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Abstract In the present paper, we introduce the notion of relatively uniformweighted
summability and its statistical version based upon fractional-order difference operators
of functions. The concept of relatively uniform weighted αβ-statistical convergence
is also introduced and some inclusion relations concerning the newly proposed meth-
ods are derived. As an application, we prove a general Korovkin-type approximation
theorem for functions of two variables and also construct an illustrative example by
the help of generating function type non-tensor Meyer-König and Zeller operators.
Moreover, it is shown that the proposed methods are non-trivial generalizations of
relatively uniform convergence which includes a scale function. We estimate the rate
of convergence of approximating positive linear operators by means of the modulus of
continuity and give a Voronovskaja-type approximation theorem. Finally, we present
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some computational results and geometrical interpretations to illustrate some of our
approximation results.

Keywords Weighted statistical convergence and weighted statistical summability ·
Fractional-order difference operators of functions · Relatively uniform convergence ·
The rates of convergence ·Korovkin- and Voronovskaja-type approximation theorems
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1 Introduction and Preliminaries

The theory of summability arises from the process of summation of series and is an
extremely wide and fruitful field for the application in several branches of functional
analysis, in particular, operator theory, analytic continuation, the rate of convergence,
quantum mechanics, approximation theory, probability theory, the theory of orthogo-
nal series, andfixed point theory.With the rapid development of sequence spaces,many
researchers have focused on the notion of statistical convergence which was indepen-
dently introduced by Fast [1] and Steinhaus [2] in the same year 1951. Recently, the
concepts of statistical convergence and statistical summability have become an active
area of research. Also these techniques have been discussed satisfactorily in approxi-
mation theory of functions by positive linear operators. For more various approaches
to statistical convergence and statistical summability, we refer to [3–8].

Let S ⊆ N and

Sm := {n : n � m and n ∈ S}.

The natural density (see [9,10]) of S is defined by

δ(S) = lim
m→∞

1

m
|Sm |,

provided that the limit exists, where |Sm | denotes the cardinality of set Sm . A number
sequence u = (un) is called statistically convergent (δ-convergent) to the number L ,
denoted by st-limm u = L , if, for every ε > 0, the set

Hε = {
n : n ∈ N and |un − L| � ε

}

has natural density zero, or equivalently δ(Hε) = 0. The idea of weighted statistical
convergence of single sequences was first given by Karakaya and Chishti [11]. More
recently, this notion was modified by Mursaleen et al. [12] (see also the related work
by Srivastava et al. [13]) and was further extended by Kadak et al. [14].

Let s = (sk) be a sequence of non-negative numbers such that s0 > 0 and Sm =∑m
k=0 sk → ∞ as m → ∞. We say that a sequence u = (un) is weighted statistically

convergent (or SN -convergent) to the number L if, for every ε > 0,
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Relatively Uniform Weighted Summability Based on... 2455

lim
m→∞

1

Sm

∣∣∣∣
{
n � Sm : sn|un − L| � ε

}
∣∣∣∣ = 0.

Quite recently, Aktuğlu [15] introduced the notion of (α, β)-statistical conver-
gence for single sequences with the help of two sequences {α(n)}n∈N and {β(n)}n∈N
of positive numbers which satisfy the conditions: α and β are both non-decreasing,
β(n) � α(n) for all n ∈ N, (β(n) − α(n)) → ∞ as n → ∞. The set of all pairs
(α, β) satisfying above conditions will be denoted by �. A sequence u = (uk) is said
to be (α, β)-statistically convergent to L if, for each ε > 0,

lim
n→∞

∣∣∣
{
k ∈ S(α,β)

n : |uk − L| � ε
}∣∣∣

β(n) − α(n) + 1
= 0,

where (α, β) ∈ � and S(α,β)
n = [α(n), β(n)].

The concept of relatively uniform convergence of a sequence of functions was
introduced byMoore [16]. In the slight modification by Chittenden [17], the relatively
uniform convergence was defined on a closed interval I ⊂ R as follows:

A sequence { fn(x)}of functions, definedon an interval I ≡ (a � x � b), converges
relatively uniformly to a limit function f (x) if there exists a function σ(x), called a
scale function σ(x) defined on I , such that for every ε > 0 there is an integer nε such
that for every n greater than nε the inequality

| fn(x) − f (x)| � ε |σ(x)|

holds uniformly in x on the interval I ⊂ R. For example (see [18]), consider the
sequence ( fn) of functions defined on [0, 1] given by

fn(x) =
⎧
⎨

⎩

1
nx (x �= 0),

0 (x = 0).

It is clear that ( fn) is not convergent uniformly, but is convergent to f (x) = 0uniformly
relative to a scale function defined as

σ(x) =
⎧
⎨

⎩

1
x (0 < x � 1),

1 (x = 0).

Note that uniform convergence is the special case of relatively uniform conver-
gence in which the scale function is a non-zero constant. Very recently, based on
the natural density of a set, the notion of relative statistical uniform convergence has
been introduced by Demirci and Orhan [18] (see also [19]). In the same year, they
gave the definitions of relative modular convergence and statistical relative modular
convergence for double sequences of measurable real-valued functions [20].

Let ( fn) be a sequence of functions defined on a compact subset E of real numbers.
The sequence ( fn) is said to be statistically relatively uniform convergent to the limit
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function f defined on E , if there exists a scale function σ(x), |σ(x)| > 0, on E such
that for every ε > 0,

δ

(
n : sup

x∈E

∣∣∣∣
fn(x) − f (x)

σ (x)

∣∣∣∣ ≥ ε

)
= 0. (1.1)

In this case we write (st) − fn ⇒ f (E; σ).
The idea of fractional-order difference operator was firstly used by Chapman [21]

and has since been studied by many researchers [22–25]. In the year 2016, some new
classes of fractional-order difference sequence spaces was introduced by Baliarsingh
in [26]. Later on, Kadak [27] has generalized the concept of weighted statistical con-
vergence via (p, q)-integers. In the year 2017, Kadak [28] extended the weighted
statistical convergence based on a generalized difference operator involving (p, q)-
gamma function.

For our purpose, we will need the following definition involving a fractional-order
backward difference operator of functions (see [26]).

Let a, b and c be real numbers and h be any positive constant. Let f (x) be a real-
valued function which is differentiable with fractional-order. Based on this function
f (x), for the sequence fh(·) = ( f (x − ih)), the fractional-order backward difference
operator of f corresponding to the decrement ih is defined as

	
a,b,c
h f (x) =

∞∑

i=0

(−a)i (−b)i
i !(−c)i

f (x − ih)

ha+b−c
(1.2)

where (−c)i �= 0 for all i ∈ N and (r)k denotes the Pochhammer symbol (or shifted
factorial) of a real number r which is defined as

(r)k :=
{
1, (r = 0 or k = 0),

(r+k)

(r) = r(r + 1)(r + 2) . . . (r + k − 1), (k ∈ N).

(1.3)

From now on, without loss of generality, we can assume that the summation given
in (1.2) converges for all c < a + b where (−c)i �= 0 for all i ∈ N. It is clear that the
fractional-order difference operator defined in Eq. (1.2) is linear and hence the integral
and fractional-order operators can be obtained through the difference operator 	

a,b,c
h .

For example, by choosing a = 2, b = c in (1.2), we can write

lim
h→0

	
2,b,b
h f (x) = lim

h→0

{
f (x) − 2 f (x − h) + f (x − 2h)

h2

}
= f ′′(x),

if it exists. Clearly, for a = r ∈ R, b = c, the fractional derivative operator ( d
dx )r and

fractional integro operator ( d
dx )−r (r /∈ N), are immediately obtained via 	

a,b,c
h . For

more details see [26].
Our main purpose of the present study is to generalize the uniform convergence of

sequences of positive linear operators based on fractional-order linear difference oper-
ator 	

a,b,c
h . Also, our present investigation deals essentially with various summability
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methods for sequences of functions and shows how these methods lead to a number of
approximation results. Furthermore, we apply our new type of summability method
to prove Korovkin and Voronovskaya type results for functions of two variables with
the help of non-tensor Meyer-König and Zeller operators involving generating func-
tions. Several illustrative examples and geometrical interpretations are also given to
illustrate some of approximation results in this paper.

2 Some New Definitions and Concerning Inclusion Relations

In this section, we first give the definition of relative uniform weighted αβ-statistical
convergence through the weighted αβ-density. Also, we introduce the notion of rel-
atively uniform statistical �-summability for function sequences. Secondly, we give
some inclusion relations between proposed methods and present an illustrative exam-
ple to prove that our method is non-trivial generalization of classical and statistical
cases of relatively uniform convergence introduced in [18,19].

Let p = (pk)∞k=0 be a sequence of non-negative real numbers such that

P(α,β)
n =

β(n)∑

k=α(n)

pk → ∞ as n → ∞, (α, β) ∈ �.

The lower and upper weighted αβ-densities of the set K ⊂ N are defined by

δ
(α,β)
Pn

(K ) = lim inf
n→∞

1

P(α,β)
n

∣∣∣∣
{
k ≤ P(α,β)

n : k ∈ K
} ∣∣∣∣

and

δ
(α,β)

Pn (K ) = lim sup
n→∞

1

P(α,β)
n

∣∣∣∣
{
k ≤ P(α,β)

n : k ∈ K
} ∣∣∣∣,

respectively. We say that K has weighted αβ-density δ
(α,β)
Pn

(K ) if

δ
(α,β)
Pn

(K ) = δ
(α,β)

Pn (K ),

in which case δ
(α,β)

N̄
(K ) is equal to this common value. The weighted αβ-density can

be restated in the following way:

δ
(α,β)
Pn

(K ) = lim
n→∞

1

P(α,β)
n

∣∣∣∣
{
k ≤ P(α,β)

n : k ∈ K
} ∣∣∣∣,

if the limit exists.

Definition 1 Let h be any positive constant, (α, β) ∈ � and a, b, c ∈ R. A sequence
( fn) of functions, defined on a compact subset E of real numbers, is said to be relatively
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uniform weighted αβ-statistical convergent to the function f on E , if there exists a
scale function σ(x) (|σ(x)| > 0) on E such that, for each ε > 0,

δ
(α,β)
Pn

({
n : sup

x∈E
pn

∣∣∣∣
	

a,b,c
h fn(x) − f (x)

σ (x)

∣∣∣∣ ≥ ε

})
= 0, (α, β) ∈ �.

In this case we denote it by S(α,β)
	 (pn, σ ) − fn ⇒ f .

Definition 2 Let h be any positive constant, (α, β) ∈ � and a, b, c ∈ R. A sequence
( fn) of functions defined on the compact subset E ⊂ R, is said to be uniformly
�-summable to f on E , if

�( fn) = 1

P(α,β)
n

β(n)∑

k=α(n)

pk 	
a,b,c
h fk(x) ⇒ f

as n → ∞ uniformly in x ∈ E , where |	a,b,c
h fk(x)| > 0 for all k ∈ N. Also, we say

that ( fn) is uniformly statistical �-summable to f , if (�( fn)) is statistically uniform
convergent to the same limit function f . That is, for every ε > 0,

δ

({
n : sup

x∈E
∣∣ �( fn(x)) − f (x)

∣∣ ≥ ε
}) = 0.

This limit is denoted by N� (stat) − fn ⇒ f on E .

Definition 3 A sequence ( fn) of functions, defined on the compact subset E ⊂ R,
is said to be relatively uniform statistical �-summable to f , if (�( fn)) is relatively
uniform statistical convergent to f on E . Equivalently, we may write

δ

({
n : sup

x∈E

∣∣∣∣
�( fn(x)) − f (x)

σ (x)

∣∣∣∣ ≥ ε

})
= 0, |σ(x)| > 0.

We denote it by N� − fn ⇒ f (σ, E).

Based upon above definitions, we shall give the following special cases and some
inclusion relations to show the effectiveness of newly proposed methods.

• Let us take a = 0, b = c, α(n) = 1, β(n) = n and pn = 1 for all n ∈ N, the
relatively uniform weighted αβ-statistical convergence in Definition 1, is reduced
to relatively uniform statistical convergence introduced in [18]. For the case σ(x)
is non-zero constant, we have its uniformly statistical convergence version (cf.
[19]).

• Let (λn) be a strictly increasing sequence of positive numbers tending to ∞ as
n → ∞ such that λn+1 ≤ λn + 1 and λ1 = 1. If we take a = 0, b = c, σ(x) = 1,
α(n) = n − λn + 1 and β(n) = n, then the relatively uniform statistical �-
summability given inDefinition 3 reduces to theweightedλ-statistical summability
(cf. [29,30]). Again, if we take pn = 1 for all n ∈ N as an extra condition, we
have an analog of λ-statistical summability for function sequences (cf. [31]).
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• Let θ = (kn) be an increasing positive number sequence such that k0 = 0, 0 <

kn < kn+1 and hn = kn − kn−1 → ∞, as n → ∞. It is known that θ is a lacunary
sequence. For a = 0, b = c, σ(x) = 1, α(n) = kn−1 + 1, β(n) = kn and pn = 1
for all n ∈ N, relatively uniform statistical �-summability is reduced to lacunary
statistical summability for function sequences (cf. [28,32,33]).

• Take a = 2, b = c, σ(x) = 1, α(n) = λn−1 + 1, β(n) = λn , the relatively
uniform weighted αβ-statistical convergence reduces to weighted �2-statistical
convergence for function sequences (cf. [27,34]). In a similar manner, relatively
uniform statistical �-summability is reduced to �2-statistical summability (cf.
[27,34]).

As a direct consequence of abovementioned special cases,we cangive the following
inclusion relations without proof.

Lemma 1 (a) fn ⇒ f on E (in the ordinary sense) implies (st) − fn ⇒ f (E; σ),
which also implies S(α,β)

	 (pn, σ ) − fn ⇒ f on E.

(b) fn ⇒ f on E (ordinary uniform summable) implies N� (stat) − fn ⇒ f on E,
which also implies N� − fn ⇒ f (σ, E).

Theorem 1 Let h be any positive constant, (α, β) ∈ � and a, b, c ∈ R and, let σ(x)
be a bounded scale function defined on E ⊂ R. Assume that

sup
x∈E

pk

∣∣∣∣
	

a,b,c
h fk(x) − f (x)

σ (x)

∣∣∣∣ ≤ M for all k ∈ N and |σ(x)| > 0.

If a sequence ( fn) of functions on E ⊂ R is relatively uniform weighted αβ-statistical
convergent to the bounded function f on E, then it is relatively uniform statistical
�-summable to the same limit function f on E, but not conversely.

Proof Suppose that supx∈E pk
∣∣	

a,b,c
h fk (x)− f (x)

σ (x)

∣∣ ≤ M for all k ∈ N. From the
hypotheses, we have

lim
n→∞

1

P(α,β)
n

∣∣∣∣

{
k ≤ P(α,β)

n : sup
x∈E

pk

∣∣∣∣
	

a,b,c
h fk(x) − f (x)

σ (x)

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0.

Let us set

K (ε) :=
{
k ≤ P(α,β)

n : sup
x∈E

pk

∣∣∣∣
	

a,b,c
h fk(x) − f (x)

σ (x)

∣∣∣∣ ≥ ε

}

and

KC (ε) :=
{
k ≤ P(α,β)

n : sup
x∈E

pk

∣∣∣∣
	

a,b,c
h fk(x) − f (x)

σ (x)

∣∣∣∣ < ε

}
.
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We then obtain that

∣∣∣∣
� fn(x) − f (x)

σ (x)

∣∣∣∣ = 1

|σ(x)|
∣∣∣∣

{
1

P(α,β)
n

∑

k∈I (α,β)
n

pk 	
a,b,c
h fk(x)

}
− f (x)

∣∣∣∣

≤ 1

|σ(x)|
{∣∣∣∣

1

P(α,β)
n

∑

k∈I (α,β)
n

pk
[
	

a,b,c
h fk(x) − f (x)

]
∣∣∣∣

+ ∣∣ f (x)
∣∣
∣∣∣∣

1

P(α,β)
n

∑

k∈I (α,β)
n

pk − 1

∣∣∣∣

}
.

By using the fact that 1
P(α,β)
n

∑
k∈I (α,β)

n
pk = 1, supx∈E | f (x)/σ (x)| < ∞, and taking

supremum over x ∈ E in the last equation, we get

sup
x∈E

∣∣∣∣
� fn(x) − f (x)

σ (x)

∣∣∣∣ ≤ 1

P(α,β)
n

∑

k∈I (α,β)
n

(k∈K (ε))

sup
x∈E

pk

∣∣∣∣
	

a,b,c
h fk(x) − f (x)

σ (x)

∣∣∣∣

+ 1

P(α,β)
n

∑

k∈I (α,β)
n

(k∈KC (ε))

sup
x∈E

pk

∣∣∣∣
	

a,b,c
h fk(x) − f (x)

σ (x)

∣∣∣∣

≤ M

P(α,β)
n

|K (ε)|+ ε

P(α,β)
n

| KC (ε)| → 0+ε · 1=ε (n → ∞)

where I (α,β)
n = [α(n), β(n)]. Therefore, the sequence ( fn) of functions defined on E

is relatively uniform statistical �-summable to the same limit f on E . �


For converse, we present the following example:

Example 1 Define fn : [0, 4] → R and σ(x) by

fn(x) =
⎧
⎨

⎩

1
x , n = m2 − m,m2 − m + 1, . . . ,m2 − 1; m = 2, 3, 4 . . . ; x ∈ (0, 2)
−m
x , n = m2; m = 2, 3, 4, . . . ; x ∈ (0, 2)

0, otherwise or x ∈ [2, 4] ∪ {0}

and

σ(x) =
{ 1

x(x−2)(x−4) , x ∈ (0, 2)
1, x ∈ [2, 4] ∪ {0}.
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In the special case, when a = 2, b = c, h = 2, α(n) = 1, β(n) = n and pn = 1 for
all n ∈ N, we have

	
2,b,b
2 fn(x) = 1

4

{
fn(x) − 2 fn(x − 2) + fn(x − 4)

}

=
⎧
⎨

⎩

2
x(x−2)(x−4) , n = m2 − m,m2 − m + 1, . . . ,m2 − 1; x ∈ (0, 2),

−2m
x(x−2)(x−4) , n = m2,m = 2, 3, 4, . . . ; x ∈ (0, 2),
0, otherwise or x ∈ [2, 4] ∪ {0}.

It is obvious that neither (	
2,b,b
h fn) nor ( fn) converges uniformly on [0, 4]. On the

other hand, since

�( fn(x)) = 1

n

n∑

k=1

	
2,b,b
2 fk(x)

=
{ s+1

nx(x−2)(x−4) , n = m2 − m + s; s = 0, 1, 2 . . . ,m − 1; x ∈ (0, 2)
0, otherwise or x ∈ [2, 4] ∪ {0} ,

we obtain,

lim
n→∞ sup

x∈[0,4]

∣∣∣∣
�( fn(x)) − f (x)

σ (x)

∣∣∣∣

= lim
n→∞ sup

x∈[0,4]

∣∣∣∣

s+1
nx(x−2)(x−4)

1
x(x−2)(x−4)

∣∣∣∣ = 0, s = 0, 1, 2, . . . ,m − 1,

and hence ( fn) is relatively uniform statistical �-summable to f (x) = 0. However,
since

lim inf
n→∞

1

n

∣∣∣∣

{
n : sup

x∈[0,4]

∣∣∣∣
	

2,b,b
2 fn(x) − f (x)

σ (x)

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0

and

lim sup
n→∞

1

n

∣∣∣∣

{
n : sup

x∈[0,4]

∣∣∣∣
	

2,b,b
2 fn(x) − f (x)

σ (x)
≥ ε

}∣∣∣∣ = 1,

then ( fn) is not relatively uniform weighted αβ-statistical convergent to f (x) = 0.

Based upon above example, it is concluded that proposed method is stronger than
the classical and statistical version of relatively uniform convergence introduced in
[17,18].
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3 A Korovkin-Type Approximation Theorem

At the beginning of the 1950s, the study of some particular approximation by means
of the positive linear operators was extended to general approximation sequences of
such operators. The basis of approximation theory through positive linear operators or
functionals was developed by Korovkin [35]. This approximation theorem nowadays
calledKorovkin’s type approximation theoremhas been extended in several directions.
First of all, Gadjiev and Orhan [36] established the classical Korovkin theorem via
statistical convergence. In recent years, with the help of extended summability meth-
ods, various approximation results have been proved [14,23,30,34]. For more details
on the usage of summability methods in Korovkin-type approximation theorems, refer
to [37,38].

In this section, we shall prove a Korovkin-type approximation theorem related to
the notion of relatively uniform statistical �-summability for sequence of functions
of two variables. First, we give the definitions of fractional-order difference partial
operators of f (x, y) defined on E2 ⊂ R

2. Secondly, using the generating function
type non-tensorMeyer-König and Zeller operators [39,40], we show that our proposed
method successfully works and is more powerful than the existing Korovkin-type
approximation theorem based on (relatively) uniform convergence.

Let a, b and c be real numbers and h be any positive constant. Let f : E2 → R

be any real-valued function which has fractional-order partial derivatives. Then, the
fractional-order difference partial operators of f (x, y) with respect to x and y are
defined by

	
a,b,c
h,x f (x, y) =

∞∑

i=0

(−a)i (−b)i
i !(−c)i

f (x − ih, y)

ha+b−c
(3.1)

and

	
a,b,c
h,y f (x, y) =

∞∑

i=0

(−a)i (−b)i
i !(−c)i

f (x, y − ih)

ha+b−c
(3.2)

respectively, where (−c)i �= 0 for all i ∈ N and (r)k denotes the Pochhammer symbol
in (1.3). Without loss of generality, we assume that the summations given in (3.1) and
(3.2) converge for all a + b > c with (−c)i �= 0 for all i ∈ N. For instance, taking
a = 1, b = c in (3.1), we would have the first-order partial derivative of f (x, y) with
respect to x , that is,

lim
h→0

	
1,b,b
h,x f (x, y) = lim

h→0

{
f (x, y) − f (x − h, y)

h

}
,

provided that the limit exists (as a finite number).
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By C(DA), we denote the space of all continuous real-valued functions on a fixed
compact subset DA of R2 defined by

DA = {
(x, y) ∈ R

2 : x ∈ [0, A], y ∈ [0, A − x], 0 < A ≤ 1/2
}

and equipped with the following norm:

‖ f ‖C(DA) = sup
(x,y)∈DA

| f (x, y)|, f ∈ C(DA).

Suppose that J is a of positive linear operators from C(DA) into itself. Then as
usual, we say that J is a positive linear operator provided that f ≥ 0 implies J f ≥ 0.
Also, we use the notation J ( f (u, v); x, y) for the value of J f at a point (x, y) ∈ DA.

Throughout the paper, we consider the following families of two dimensional test
functions on DA:

e0(u, v) = 1, e1(u, v) = u

1 − u − v
, e2(u, v) = v

1 − u − v

and e3(u, v) =
(

u

1 − u − v

)2

+
(

v

1 − u − v

)2

. (3.3)

Theorem 2 Let h be any positive constant, (α, β) ∈ � and a, b, c ∈ R. Assume that
{Tn} is a sequence of positive linear operators acting from C(DA) into itself satisfying
|	a,b,c

h,x Tn(·; x, y)| > 0. Assume further that σi (x, y) is an unbounded scale function
on DA such that |σi (x, y)| > 0 for i = 0, 1, 2, 3. Then, for all f ∈ C(DA),

N� − Tn( f ; x, y) ⇒ f (σ, DA) (3.4)

if and only if

N� − Tn(ei ; x, y) ⇒ ei (σi , DA) (3.5)

where σ(x, y) = max
{|σi (x, y)|; i = 0, 1, 2, 3

}
and ei (·, ·) is defined as in (3.3).

Proof Since each ei belongs toC(DA)where i = 0, 1, 2, 3, then the implication (3.4)
⇒ (3.5) is clear. Let f ∈ C(DA) and (x, y) ∈ DA be fixed. Since f is continuous on
DA, given ε > 0, there exists a number δ = δ(ε) > 0 such that

| f (u, v) − f (x, y)| < ε (3.6)

for all (x, y), (u, v) ∈ DA satisfying

√(
u

1 − u − v
− x

1 − x − y

)2

+
(

v

1 − u − v
− y

1 − x − y

)2

< δ.
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Also we obtain for all (x, y), (u, v) ∈ DA satisfying

√(
u

1 − u − v
− x

1 − x − y

)2

+
(

v

1 − u − v
− y

1 − x − y

)2

≥ δ

that

| f (u, v) − f (x, y)| ≤ 2M

δ2

(
ϕ2
u(x) + ϕ2

v (y)
)

(3.7)

where

ϕu(x) = u

1 − u − v
− x

1 − x − y
, ϕv(y) = v

1 − u − v
− y

1 − x − y
(3.8)

and M := sup(x,y)∈D A
| f (x, y)|. Combining (3.6) and (3.7), we get for all

(x, y), (u, v) ∈ DA and f ∈ C(DA) that

| f (u, v) − f (x, y)| < ε + 2M

δ2

(
ϕ2
u(x) + ϕ2

v (y)
)
.

It follows from the linearity and positivity of Tk that

∣∣Tk( f (u, v); x, y) − f (x, y)
∣∣

= ∣∣Tk( f (u, v) − f (x, y); x, y) + f (x, y)[Tk(e0; x, y) − e0(x, y)]
∣∣

� Tk
(| f (u, v) − f (x, y)|; x, y) + M |Tk(e0; x, y) − e0(x, y)|

�
∣∣∣∣Tk

(
ε + 2M

δ2
(ϕ2

u(x) + ϕ2
v (y)); x, y

)∣∣∣∣ + M |Tk(e0; x, y) − e0(x, y)|
≤ ε + (ε + M)

∣∣Tk(e0; x, y) − e0(x, y)
∣∣

− 4M

δ2

(
x

1 − x − y

) ∣∣Tk(e1; x, y) − e1(x, y)
∣∣

+ 2M

δ2

∣∣Tk(e3; x, y) − e3(x, y)
∣∣

− 4M

δ2

(
y

1 − x − y

) ∣∣Tk(e2; x, y) − e2(x, y)
∣∣

+ 2M

δ2

((
x

1 − x − y

)2

+
(

y

1 − x − y

)2
)
∣∣Tk(e0; x, y) − e0(x, y)

∣∣

� ε +
(

ε + M + 4M

δ2

)
|Tk(e0; x, y) − e0| + 4M

δ2
|Tk(e1; x, y) − e1|

+ 4M

δ2
|Tk(e2; x, y) − e2| + 2M

δ2
|Tk(e3; x, y) − e3|.
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Now multiplying the both sides of the above inequality by 1
|σ(x,y)| and taking the

supremum over (x, y) ∈ DA, we deduce that

sup
(x,y)∈DA

∣∣∣∣
Tk( f (u, v); x, y) − f (x, y)

σ (x, y)

∣∣∣∣

� sup
(x,y)∈DA

ε

|σ(x, y)| + N sup
(x,y)∈DA

3∑

i=0

∣∣∣∣
Tk(ei (u, v); x, y) − ei (x, y)

σi (x, y)

∣∣∣∣, (3.9)

where σ(x, y) = max{|σi (x, y)|; i = 0, 1, 2, 3} and N := ε + M + 4M
δ2

. We now
replace Tk(·; x, y) by �(Tm f ) : C(DA) → C(DA) defined by

�(Tm(·; x, y)) = 1

P(α,β)
m

β(m)∑

k=α(m)

pk |	a,b,c
h,x Tk(·; x, y)|, (α, β) ∈ �

in (3.9). For a given r > 0, we choose a number ε > 0 such that sup
(x,y)∈DA

ε
|σ(x,y)| < r .

Then, upon setting

A : =
{

m ≤ n : sup
(x,y)∈DA

∣∣∣∣
�(Tm( f ; x, y)) − f (x, y)

σ (x, y)

∣∣∣∣ ≥ r

}

,

Ai : =

⎧
⎪⎨

⎪⎩
m ≤ n : sup

(x,y)∈DA

∣∣∣∣
�(Tm(ei ; x, y)) − ei (x, y)

σi (x, y)

∣∣∣∣ ≥
r − sup

(x,y)∈DA

ε
|σ(x,y)|

4N

⎫
⎪⎬

⎪⎭
,

where i = 0, 1, 2, 3. Then, it is clear thatA ⊂
3⋃

i=0
Ai and hence using the hypothesis

(3.5), we have

N� − Tn( f ; x, y) ⇒ f (σ, DA),

which completes the proof of Theorem 2. �

Remark 1 In Theorem 2, the condition |	a,b,c

h,x Tn(·; x, y)| > 0 can not be removed.

For example, taking a ∈ N, b = c and h = 1, since 	
a,b,c
h,x Tn(e0; x, y) = 0, then

N� − Tn(e0; x, y) ⇒ 0 ( �= 1) (σ, DA).

Therefore, the condition (3.5) does not always hold true for i = 0.

We now present an illustrative example for Theorem 2. Before giving this example,
we give a short introduction associated with the non-tensor type Meyer-König and
Zeller operators of two variables (see [40,41]).
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Let us consider the following bivariate non-tensor operators:

Ln( f ; x, y) = 1

�n(u, v; x, y)
∞,∞∑

k,l=0

f

(
ak,l,n

ak,l,n + ck,l,n + bn
,

ck,l,n
ak,l,n + ck,l,n + bn

)
Pn
k,l(u, v)xk yl

(3.10)

where Pn
k,l(u, v) > 0 for all (u, v) ∈ DA, A ∈ (0, 1) and

(
ak,l,n

ak,l,n + ck,l,n + bn
,

ck,l,n
ak,l,n + ck,l,n + bn

)
∈ DA.

For the double indexed function sequence {Pn
k,l(u, v)}k,l∈N, the generating function

�n(u, v; x, y) is defined by

�n(u, v; x, y) =
∞,∞∑

k,l=0

Pn
k,l(u, v)xk yl .

Since the nodes are given by

u = ak,l,n
ak,l,n + ck,l,n + bn

and v = ck,l,n
ak,l,n + ck,l,n + bn

,

the denominators of

u

1 − u − v
= ak,l,n

bn
and

v

1 − u − v
= ck,l,n

bn

are both independent of k and l, respectively. Throughout the paper, we also suppose
that the following conditions hold true (see, for details, [40]):

(i) �n(u, v; x, y) = (1 − x − y) �n+1(u, v; x, y);
(ii) ak+1,l,n Pn

k+1,l(u, v) = bn+1P
n+1
k,l (u, v) and ck,l+1,n Pn

k,l+1(u, v) = bn+1P
n+1
k,l

(u, v);
(iii) bn → ∞,

bn+1
bn

→ 1 and bn �= 0 for all n ∈ N;
(iv) ak+1,l,n − ak,l,n+1 = ϕn and ck,l+1,n − ck,l,n+1 = ξn where |ϕn| ≤ M0 < ∞,

|ξn| ≤ M1 < ∞ and a0,l,n = 0, ck,0,n = 0 for all n ∈ N.

Note that, choosing �n(u, v; x, y) = 1
(1−x−y)n+1 , ak,l,n = k, ck,l,n = l and bn = n in

(3.10), we get the non-tensor bivariate MKZ operators (see [42]). Using the positivity
and linearity of Ln , it can be observed that (see [40])

Ln(e0; x, y) = 1, Ln (e1; x, y) = bn+1

bn
e1(x, y), Ln (e2; x, y) = bn+1

bn
e2(x, y)
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and

Ln (e3; x, y) = bn+1bn+2

b2n
e3(x, y) + bn+1ϕn

b2n
e1(x, y) + bn+1ξn

b2n
e2(x, y).

Example 2 Let α(n) = 1, β(n) = n and pn = n for all n ∈ N. Define fn : [0, 1] → R

and σ(x, y) by

fn(x, y) =
⎧
⎨

⎩

1
xy , n = m2 − m,m2 − m + 1, . . . ,m2 − 1; (x, y) ∈ (0, 1) × (0, 1)
−m
xy , n = m2; m = 2, 3, 4, . . . ; (x, y) ∈ (0, 1) × (0, 1)
0, otherwise or (x, y) = (0, 0) or (x, y) = (1, 1)

and

σ(x, y) =
{ 1

xy , (x, y) ∈ (0, 1) × (0, 1)
1, (x, y) = (0, 0) or (x, y) = (1, 1).

For the special case a = 0 and b = c, one obtains

�( fn(x)) =
{ s+1

nxy , n = m2 − m + s; s = 0, 1, 2 . . . ,m − 1; (x, y) ∈ (0, 1) × (0, 1)
0, otherwise or (x, y) = (0, 0) or (x, y) = (1, 1)

,

which implies that

N� − fn ⇒ 0 (σ, DA). (3.11)

Now, let us suppose that {Tn} is the same as taken in Theorem 2 such that

Tn( f ; x, y) = (1 + fn(x, y)) Ln( f ; x, y). (3.12)

Then, observe that

Tn(e0; x, y) = (1 + fn(x, y)),

Tn(e1; x, y) = (1 + fn(x, y))
bn+1

bn

x

1 − x − y
,

Tn(e2; x, y) = (1 + fn(x, y))
bn+1

bn

y

1 − x − y
(3.13)

and

Tn(e3; x, y)

= (1 + fn)

[
bn+1bn+2

b2n

x2 + y2

(1 − x − y)2
+ bn+1ϕn

b2n

x

1 − x − y
+ bn+1ξn

b2n

y

1 − x − y

]
.

(3.14)
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Taking into account our assumptions (i)–(iv), we have

N� − Tn(e0; x, y) ⇒ e0 (σ0, DA),

N� − Tn(e1; x, y) ⇒ e1 (σ1, DA),

N� − Tn(e2; x, y) ⇒ e2 (σ2, DA).

We will now show that

N� − Tn(e3; x, y) ⇒ e3 (σ3, DA). (3.15)

Now let

B = sup
(x,y)∈DA

{
x2 + y2

(1 − x − y)2
,

x

1 − x − y
,

y

1 − x − y

}
.

By (3.11), (3.14) and the assumption (iv), one obtains

sup
(x,y)∈DA

∣∣∣∣
Tn(e3; x, y) − e3

σ3(x, y)

∣∣∣∣ ≤ B

|σ3|
{∣∣∣∣

bn+1bn+2

b2n
− 1

∣∣∣∣ + (M0 + M1)
bn+1

b2n

}
(1 + fn).

Passing to limit as n → ∞ in the last inequality and using (iii), the inclusion (3.15)
holds true. From (3.13) and (3.15), we can say that our sequence Tn( f ; x, y) defined
by (3.12) satisfy all assumptions of Theorem 2. Therefore

N� − Tn( f ; x, y) ⇒ f (σ, DA).

In view of above example, we say that our proposed method works successfully
but classical and statistical version of relatively uniform convergence do not work for
this sequence {Tn} of positive linear operators on DA.

4 Rate of Relatively Uniform Weighted αβ-Statistical Convergence

In this section, we estimate the rates of relatively uniform weighted αβ-statistical
convergence of positive linear operators defined from C(DA) into itself by the help of
the modulus of continuity.

We now present the following definition.

Definition 4 Let a, b,c be real numbers, h be any positive constant and (α, β) ∈ �.
Let (θn) be a positive non-increasing sequence of real numbers and σ(x, y) be a scale
function defined on a compact subset E2 ⊂ R

2 satisfying |σ(x, y)| > 0. A sequence
( fk(x, y)) of real-valued functions defined on E2 is said to be relatively uniform
weighted statistically convergent to f on E2 with the rate of o(θn), if for every ε > 0,

lim
n→∞

1

θn P
(α,β)
n

∣∣∣∣∣

{

k ≤ P(α,β)
n : sup

(x,y)∈E2
pk

∣∣∣∣
	

a,b,c
h,x fk(x, y) − f (x, y)

σ (x, y)

∣∣∣∣ ≥ ε

}∣∣∣∣∣
= 0.
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In this case, we denote it by fk − f = S(α,β)
	 (pk, σ ) − o(θn) on E2. Taking into

account that being little “o” of a sequence (function) is a stronger condition than being
big “O” of a sequence (function), all the results presented in this section can be given
when little “o” is replaced by big “O”.

Lemma 2 Let a, b,c be real numbers, h be any positive constant and (α, β) ∈ �. Let
( fk) and (gk) be two function sequences belonging to C(E2). Suppose that (ηn) and
(ζn) are positive non-increasing sequences of real numbers such that

fk − f = S(α,β)
	 (pk, σ0) − o(ηn) and gk − g = S(α,β)

	 (pk, σ1) − o(ζn) on E2

where |σi (x, y)| > 0, i = 0, 1. Let γn = max{ηn, ζn}. Then, the following statements
hold:

(1) ( fk − f ) ± (gk − g) = S(α,β)
	 (pk,max{|σi (x, y)| : i = 0, 1}) − o(γn) on E2,

(2) ( fk − f )(gk − g) = S(α,β)
	 (pk, σ0σ1) − o(ηnζn) on E2,

(3) (λ( fk − f )) = S(α,β)
	 (pk, σ0) − o(ηn) on E2, for any scalar λ.

Proof Assume that

fk − f = S(α,β)
	 (pk, σ0) − o(ηn) and gk − g = S(α,β)

	 (pk, σ1) − o(ζn) on E2.

Also, for ε > 0, define

D :=
⎧
⎨

⎩
k ≤ P(α,β)

n : sup
(x,y)∈E2

pk

∣∣∣∣

(
	

a,b,c
h,x fk + 	

a,b,c
h,x gk

)
(x, y) − ( f + g)(x, y)

σ (x, y)

∣∣∣∣ � ε

⎫
⎬

⎭
,

D0 :=
{

k ≤ P(α,β)
n : sup

(x,y)∈E2
pk

∣∣∣∣
	

a,b,c
h,x fk(x, y) − f (x, y)

σ0(x, y)

∣∣∣∣ ≥ ε

2

}

,

D1 :=
{

k ≤ P(α,β)
n : sup

(x,y)∈E2
pk

∣∣∣∣
	

a,b,c
h,x gk(x, y) − g(x, y)

σ1(x, y)

∣∣∣∣ ≥ ε

2

}

.

It is seen that D ⊂ D0 ∪ D1, which yields, for n ∈ N, that

|D|
γn P

(α,β)
n

≤ |D0|
ηn P

(α,β)
n

+ |D1|
ζn P

(α,β)
n

,

where |D|denotes the cardinality of the setD. Now lettingn → ∞ in the last inequality
and using hypothesis, we get

lim
n→∞

1

γn P
(α,β)
n

∣∣∣∣∣∣

⎧
⎨

⎩
k ≤ P(α,β)

n : sup
(x,y)∈DA

pk

∣∣∣∣

(
	

a,b,c
h,x fk + 	

a,b,c
h,x gk

)
− ( f + g)

σ (x, y)

∣∣∣∣ � ε

⎫
⎬

⎭

∣∣∣∣∣∣
= 0,

where γn = max{ηn, ζn}. Since the other assertions can be proved similarly, we omit
the details. �
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We now recall the modulus of continuity and auxiliary facts to get the rates of
weighted statistically relatively uniform convergence given in Definition 4 by means
of the modulus of continuity.

Let Hω(DA) denote the space of all real-valued functions f on DA such that

| f (u, v) − f (x, y)| � ω( f ; δ)

[
1

δ

√
ϕ2
u(x) + ϕ2

v (y) + 1

]
, (4.1)

where ϕu(x), ϕv(y) are as defined in (3.8), and ω( f ; δ) is the modulus of continuity
defined by

ω( f ; δ) = sup
(u,v),(x,y)∈DA

{
| f (u, v) − f (x, y)| :

√
(u − x)2 + (v − y)2 � δ

}
, (δ > 0).

We then observe that any function in Hω(DA) is continuous and bounded on DA,
and a necessary and sufficient condition for f ∈ Hω(DA) is that limδ→0 ω( f ; δ) = 0.

Theorem 3 Let a, b,c be real numbers, h be any positive constant and (α, β) ∈ �.
Also, let {Bk} be a sequence of positive linear operators acting from Hω(DA) into
C(DA). Assume that the following conditions hold true:
(i) Bk(e0) − e0 = S(α,β)

	 (pk, σ0) − o(ηn) on DA, where e0(u, v) = 1,

(ii) ω( f ; λk) = S(α,β)
	 (pk, σ1) − o(ζn) on DA, where λk := √|Bk(ψ; x, y)| with

ψ(u, v) =
(

u

1 − u − v
− x

1 − x − y

)2

+
(

v

1 − u − v
− y

1 − x − y

)2

.

Then, we have, for all f ∈ Hω(DA),

Bk( f ) − f = S(α,β)
	 (pk, σ ) − o(γn) on DA,

where γn = max{ηn, ζn} and σ(x, y) = max{|σ0(x, y)|, |σ1(x, y)|, |σ0(x, y)σ1(x,
y)|} for i = 0, 1.

Proof Let f ∈ Hω(DA) and (x, y) ∈ DA be fixed. Then, since e0(u, v) = 1, by (4.1)
and using monotonicity of {Bk}, we see (for any δ > 0 and k ∈ N) that

∣∣Bk( f (u, v); x, y) − f (x, y)
∣∣

� Bk
(| f (u, v) − f (x, y)|; x, y) + | f (x, y)| |Bk(e0; x, y) − e0(x, y)|

� ω( f ; δ)Bk

(
1

δ

√
ϕ2
u(x) + ϕ2

v (y) + e0(u, v); x, y
)

+ | f (x, y)| |Bk(e0; x, y) − e0(x, y)|
� ω( f ; δ)

{
1

δ2
Bk(ψ; x, y) + Bk(e0; x, y)

}
+ | f (x, y)| |Bk(e0; x, y) − e0(x, y)|.
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Now multiplying the both sides of the above inequality by 1
|σ(x,y)| and taking the

supremum over (x, y) ∈ DA, we obtain

sup
(x,y)∈DA

∣∣∣∣
Bk( f ; x, y) − f (x, y)

σ (x, y)

∣∣∣∣

� ω( f ; δ)

|σ(x, y)|
{

sup
(x,y)∈DA

1

δ2

∣∣Bk(ψ; x, y)∣∣ + sup
(x,y)∈DA

∣∣Bk(e0; x, y) − e0(x, y)
∣∣ + 1

}

+ N sup
(x,y)∈DA

∣∣∣∣
Bk(e0; x, y) − e0(x, y)

σ (x, y)

∣∣∣∣

where N := sup
(x,y)∈DA

| f (x, y)|. Put δ = λk = √|Bk(ψ; x, y)| and replace Bk(·; x, y)
by B̃k(·; x, y) = |	a,b,c

h,x Bk(·; x, y)|, so we get

sup
(x,y)∈DA

pk

∣∣∣∣
B̃k( f ; x, y) − f (x, y)

σ (x, y)

∣∣∣∣

� Ñ

{

sup
(x,y)∈DA

pk

∣∣∣∣
ω( f ; λk)

σ1(x, y)

∣∣∣∣ + sup
(x,y)∈DA

pk

∣∣∣∣
B̃k(e0; x, y) − e0

σ0(x, y)

∣∣∣∣

+ sup
(x,y)∈DA

pk

∣∣∣∣
ω( f ; λk)[B̃k(e0; x, y) − e0]

σ0(x, y)σ1(x, y)

∣∣∣∣

}

, Ñ := max{N , 2}. (4.2)

For a given ε > 0, we consider the following sets:

J :=
{

k ≤ P(α,β)
n : sup

(x,y)∈DA

pk

∣∣∣∣
B̃k( f ; x, y) − f (x, y)

σ (x, y)

∣∣∣∣ ≥ ε

}

,

J0 :=
{

k ≤ P(α,β)
n : sup

(x,y)∈DA

pk

∣∣∣∣
ω( f ; λk)[B̃k(e0; x, y) − e0]

σ0(x, y)σ1(x, y)

∣∣∣∣ � ε

3Ñ

}

,

J1 :=
{

k ≤ P(α,β)
n : sup

(x,y)∈DA

pk

∣∣∣∣
ω( f ; λk)

σ1(x, y)

∣∣∣∣ � ε

3Ñ

}

,

J2 :=
{

k ≤ P(α,β)
n : sup

(x,y)∈DA

pk

∣∣∣∣
B̃k(e0; x, y) − e0

σ0(x, y)

∣∣∣∣ � ε

3Ñ

}

.

Then it is follows from (4.2) that J ⊂ J0 ∪ J1 ∪ J2. Now, since γn = max{ηn, ζn},
we get, for every n ∈ N, that

|J |
γn P

(α,β)
n

≤ |J0|
ζnηn P

(α,β)
n

+ |J1|
ζn P

(α,β)
n

+ |J2|
ηn P

(α,β)
n

.
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By taking Lemma 2 into account, and hence passing to the limit as n → ∞ in the last
inequality, we see that

Bk( f ) − f = S(α,β)
	 (pk, σ ) − o(γn) on DA,

whence the result. �


5 A Voronovskaja-Type Approximation Theorem

For the pointwise convergence of a sequence of linear positive operators, Voronovskaja
theorem (see [43]) concerning the asymptotic behavior of Bernstein polynomials has
a crucial role. In this section, based on relatively uniform statistical �-summability,
we prove a Voronovskaja-type approximation theorem with the help of Tn family of
linear operators as defined in Example 2.

Lemma 3 Let h be a positive constant, (α, β) ∈ � and a, b, c ∈ R. Then

N� − bnTn(η
2
u(x); x, y) ⇒ M0x

1 − x − y
(σ, DA) (5.1)

and

N� − bnTn(η
2
v(y); x, y) ⇒ M1y

1 − x − y
(σ, DA) (5.2)

where

ηu(x) = u

1 − u − v
− x

1 − x − y
and ηv(y) = v

1 − u − v
− y

1 − x − y
.

Proof Since the proof is similar for (5.2), we consider only (5.1). Suppose that a, b, c
are real numbers, h > 0 and (x, y) ∈ DA. Since Ln(e1) = bn+1

bn
e1, we can write

Tn
(
ηu(x); x, y

) = (1 + fn(x, y)) [Ln (e1(u, v); x, y) − e1(x, y)Ln(1; x, y)]
=
[
bn+1

bn
− 1

]
e1(x, y)(1 + fn(x, y)). (5.3)

Also, since

Ln(e3; x, y) = bn+1bn+2

b2n
e3 + bn+1ϕn

b2n
e1,

we find that

bnTn
(
η2u(x); x, y

)
= (1 + fn)

[(
bn+1bn+2

bn
− 2bn+1 + bn

)
e21 + bn+1ϕn

bn
e1

]
.
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Using the assumption (iv) and multiplying both sides of above equality by 1
|σ(x,y)| ,

and also taking supremum over (x, y) ∈ DA, we get

sup
(x,y)∈DA

∣∣∣∣∣∣∣∣

bn

{
Tn

(
η2u; x, y

) } −
[(

bn+1bn+2
bn

− 2bn+1 + bn
)
e21 + bn+1M0

bn
e1
]

σ(x, y)

∣∣∣∣∣∣∣∣

≤ sup
(x,y)∈DA

∣∣∣∣
fn
σ

∣∣∣∣

{∣∣∣∣
bn+1bn+2

bn
− 2bn+1 + bn

∣∣∣∣e
2
1 +

∣∣∣∣
bn+1

bn
M0

∣∣∣∣e1

}
.

Replacing {bnTn(η2u)} by

�
(
bnTn(η

2
u; x, y)

) = 1

P(α,β)
n

β(n)∑

k=α(n)

pk |	a,b,c
h,x (bkTk(η

2
u; x, y))|

and passing to the limit as n → ∞ in the last inequality we have

N� − bn
{
Tn(η

2
u(x); x, y)

}
⇒ M0 x

1 − x − y
(σ, DA).

�

Corollary Let (x, y) ∈ DA, and let ηu(x) and ηv(y) be given as in Lemma 3.
Then there are two positive constants R0(x) and R0(y) depending only on x and
y, respectively, such that

N� − b2nTn(η
4
u(x); x, y) ⇒ R0(x) (σ, DA)

and

N� − b2nTn(η
4
v(y); x, y) ⇒ R0(y) (σ, DA).

In order to estimate the asymptotic behavior of Tn , we present a Voronovskaja-type
approximation theorem [43]. For simplicity in notation, we use the followings in next
theorem:

u∗ = u

1 − u − v
, v∗ = v

1 − u − v
, x∗ = x

1 − x − y
and y∗ = y

1 − x − y
.

Theorem 4 Let h be a positive constant, (α, β) ∈ �, (x∗, y∗) ∈ DA and a, b, c ∈ R.
Then, for every f ∈ CB(DA) such that fx , fy, fxx , fxy, fyy ∈ CB(DA),

N� − bn
{
Tn

(
f ; x∗, y∗) − f

(
x∗, y∗) } ⇒ 1

2

(
M0x

∗ fxx (x∗, y∗)

+ M1y
∗ fyy(x∗, y∗)

)
(σ, DA)
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where CB(DA) denotes the space of all continuous and bounded real-valued functions
on the compact subset DA of R2.

Proof Let (x∗, y∗) ∈ DA and fx , fy, fxx , fxy, fyy ∈ CB(DA). By the Taylor formula
for f ∈ CB(DA), we have

f (u∗, v∗) = f (x∗, y∗) + (
u∗ − x∗) fx (x

∗, y∗) + (
v∗ − y∗) fy(x

∗, y∗)

+ 1

2

{(
u∗ − x∗)2 fxx (x

∗, y∗) + 2
(
u∗ − x∗) (v∗ − y∗) fxy(x

∗, y∗)

+ (
v∗ − y∗)2 fyy(x

∗, y∗)
}

+ θ(x∗,y∗)(u
∗, v∗)

√
(u∗ − x∗)4 + (v∗ − y∗)4

where the function θ(x∗,y∗) is the remainder,

θ(x∗,y∗)(·, ·) ∈ CB(DA) and lim
(u∗,v∗)→(x∗,y∗)

θ(x∗,y∗)(u
∗, v∗) = 0.

We thus observe that the operator Tn is linear and that

Tn
(
f (u∗, v∗); x∗, y∗)

= Tn
(
f (x∗, y∗); x, y) + fx (x

∗, y∗)Tn
(
u∗ − x∗; x∗, y∗)

+ fy(x
∗, y∗)Tn

(
v∗ − y∗; x∗, y∗) + 1

2

{
fxx (x

∗, y∗)Tn
(
(u∗ − x∗)2; x∗, y∗)

+ fyy(x
∗, y∗)Tn

(
(v∗ − y∗)2; x∗, y∗)

+ 2 fxy(x
∗, y∗)Tn

( (
u∗ − x∗) (v∗ − y∗) ; x∗, y∗)

}

+ Tn

(
θ(x∗,y∗)(u

∗, v∗)
√

(u∗ − x∗)4 + (v∗ − y∗)4; x∗, y∗
)

. (5.4)

Now, we recall that, if g ∈ CB(DA) and if g(s, t) = g1(s)g2(t) for all (s, t) ∈ DA,
then

Tn(g(s, t); x, y) = (1 + fn(x, y)) Ln(g1(s); x, y) Ln(g2(t); x, y). (5.5)

Upon multiplying both sides by bn , n ∈ N, in (5.4), and using (5.3) and (5.5), we get

bn
{
Tn

(
f
(
u∗, v∗) ; x∗, y∗) − f

(
x∗, y∗) }

= bn fn(x
∗, y∗) f (x∗, y∗) + (1 + fn(x

∗, y∗))(bn+1 − bn)
[
x∗ fx (x∗, y∗) + y∗ fy(x∗, y∗)

]

+ 1 + fn(x∗, y∗)
2

{[
bn+1bn+2

bn
− 2bn+1 + bn

]
[(x∗)2 fxx (x∗, y∗) + (y∗)2 fyy(x∗, y∗)]

+ bn+1

bn

(
x∗ fxx (x∗, y∗)ϕn + y∗ fyy(x∗, y∗)ξn

)
+ 2 x∗y∗ fxy(x∗, y∗) (bn+1 − bn)2

bn

}

+ bnTn

(
θ(x∗,y∗)(u

∗, v∗)
√

(u∗ − x∗)4 + (v∗ − y∗)4; x∗, y∗
)

.
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Taking supremum over (x∗, y∗) ∈ DA in (5.4), one obtains

sup
(x∗,y∗)∈DA

∣∣∣∣
bn {Tn( f (u∗, v∗) ; x∗, y∗) − f (x∗, y∗)}

σ(x∗, y∗)

∣∣∣∣

≤ sup
(x∗,y∗)∈DA

{
|bn |

∣∣∣∣
fn(x∗, y∗) f (x∗, y∗)

σ (x∗, y∗)

∣∣∣∣

+ |1 + fn | |bn+1 − bn |
∣∣∣∣
x∗ fx (x∗, y∗) + y∗ fy(x∗, y∗)

σ (x∗, y∗)

∣∣∣∣

+
∣∣∣∣
1 + fn(x∗, y∗)

2

∣∣∣∣

[∣∣∣∣
bn+1bn+2

bn
− 2bn+1 + bn

∣∣∣∣

∣∣∣∣
(x∗)2 fxx (x∗, y∗) + (y∗)2 fyy(x∗, y∗)

σ (x∗, y∗)

∣∣∣∣

+
∣∣∣∣
bn+1

bn

∣∣∣∣

∣∣∣∣
x∗ fxx (x∗, y∗)M0 + y∗ fyy(x∗, y∗)M1

σ(x∗, y∗)

∣∣∣∣

+ 2

∣∣∣∣
(bn+1 − bn)2

bn

∣∣∣∣

∣∣∣∣
x∗y∗ fxy(x∗, y∗)

σ (x∗, y∗)

∣∣∣∣

]}

+ sup
(x∗,y∗)∈DA

∣∣∣∣

bnTn

(
θ(x∗,y∗)(u∗, v∗)

√
(u∗ − x∗)4 + (v∗ − y∗)4; x∗, y∗

)

σ(x∗, y∗)

∣∣∣∣. (5.6)

We will now show that

N� − bnTn

(
θ(x∗,y∗)(u

∗, v∗)
√

(u∗ − x∗)4 + (v∗ − y∗)4; x∗, y∗
)

⇒ 0 (σ, DA).

(5.7)

Applying the Cauchy–Schwarz inequality and using (5.5), we obtain

bnTn
(
θ(x∗,y∗)(u

∗, v∗)
√

(u∗ − x∗)4 + (v∗ − y∗)4; x∗, y∗)

�
(
Tn(θ

2
(x∗,y∗)(u

∗, v∗); x∗, y∗)
)1/2

bn
(
Tn((u

∗ − x∗)4; x, y) + Tn((v
∗ − y∗)4; x∗, y∗)

)1/2
.

Let us consider θ2(x∗,y∗)(u
∗, v∗) = γ(x∗,y∗)(u∗, v∗). In this case, we see that

γ(x∗,y∗)(u
∗, v∗) ∈ CB(DA) and γ(x∗,y∗)(x

∗, y∗) = 0.

From Theorem 2, we observe that

N� − bnTn
(
θ2(x∗,y∗)(u

∗, v∗); x∗, y∗) ⇒ 0 (σ, DA). (5.8)

Using the above Corollary, the inclusion (5.7) holds true. Now we replace
{
bn(Tn f −

f )
}
by

�(bn(Tn f − f )) = 1

P(α,β)
n

β(n)∑

k=α(n)

pk
∣∣	a,b,c

h,x (bk(Tk( f ) − f ))
∣∣.
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Letting n → ∞ in (5.6) and considering the assumption (iv), we have

lim
n→∞ sup

(x∗,y∗)∈DA

∣∣∣∣
�
(
bn[Tn( f ; x∗, y∗) − f (x∗, y∗)])

σ(x∗, y∗)

− 1

2

x∗ fxx (x∗, y∗)M0 + y∗ fyy(x∗, y∗)M1

σ(x∗, y∗)

∣∣∣∣

≤ lim
n→∞

{
|bn| | fn(x∗, y∗)| N0 + | fn(x∗, y∗)|

2

(
M0 N1 + M1 N2

)}

where

N0 = sup
(x∗,y∗)∈DA

∣∣∣∣
f (x∗, y∗)
σ (x∗, y∗)

∣∣∣∣,

N1 = sup
(x∗,y∗)∈DA

∣∣∣∣
fxx (x∗, y∗)
σ (x∗, y∗)

∣∣∣∣ and N2 = sup
(x∗,y∗)∈DA

∣∣∣∣
fyy(x∗, y∗)
σ (x∗, y∗)

∣∣∣∣.

Since N� − fn ⇒ 0 (σ, DA), then

N� −
{
|bn| | fn(x∗, y∗)| N0 + | fn(x∗, y∗)|

2

(
M0 N1 + M1 N2

)}
⇒ 0 (σ, DA).

(5.9)

Using (5.8), (5.9) and Lemma 3, we obtain

N� − {
bn (Tn f − f )

}
⇒ 1

2

(
fxx (x

∗, y∗) M0x

1 − x − y
+ fyy(x

∗, y∗) M1y

1 − x − y

)
(σ, DA),

the proof is completed. �


6 Computational and Geometrical Interpretations

In this section, using the positive linear operator Ln( f ; x, y) given in (3.10), we
provide the computational and geometrical interpretations of Theorem 2 by under
different choices for the parameters. More powerful equipments with higher speed
can easily compute the more complicated infinite series in a similar manner.

Here, in our computations, we take

• �n(u, v; x, y) = (1 − x − y)−n−1 and Pn
k,l(u, v) = (n+k+l)!

n! k! l! ;
• ak,l,n = k, ck,l,n = l and bn = n;

• a = 5/2, b = c and h =
√
3
4 ;

• α(n) = 1, β(n) = n and pn = 1 for all n ∈ N;
• fn(x, y) is given as in Example 2, and σ(x, y) = 1 for all (x, y) ∈ DA.
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Fig. 1 The convergence of �(Lm (e0; x, y)) to e0(x, y) = 1

Using the above choices, we may define the operator �(Lm( f ; x, y)) by

�(Lm( f ; x, y)) = 1

m

m∑

n=1

|	5/2,b,b√
3/4,x

(Ln( f (u, v); x, y))|, (6.1)

where

Ln( f ; x, y) = 1

(1 − x − y)n+1

∞,∞∑

k,l=0

f

(
k

k + l + n
,

l

k + l + n

)
(n + k + l)!

n! k! l! xk yl .

(6.2)

By means of (3.1), for a = 5/2, b = c and h =
√
3
4 , one gets

	
5/2,b,b√
3/4,x

(Ln( f (u, v); x, y)) =
2∑

i=0

(−5/2)i
i !(√3/4)5/2

Ln

(
f

(
u −

√
3

4
i, v

)
; x, y

)

= 1

(
√
3/4)5/2

{

Ln( f ; x, y) − 5

2
Ln

(
f

(
u −

√
3

4
, v

)
; x, y

)

+ 15

8
Ln

(
f

(
u −

√
3

2
, v

)
; x, y

)}

.

The convergence of �(Lm(e0; x, y)) to the function e0(x, y) = 1, is illustrated in
Fig. 1 for each values of k and l runs from k, l = 0 to 20 for m = 5, m = 10, m = 15
and m = 20.
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Fig. 2 The convergence of �(Lm (e1; x, y)) to e1(x, y) = x
1−x−y

Fig. 3 The convergence of �(Lm (e3; x, y)) to e3(x, y) = x2+y2

(1−x−y)2

Also, from Fig. 2, it can be observed that, as the value ofm increases, the sequence
�(Lm(e1; x, y)) converges to the function e1(x, y) = x

1−x−y .

Similarly, for the test function given by

e3(u, v) =
(

u

1 − u − v

)2

+
(

v

1 − u − v

)2

(6.3)

and different values of m, it is also observe that, �(Lm(e3; x, y)) converges to the
function e3(x, y).

Figures 1, 2 and 3 clearly show that the conditions (3.5) of Theorem 2 are satisfied
for i = 0, 1, 2, 3.

We observe from Fig. 4 that, as the value of m increases, the operators given by
(6.1) converge toward the function. Furthermore, Fig. 4 shows that the condition (3.4)
holds true for the function

f (x, y) = cos(3πxy).
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Fig. 4 The convergence of �(Lm ( f ; x, y)) to f (x, y) = cos(3πxy)
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