorem 1.2, we see that all solutions of the corresponding homogeneous
equation (11) are of hyper-order σ2( f ) = n. By variation of parameters, we assert that
all solutions of (13) satisfy σ2( f ) ≤ n. Next, we will prove this assertion in detail.
Let f1, . . . , fk be a solution base of (11). From Lemma 2.8, we have that the
Wronskian of f1, . . . , fk satisfies W ( f1, . . . , fk) = e−
, where 
(z) is a primi-

tive function of
(

Pk−1(eA(z)) + Qk−1(e−A(z))
)

; hence, W ( f1, . . . , fk) has no zeros.

Therefore, the system of equations

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

B ′
1 f1 + B ′

2 f2 + · · · + B ′
k fk = 0

B ′
1 f

′
1 + B ′

2 f
′
2 + · · · + B ′

k f
′
k = 0

· · ·
B ′
1 f

(k−2)
1 + B ′

2 f
(k−2)
2 + · · · + B ′

k f
(k−2)
k = 0

B ′
1 f

(k−1)
1 + B ′

2 f
(k−1)
2 + · · · + B ′

k f
(k−1)
k = R(z)

(74)
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defines uniquely entire functions B ′
1, · · · , B ′

k . In fact, by the classical Cramer rule,
we obtain

B ′
j = RG j ( f1, . . . , fk)/W ( f1, . . . , fk), j = 1, . . . , k, (75)

where each G j ( f1, . . . , fk) is a differential polynomial of f1, . . . , fk and of their
derivatives, with constant coefficients. Take now some primitives B1, . . . , Bk of
B ′
1, . . . , B ′

k , and define f0 = B1 f1 + B2 f2 + · · · + Bk fk . It follows by (74) that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f0 = B1 f1 + B2 f2 + · · · + Bk fk
f ′
0 = B1 f ′

1 + B2 f ′
2 + · · · + Bk f ′

k· · ·
f (k−1)
0 = B1 f

(k−1)
1 + B2 f

(k−1)
2 + · · · + Bk f

(k−1)
k

f (k)
0 = B1 f

(k)
1 + B2 f

(k)
2 + · · · + Bk f

(k)
k + R(z).

(76)

Multiplying the equations of (76) with (P0(eA(z))+Q0(e−A(z))), . . . , (Pk−1(eA(z))+
Qk−1(e−A(z))), 1, respectively, and adding all these equations together, we get that f0
is an entire solution of (13). By the elementary theory of linear differential equations,
all solutions of (13) can be represented in the form f = f0 + C1 f1 + · · · + Ck fk for
C1, . . . , Ck ∈ C, and so, by σ2(B ′

j ) = σ2(Bj ) ( j = 1, . . . , k) the assertion follows.
If σ2( f ) < n, then f is a n-subnormal solution. Hence, all other solutions f of

(13) satisfy σ2( f ) = n except the possible n-subnormal solution in (i).
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