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Abstract One of the aims of this article is to provide a class of polynomial mappings
for which the Jacobian conjecture is true. Also, we state and prove several global
univalence theorems and present a couple of applications of them.
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1 Introduction and Main Results

This article mainly concerns with mappings f : C
n → C

n , written in coordinates as

f (Z) = ( f1(Z), . . . , fn(Z)), Z = (z1, . . . , zn).
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We say that f is a polynomial map if each component function fi : C
n → C is a

polynomial in n-variables z1, . . . , zn , for 1 ≤ i ≤ n. A polynomial map f : C
n → C

n

is called invertible if it has an inverse map which is also a polynomial map.

Let Df :=
(

∂ f j
∂zi

)
n×n

, 1 ≤ i, j ≤ n, be the Jacobian matrix of f . The Jacobian

determinant is denoted by det Df . If a polynomial map f is invertible and g = f −1,
then g ◦ f = id, and because det Df ·det Dg = 1, det Df must be a nonzero complex
constant. However, the converse question is more difficult. Then, the Jacobian conjec-
ture (JC) asserts that every polynomial mapping f : C

n → C
n is globally invertible

if det Df is identically equal to a nonzero complex constant. This conjecture remains
open for any dimension n ≥ 2. We remark that the JC was originally formulated
by Keller [13] in 1939 for polynomial maps with integer coefficients. In the case of
dimension one, it is simple. Polynomial map f is called a Keller map, if det Df is a
nonzero complex constant. In fact, Bialynicki-Birula and Rosenlicht [4] proved that a
polynomial map is invertible if it is injective.

It is a simple exercise to see that the JC is true if it holds for polynomial mappings
whose Jacobiandeterminant is 1, and thus, after suitable normalization, one can assume
that det Df = 1. The JC is attractive because of the simplicity of its statement.
Moreover, because there are so many ways to approach and making it useful, the JC
has been studied extensively from calculus to complex analysis to algebraic topology,
and from commutative algebra to differential algebra to algebraic geometry. Indeed,
some faulty proofs have even been published. The JC is stated as one of the eighteen
challenging problems for the twenty-first century proposed with brief details by Field
medalist Steve Smale [19]. For the importance, history, a detailed account of the
research on the JC and equivalent conjectures, and related investigations, we refer,
for example, to [3] and the excellent book of van den Essen [11] and the references
therein. See also [5–10,14,23,24]. We would like to point out that in 1980, Wang [22]
showed that every Keller map of degree less than or equal to 2 is invertible. In 1982,
Bass et al. [3] (see also [5,25]) showed that it suffices to prove the JC for all n ≥ 2 and
all Keller mappings of the form f (Z) = Z + H(Z), where Z = (z1, . . . , zn), and H
is cubic homogeneous, i.e., H = (H1, . . . , Hn)with Hi (Z) = (Li (Z))3 and Li (Z) =
ai1z1 + · · · + ainzn , 1 ≤ i ≤ n. Cubic homogeneous map f of this form is called
a Drużkowski or cubic linear map. Moreover, polynomial mappings from C

n to C
n

are well behaved than the polynomial mappings from R
n to Rn . Indeed, Pinchuk [17]

constructed an explicit example to show that there exists a non-invertible polynomial
map f : R2 → R

2 with det Df (X) �= 0 for all X ∈ R
2. In any case, the study of

the JC has given rise to several surprising results and interesting relations in various
directions and in different perspectives. For instance, Abdesselam [1] formulated the
JC as a question in perturbative quantum field theory and pointed out that any progress
on this question will be beneficial not only for mathematics, but also for theoretical
physics as it would enhance our understanding of perturbation theory.

The main purpose of this work is to identify the Keller maps for which the JC is
true.

Theorem 1 The Jacobian conjecture is true for mappings F(X) = (A ◦ f ◦ B)(X),

where X = (x1, . . . , xn) ∈ R
n, A and B are linear such that det A. det B �= 0,

f = (u1, . . . , un),
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The Jacobian Conjecture and Injectivity Conditions 2101

uk(X) = xk + γk

[
α2(x1 + · · · + xn)

2 + α3(x1 + · · · + xn)
3

+ · · · + αm(x1 + · · · + xn)
m]

for k = 1, . . . , n, α j , γk ∈ R with
∑n

k=1 γk = 0 and m ∈ N.

Often it is convenient to identify X in Cn (resp. Rn) as an n× 1 matrix with entries
as complex (resp. real) numbers. It is interesting to know whether there are other
polynomial mappings for which the JC is true inCn (resp.Rn). In this connection, we
will notice that for the case n = 2 of Theorem 1 it is possible to prove the following:

Theorem 2 With X = (x, y) ∈ R
2, consider f (X) = (u1(X), u2(X)), where uk(X)

for k = 1, 2 are as in Theorem 1 and

f̃ (X) = (u1(X) + W (X), u2(X) + w(X)),

where W and w are homogeneous polynomials of degree (m + 1) in x and y. If
det D f̃ (X) ≡ 1, then f̃ = A−1 ◦ F ◦ A, where A is linear homogeneous non-
degenerate mapping and

F(X) =
(
u1(X) + αm+1(x + y)m+1, u2(X) − αm+1(x + y)m+1

)
,

for some real constant αm+1. The Jacobian conjecture is true for the mapping f̃ .

Remark 1 It follows from the proof of Theorem 2 that A equals the identity matrix I
if f (X) �≡ X .

In connection with Theorems 1 and 2, it is interesting to note that in the case n = 2,
the mappings F defined in Theorem 1 provide a complete description of the Keller
mappings F for which deg F ≤ 3 (see [21]).

Next, we denote by P̂n(m), the set of all polynomial mappings F : R
n → R

n of
degree less than or equal to m such that DF(0) = I and F(0) = 0. Let Pn(m) be a
subset consisting of mappings f ∈ P̂n(m) which satisfy the conditions of Theorem
1. Also, we introduce

Pn(m) = {F ∈ P̂n(m) : F is injective}.

If f, g ∈ Pn(m), then

f (X) = X + u(X)γ and g(X) = X + v(X)δ,

where X = (x1, . . . , xn), γ = (γ1, . . . , γn), δ = (δ1, . . . , δn),

u(X) =
m∑

k=2

αk(x1 + · · · + xn)
k and v(X) =

m∑
k=2

βk(x1 + · · · + xn)
k,
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2102 S. Ponnusamy, V. V. Starkov

such that
∑n

k=1 δk = ∑n
k=1 γk = 0. Here αk’s and βk’s are some constants. It is

obvious that f ◦ g is injective, but it is unexpected that the composition f ◦ g also
belongs to Pn(m). This circumstance allows us to generalize Theorem 1 significantly.

Theorem 3 For n ≥ 3, consider the mapping F : R
n → R

n defined by F(X) =
(u1, . . . , un), where

uk(X) = xk + p(2)
k (x1 + · · · + xn)

2 + · · · + p(m)
k (x1 + · · · + xn)

m (k = 1, . . . , n),

and p(l)
k are constants satisfying the condition

∑n
k=1 p

(l)
k = 0 for all l = 2, . . . ,m.

Then the Jacobian conjecture is true for F, where F = f1 ◦ · · · ◦ fN and each f j
( j = 1, . . . , N ) is a polynomial map of the form f given by Theorem 1.

From the proofs of Theorems 1, 2 and 3, it is easy to see that these results continue to
hold even if we replaceRn byCn . The proofs of Theorems 1, 2 and 3 will be presented
in Sect. 3. In Sect. 2, we present conditions for injectivity of functions defined on a
convex domain.

2 Injectivity Conditions on Convex Domains

One can find discussion and several sufficient conditions for global injectivity [2,16].
In the following, we state and prove several results on injectivity on convex domains.

Theorem 4 Let D ⊂ R
n be convex and f : D → R

n belong to C1(D). Then
f = ( f1, . . . , fn) is injective in D if for every X1, X2 ∈ D (X1 �= X2) and γ (t) =
X1 + t (X2 − X1) for t ∈ [0, 1], det A �= 0, where

A = (ai j )n×n with ai j =
∫ 1

0

∂ f j
∂xi

(γ (t)) dt, 1 ≤ i, j ≤ n.

Proof Let X1, X2 ∈ D be two distinct points. Since D is convex, the line segment
γ (t) ∈ D for t ∈ (0, 1), and thus, we have

f (X2) − f (X1) =
∫

γ

d f (ζ ) =
∫

γ

Df (ζ ) dζ =
∫ 1

0
(Df )(γ (t))(X2 − X1) dt.

Taking into account of the assumptions, we deduce that f (X2)− f (X1) �= 0 for each
X1, X2 ∈ D (X1 �= X2) if for every X ∈ R

n\{0},
∫ 1

0
Df (γ (t)) dt × X �= 0

which holds whenever det A �= 0. The proof is complete. 
�
We remark that Theorem 4 has obvious generalization for functions defined on

convex domains D ⊆ C
n . In this case, the Jacobian matrix of f , i.e., Df =

(
∂ f j
∂zi

)
n×n

,
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The Jacobian Conjecture and Injectivity Conditions 2103

1 ≤ i, j ≤ n, will be used. Moreover, using Theorem 4, we may easily obtain the
following simple result.

Corollary 1 Let D ⊆ R
n be a convex domain and f = ( f1, . . . , fn) belong toC1(D).

If for every line L in Rn, with L ∩ D �= ∅,

det

(
∂ f j
∂xi

(Xi, j )

)
�= 0 for every Xi, j ∈ L ∩ D,

then f is injective in D.

Proof Let X1, X2 ∈ D be two distinct points and γ (t) = X1 + t (X2 − X1) be the
line segment joining X1 and X2, t ∈ [0, 1]. Then, for every i, j = 1, . . . , n, we have

∫ 1

0

∂ f j
∂xi

(γ (t)) dt = ∂ f j
∂xi

(Xi, j ),

where Xi, j ∈ (X1, X2). The desired conclusion follows from Theorem 4. 
�
Corollary 2 Let D ⊆ Cbea convex domain, z = x+iy and f (z) = u(x, y)+iv(x, y)
be analytic in D. Then f is injective in D whenever for every z1, z2 ∈ D, we have

det

[
ux (z1) −vx (z2)
vx (z2) ux (z1)

]
= u2x (z1) + vx (z2)

2 �= 0.

Corollary 2 shows that if ux �= 0 or vx �= 0 in a convex domain D, then the analytic
function f = u + iv is univalent (injective) in D. Thus, it is a sufficient condition for
the univalency and is different from the necessary condition f ′(z) �= 0, the fact that in
the latter case ux and vx have no common zeros in D. The reader may compare with
the well-known Noshiro–Warschawski theorem which asserts that if f is analytic in
a convex domain D in C and Re f ′(z) > 0 in D, then f is univalent in D. See also
Corollary 4.

Throughout we let Rn+ = {X = (x1, . . . , xn) ∈ R
n : x1 > 0} and Sn−1 = {X ∈

R
n : ‖X‖ = 1}, the unit sphere in the Euclidean space Rn .

Theorem 5 Let D ⊆ R
n be a convex domain, f : D → R

n belong to C1(D) and
� = f (D). Then f is injective if and only if there exists a φ ∈ C1(�), φ : � → R

n,

satisfying the following property: for every X0 ∈ Sn−1 there exists a unitary matrix
U = U (X0) with

U × (Dφ)( f (X)) × Df (X)X0 ∈ R
n+ (1)

for every X ∈ D.

Proof Let X1, X2 ∈ D. Then the line segment γ (t) connecting these points given by
γ (t) = X1 + t (X2 − X1) belongs to the convex domain D for every t ∈ [0, 1]. We
denote ψ = φ ◦ f and observe that

ψ(X2) − ψ(X1)=
∫

γ

dψ(ζ )=
∫ 1

0
d(ψ ◦ γ )(t)=

∫ 1

0
(Dψ)(γ (t)) × (X2 − X1) dt.
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2104 S. Ponnusamy, V. V. Starkov

If X2 �= X2, we may let

X0 = X2 − X1

||X2 − X1|| ∈ Sn−1.

Sufficiency (⇐): Now we assume (1) and show that f is injective on D. Because
of the truth of (1), it follows that

U (ψ(X2) − ψ(X1)) = ‖X2 − X1‖
∫ 1

0
U (Dψ)(γ (t))X0 dt �= 0.

Then the first component a1(t) of U (Dψ)(γ (t))X0 = (a1(t), . . . , an(t)) ∈ R
n+, by

definition, satisfies the positivity conditiona1(t) > 0 for each t , and thus,
∫ 1
0 a1(t) dt �=

0. Consequently, f (X2) �= f (X1) for every X1, X2 (X1 �= X2) in D.
Necessity (⇒): Assume that f is injective in D. Then we may let φ = f −1 and

assume that U is an unitary matrix such that UX0 = (1, 0, . . . , 0). This implies that
ψ(X) ≡ X , and thus,

U × (Dψ)(γ (t))X0 ≡ (1, 0, . . . , 0)

and (1) holds. 
�

It is now appropriate to state a several complex variables analog of Theorem 5. As
with standard practice, for D ⊂ C

n , we consider f ∈ C1(D), � = f (D) ⊂ C
n,

φ ∈ C1(�), φ : � −→ C
n , Z = (z1, . . . , zn) ∈ C

n, Z = (z̄1, . . . , z̄n), and
ψ = φ ◦ f . We frequently, write down these mappings as functions of the independent
complex variables Z and Z , namely as f (Z , Z), φ(W,W ) and ψ(Z , Z). Denote as
usual

∂ψ = ∂(ψ1, . . . , ψn)

∂(z1, . . . , zn)
=

⎛
⎜⎜⎜⎜⎝

∂ψ1

∂z1
· · · ∂ψ1

∂zn
... · · · ...

∂ψn

∂z1
· · · ∂ψn

∂zn

⎞
⎟⎟⎟⎟⎠

and ∂ψ = ∂(ψ1, . . . , ψn)

∂(z̄1, . . . , z̄n)
.

At this place, it is convenient to use ∂ψ instead of Dψ . Then for γ (t) = Z1 + t (Z2 −
Z1), t ∈ (0, 1), we have

ψ(Z2, Z2) − ψ(Z1, Z1) =
∫

γ

dψ(Z , Z)

=
∫ 1

0

[
∂ψ(γ (t), γ (t)) · (Z2 − Z1) + ∂ψ(γ (t), γ (t)) · (Z2 − Z1)

]
dt.

Thus, Theorem 5 takes the following form.
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The Jacobian Conjecture and Injectivity Conditions 2105

Theorem 6 Let D ⊆ C
n be a convex domain, f : D → C

n belong to C1(D)

and � = f (D). Then f is injective in D if and only if there exists a φ ∈ C1(�),

φ : � → C
n satisfying the following property with ψ = φ ◦ f : for every Z0 ∈ C

n,
‖Z0‖ = 1, there exists a unitary complex matrix U = U (Z0) such that for every
Z ∈ D, one has

U
[
∂ψ(Z , Z)Z0 + ∂ψ(Z , Z)Z0

] ∈ {Z ∈ C
n : Re z1 > 0}.

In particular, Theorem 6 is applicable to pluriharmonic mappings. In the case of
planar harmonic mappings f = h + g, where h and g are analytic in the unit disk
D := {z ∈ C : |z| < 1}, Theorem 6 takes the following form–another criterion for
injectivity–harmonic analog of �-like mappings, see [12, Theorem 1].

Corollary 3 Let f = h+g be harmonic on a convex domain D ⊂ C and� = f (D).
Then f is univalent in D if and only if there exists a complex-valued function φ =
φ(w,w) in C1(�) and such that for every ε with |ε| = 1, there exists a real number
γ = γ (ε) satisfying

Re
{
eiγ

(
∂φ( f (z), f (z)) + ε∂φ( f (z), f (z))

)}
> 0 for all z ∈ D,

where ∂ = ∂
∂z and ∂ = ∂

∂z .

Several consequences and examples of Corollary 3 are discussed in [12], and they
seem to be very useful. Another univalence criterion for harmonic mappings of D =
{z ∈ C : |z| < 1} was obtained in [20]. Moreover, using Corollary 3, it is easy to
obtain the following sufficient condition for the univalency of C1 functions.

Corollary 4 ([15])Let D be a convex domain inC and f be a complex-valued function
of class C1(D). Then f is univalent in D if there exists a real number γ such that

Re
(
eiγ fz(z)

)
>
∣∣ fz(z)

∣∣ for all z ∈ D.

For example, if f = h + g is a planar harmonic mapping in the unit disk D and if
there exists a real number γ such that

Re
{
eiγ h′(z)} > |g′(z)| for z ∈ D, (2)

then f is univalent in D. In [18], it was shown that harmonic functions f = h + g
satisfying condition (2) in D are indeed univalent and close-to-convex in D, i.e., the
complement of the image region f (D) is the union of non-intersecting rays (except
that the origin of one ray may lie on another one of the rays).

Moreover, using Theorem 6, one can also obtain a sufficient condition for p-valent
mappings.

Corollary 5 Suppose that D ⊆ R
n is a domain such that D = ∪p

m=1Dm,where Dm’s
are convex for m = 1, . . . , p. Furthermore, let f ∈ C1(D), � = f (D) ⊂ R

n, φ ∈
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C1(�) such that for every Xm ∈ Sn−1 there exists a unitary matrix Um := Um(Xm)

for each m = 1, . . . , p, such that

Um × (Dφ)( f (X)) × (Df )(X) × Xm ∈ R
n+

for every X ∈ Dm, m = 1, . . . , p. Then f is no more than p-valent in D.

3 Proofs of Theorems 1, 2 and 3

Proof of Theorem 1 It is enough to prove the Theorem in the case A = B = I . For
convenience, we let z = x1 + · · · + xn . Then

uk(X) = xk + γk

[
α2z

2 + α3z
3 + · · · + αmz

m
]

for k = 1, . . . , n, α j , γk ∈ R with
∑n

k=1 γk = 0 and X = (x1, . . . , xn).
We first prove that det Df (X) ≡ 1. To do this, we begin to introduce

L(X) = 2α2z + 3α3z
2 + · · · + mαmz

m−1.

Then a computation gives

∂uk
∂x j

= δ
j
k + γk L .

and

det Df =

∣∣∣∣∣∣∣∣∣

1 + γ1L γ1L . . . γ1L
γ2L 1 + γ2L . . . γ2L

...
...

...
...

γnL γnL . . . 1 + γnL

∣∣∣∣∣∣∣∣∣
= I1 + γ1L I2,

where

I1 =

∣∣∣∣∣∣∣∣∣

1 0 . . . 0
γ2L 1 + γ2L . . . γ2L

...
...

...
...

γnL γnL . . . 1 + γnL

∣∣∣∣∣∣∣∣∣
and I2 =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
γ2L 1 + γ2L . . . γ2L

...
...

...
...

γnL γnL . . . 1 + γnL

∣∣∣∣∣∣∣∣∣
.

We will now show by induction that

det Df (X) = 1 +
(

n∑
k=1

γk

)
L(X).

Obviously, for n = 2, we have det Df (X) = 1 + (γ1 + γ2)L for γ1, γ2 ∈ R.

123



The Jacobian Conjecture and Injectivity Conditions 2107

Next, we suppose that det Df (X) = 1 + (γ1 + · · · + γp)L holds for p = n − 1,
where γ1, . . . , γp ∈ R. We need to show that it is true for p = n. Clearly,

I1 =

∣∣∣∣∣∣∣

1 + γ2L . . . γ2L
...

...
...

γnL . . . 1 + γnL

∣∣∣∣∣∣∣
= 1 + (γ2 + · · · + γn)L

and

I2 =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 . . . 1
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

...

0 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣

= 1.

Since det Df = I1 + γ1L I2, using the above and the hypothesis
∑n

k=1 γk = 0 that

det Df (X) = 1 + (γ1 + γ2 + · · · + γn)L(X) ≡ 1.

Applying Theorem 4, we will finally show that f is indeed a univalent mapping.

Now, for convenience, we denote L∗ =
∫ 1

0
L[γ (t)] dt and obtain that

det

(∫ 1

0

∂uk
∂x j

(γ (t)) dt

)n

j,k=1
=

∣∣∣∣∣∣∣∣∣

1 + γ1L∗ γ1L∗ . . . γ1L∗
γ2L∗ 1 + γ2L∗ . . . γ2L∗

...
...

...
...

γnL∗ γnL∗ . . . 1 + γnL∗

∣∣∣∣∣∣∣∣∣
= 1 + (γ1 + · · · + γn)L∗
= 1

for all γ (t) as in Theorem 4. Thus, by Theorem 4, f is univalent in Rn . 
�
Remark 2 The injective mapping f in Theorem 1 can be obtained directly from this
kind of display and without the use of Theorem 4 but by a method of contradiction.
Indeed, if X = (x1, . . . , xn), Y = (y1, . . . , yn), z = ∑n

j=1 x j , ϕ(z) = α2z2 + . . . +
αmzm , f = (u1, . . . , un), where

uk(X) = xk + γkϕ(z)

for k = 1, . . . , n, and α j , γk are constants with

n∑
k=1

γk = 0, (3)

123



2108 S. Ponnusamy, V. V. Starkov

then f is a globally injective mapping. This is because f (X) = f (Y ) implies

xk + γkϕ

⎛
⎝

n∑
j=1

x j

⎞
⎠ = yk + γkϕ

⎛
⎝

n∑
j=1

y j

⎞
⎠ for k = 1, . . . , n, (4)

which, because of (3), obviously gives that
∑n

k=1 xk = ∑n
k=1 yk . Finally, from (4), it

follows that xk = yk , and hence, X = Y .

Proof of Theorem 2 Consider f (X) = (u1(X), u2(X)), where X = (x, y) ∈ R
2 and

u1(x, y) = x +
[
α2(x + y)2 + α3(x + y)3 + · · · + αm(x + y)m

]

and

u2(x, y) = y −
[
α2(x + y)2 + α3(x + y)3 + · · · + αm(x + y)m

]

for α j ∈ R, j = 2, . . . n. Let

f̃ (X) = (u1(X) + W (X), u2(X) + w(X)),

where W and w are as mentioned in the statement.
As in the proof of Theorem 1, we see easily that

det Df̃ =
∣∣∣∣
1 + L + Wx L + Wy

−L + wx 1 − L + wy

∣∣∣∣
= 1 + (1 + L)wy + (1 − L)Wx + LWy − Lwx + (Wxwy − wxWy) (5)

which is identically 1, by the hypothesis of Theorem 2.Moreover, allowing ‖X‖ → ∞
in (5), it follows that Wxwy − wxWy = 0. We now show that this gives the relation

w = λW

for some constant λ. We observe that both w and W are not identically zero simul-
taneously. If w ≡ 0 and W �≡ 0, then we choose λ = 0. Because of the symmetry,
equality holds in the last relation when W ≡ 0 and w �≡ 0. Therefore, it suffices to
consider the case W �≡ 0 �≡ w. We denote t = x/y. Using the definition of w(x) and
W (X) in the statement, we may conveniently write

w(X) =
m+1∑
k=0

αk x
k ym+1−k = ym+1

m+1∑
k=0

αk t
k =: ym+1 p(t)

and similarly,
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W (X) =
m+1∑
k=0

βk x
k ym+1−k =: ym+1q(t). (6)

Using these, we find that

wx (X) =
m+1∑
k=1

kαk x
k−1ym+1−k = ym p′(t), and

wy(X) =
m∑

k=0

(m + 1 − k)αk x
k ym−k = ym((m + 1)p(t) − tp′(t)).

Similarly, we see that

Wx (X) = ymq ′(t) and Wy(X) = ym((m + 1)q(t) − tq ′(t)).

Then

Wy(X)

Wx (X)
= wy(X)

wx (X)
⇐⇒ (m + 1)q(t) − tq ′(t)

q ′(t)
= (m + 1)p(t) − tp′(t)

p′(t)

⇐⇒ q ′(t)
q(t)

= p′(t)
p(t)

,

and the last relation, by integration, gives q(t) = λp(t) for some constant λ. Thus, we
have the desired claim w = λW . Consequently, by (5), det D f̃ (X) ≡ 1 implies that

(1 + L)wy + (1 − L)Wx + LWy − Lwx ≡ 0

which, by the relation w = λW , becomes

(λ + Lλ + L)Wy + (1 − L − Lλ)Wx ≡ 0. (7)

Allowing ‖X‖ → 0 in (7), we see that λWy(X) + Wx (X) = 0 is equivalent to

m+1∑
k=1

[
λ(m + 1 − (k − 1))βk−1 + kβk

]
xk−1ym+1−k = 0.

This gives the condition λ(m + 2 − k)βk−1 + kβk = 0 for k = 1, . . . ,m + 1. From
the last relation, it follows easily that

βk = (−λ)k(m + 1)!
k!(m + 1 − k)!β0 for k = 1, . . . ,m + 1

and thus, using this and (6), we obtain that

W (X) = β0(y − λx)m+1.
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Since

Wx (X) = −λ(m + 1)β0(y − λx)m and Wy(X) = (m + 1)β0(y − λx)m,

allowing ‖X‖ → ∞ in (7) (and making use of the expression L in the proof of
Theorem 1 for n = 2), we have in case L �≡ 0 and αm �= 0 :

αm(1 + λ)2 = 0,

which gives the condition λ = −1. Note that if αm = 0, we choose the leading largest
j for which α j �= 0. However, the last condition gives that λ = −1. Consequently,
we end up with the forms

W (X) = β0(x + y)m+1 = αm+1(x + y)m+1

and

w(X) = −β0(x + y)m+1 = −αm+1(x + y)m+1.

If L ≡ 0, then

f̃ (X) = (x + β0(y − λx)m+1, y + λβ0(y − λx)m+1).

If at the same time λ �= 0, then we denote

A =
(−λ 0

0 1

)
, F(X) = Af̃ (A−1(X)) and αm+1 = −λβ0.

Thus, we have f̃ = A−1 ◦ F ◦ A and

F(X) =
(
x + αm+1(x + y)m+1, y − αm+1(x + y)m+1

)
. (8)

If L ≡ 0 and λ = 0, then w ≡ 0 and W (X) = β0ym+1 so that

f̃ (X) = (x + β0y
m+1, y).

Now, we denote

A =
(

1 0
−1 1

)
and αm+1 = β0.

This gives f̃ = A−1 ◦ F ◦ A and F has form (8). The proof is complete. 
�
Proof of Theorem 3 requires some preparation.
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Lemma 1 Suppose that G j ∈ Pn(m) for j = 1, . . . , N and G j (X) = X +
u( j)(X)γ ( j), where u( j)(X) = ∑m

l=2 a
( j)
l zl with z = x1 + · · · + xn, γ ( j) = (γ

( j)
1 ,

. . . , γ
( j)
n ),

∑n
k=1 γ

( j)
k = 0 for all j , and a( j)

l are some constants. ThenG1◦· · ·◦GN =:
F ∈ Pn(m), and

F(X) = X + u(1)(X)γ (1) + · · · + u(N )(X)γ (N ).

Proof At first, we would like to prove the lemma for N = 2 and then extend it for the
composition of N mappings, N ≥ 2. Let G j ∈ Pn(m) for j = 1, 2 and

G j (X) = X + u( j)(X)γ ( j).

Also, introduce

G2(X) = (g(2)
1 , g(2)

2 , . . . , g(2)
n ) and L p(X) =

m∑
l=2

la(p)
l zl−1 for p = 1, 2.

We observe that

g(2)
1 (X) + · · · + g(2)

n (X) = z +
m∑
l=2

[
a(2)
l

n∑
k=1

γ
(2)
k zl

]
= z

and therefore,

L1(G2(X)) = L1(X) and DG1(G2(X)) = DG1(X).

Finally, for the case of N = 2, one has

DF(X) = DG1(G2(X))DG2(X)

= DG1(X)DG2(X) = A(1)(L1)A
(2)(L2) = (ri j )n×n,

where A(p)(L p) for p = 1, 2 are the two n × n matrices given by

A(p)(L p) =

⎛
⎜⎜⎜⎜⎝

1 + γ
(p)
1 L p γ

(p)
1 L p · · · γ

(p)
1 L p

γ
(p)
2 L p 1 + γ

(p)
2 L p · · · γ

(p)
2 L p

...
...

...
...

γ
(p)
n L p γ

(p)
n L p · · · 1 + γ

(p)
n L p

⎞
⎟⎟⎟⎟⎠

, p = 1, 2.

If i �= j , then a computation gives

ri j = γ
(1)
i L1L2

n∑
k=1

γ
(2)
k + γ

(1)
i L1 + γ

(2)
i L2 = γ

(1)
i L1 + γ

(2)
i L2;
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Similarly, for i = j , we have

rii = γ
(1)
i L1L2

n∑
k=1

γ
(2)
k + 1 + γ

(1)
i L1 + γ

(2)
i L2 = 1 + γ

(1)
i L1 + γ

(2)
i L2.

Consequently, we obtain that

DF(X) =

⎛
⎜⎜⎜⎜⎝

(1 + γ
(1)
1 L1 + γ

(2)
1 L2) γ

(1)
1 L1 + γ

(2)
1 L2 · · · γ

(1)
1 L1 + γ

(2)
1 L2

γ
(1)
2 L1 + γ

(2)
2 L2 (1 + γ

(1)
2 L1 + γ

(2)
2 L2) · · · γ

(1)
2 L1 + γ

(2)
2 L2

...
...

...
...

γ
(1)
n L1 + γ

(2)
n L2 γ

(1)
n L1 + γ

(2)
n L2 · · · (1 + γ

(1)
n L1 + γ

(2)
n L2)

⎞
⎟⎟⎟⎟⎠

.

Moreover, it follows easily that

F(X) = (G1 ◦ G2)(X) =

⎛
⎜⎜⎜⎜⎝

x1 + γ
(1)
1 u(1)(X) + γ

(2)
1 u(2)(X)

x2 + γ
(1)
2 u(1)(X) + γ

(2)
2 u(2)(X)

...

xn + γ
(1)
n u(1)(X) + γ

(2)
n u(2)(X)

⎞
⎟⎟⎟⎟⎠

= X + u(1)(X)γ (1) + u(2)(X)γ (2).

Similarly in the case of the composition of three mappings G1, G2 and G3 (i.e., for
the case of N = 3), the Jacobian matrix of F = G1 ◦ G2 ◦ G3 is given by

DF(X) = DG1((G2 ◦ G3)(X))DG2(G3(X))DG3(X)

= DG1(X)DG2(X)DG3(X)

= (ri j )n×n,

where for i �= j ,

ri j = γ
(1)
i L1 + γ

(2)
i L2 + γ

(3)
i L3, L3(X) =

m∑
l=2

la(3)
l zl−1;

and

rii = 1 + γ
(1)
i L1 + γ

(2)
i L2 + γ

(3)
i L3.

Moreover, we find that

F(X) = (G1 ◦ G2 ◦ G3)(X) = X + u(1)(X)γ (1) + u(2)(X)γ (2) + u(3)(X)γ (3).

The above process may be continued to complete the proof. 
�
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Remark 3 We remark that the lemma is of interest only when the dimension of the
space is greater than or equal to 3. For n = 2, it does not give anything new in
comparison with Theorem 1. However, for n > 2, we obtain from Lemma 1 new
mappings from Pn(m), not belonging to Pn(m).

Example 1 Let m = 3 = n, N = 2, a(1)
l = l − 1, a(2)

l = 2 + l, γ (1) = (1, 2,−3),
γ (2) = (−3, 1, 2) and apply Lemma 1 for the mappings G1,G2 ∈ P3(3).

Define F(X) = (G1 ◦G2)(X) = (u1(X), u2(X), u3(X)), where X = (x1, x2, x3),
z = x1 + x2 + x3. Since

F(X) = X + u(1)(X)γ (1) + u(2)(X)γ (2)

= X + (z2 + 2z3)(1, 2,−3) + (4z2 + 5z3)(−3, 1, 2),

a comparison gives

u1(X) = x1 − 11z2 − 13z3, u2(X) = x2 + 6z2 + 9z3 and u3(X) = x3 + 5z2 + 4z3.

According to Lemma 1, we obtain that F ∈ P3(3). We now show that F /∈ P3(3).
For its proof, it is enough to show that there are no such vectors � = (�1, �2) and
A = (A1, A2) from R

2 that

�1A = (−11,−13), �2A = (6, 9) and (−�1 − �2)A = (5, 4).

It is easy to see that the above system of equations has no solution which means that
F /∈ P3(3). �

Now, we prove our final result which offers functions from Pn(m) and generalizes
Theorem 1 significantly in a natural way.

Proof of Theorem 3 The idea of the proof is in presenting F as a composition of
mappings G j ∈ Pn(m) for j = 1, . . . , N . For G j , we may write G j (X) =
(u( j)

1 , . . . , u( j)
n ), where

u( j)
k (X) = xk + γ

( j)
k

m∑
l=2

A( j)
l zl ,

n∑
k=1

γ
( j)
k = 0 for all j = 1, . . . , N ,

and A( j)
l are some constants.

FromLemma 1, the possibility of choosing F = G1◦· · ·◦GN means the following:
there exist two sets of numbers

{
γ

( j)
k

}n, N

k=1, j=1
with

n∑
k=1

γ
( j)
k = 0 for all j = 1, . . . , N ,

and

{
A( j)
l

}m, N

l=2, j=1
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such that for all k = 1, . . . , n,

γ
(1)
k A(1)

l + γ
(2)
k A(2)

l + · · · + γ
(N )
k A(N )

l = p(l)
k (9)

holds for each l = 2, . . . ,m. For the solution of this task, for every j = 1, . . . , N ,

we fix a set of nonzero numbers
{
γ

( j)
k

}n
k=1

such that
∑n

k=1 γ
( j)
k = 0 and the rank

of the matrix
{
γ

( j)
k

}n, N

k=1, j=1
is equal to (n − 1) (we can consider N > n). Then in

each of the linear system of equations (9) for l = 2, . . . ,m, the corresponding matrix(
γ

( j)
k

)n, N

k=1, j=1
of the system is one and the same and has also the rank (n − 1), and

A(1)
l , . . . , A(N )

l play a role of variables in the system of equations (9). At the same

time in each system (9), the rank of an expanded matrix
(
γ

( j)
k ∪ p(l)

k

)n, N

k=1, j=1
as well

as the rank of
(
γ

( j)
k

)n, N

k=1, j=1
will be equal to (n − 1) in each system, since

n∑
k=1

p(l)
k = 0 =

n∑
k=1

γ
( j)
k for each l and j .

Therefore, according to the theorem of Kronecker, each of the system of equations
(9) (l = 2, . . . ,m) will have the solution (A(1)

l , . . . , A(N )
l ). It finishes the proof of

Theorem 3.

Remark 4 The proof that F in Theorem 3 is injective can also be easily obtained from
the form F analogous to that of Remark 2 to Theorem 1.

Remark 5 For n ≥ 3, Theorem 3 significantly expands the set Pn(m) of mappings
for which JC is fair. Really, without parameters of matrices A and B from Theorem
1, the set Pn(m) has [(m − 1) + (n − 1)] free parameters, and the set of polynomial
mappings from Theorem 3 has (m − 1)(n − 1) such parameters.
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