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Abstract This paper investigates the problem of finite-time stability and control for
a class of nonlinear singular discrete-time neural networks with time-varying delays
and disturbances. First, based on the implicit function theorem and singular value
decomposition method, a sufficient condition for the existence of the solution of such
systems is established in terms of a linear matrix inequality (LMI). Then, using the
Lyapunov functional approach combined with LMI technique we provide new delay-
dependent sufficient conditions for robust H∞ finite-time stability and control. Finally,
some numerical examples are given to illustrate the efficiency of the proposed results.
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1 Introduction

Over the past decades, the problem of stability and control for neural networks has
attractedmuch attention due to its both practical and theoretical importance [13,14,20–
22,31]. However, most of the results have been concernedwith the asymptotic stability
defined over an infinite-time interval. In many practical applications, the main con-
cern is the behavior of the system over a fixed finite-time interval, for example, large
values of the state are not acceptable in the presence of saturations. In this case, the
traditional Lyapunov method is not applicable and the finite-time stability method
is introduced [1,5,29]. Many valuable results on finite-time stability and control of
continuous-time and discrete-time neural networks can be found in [2,16,23,30,32]
and in the references therein. It should be noticed that in some systems we must con-
sider their character of dynamic and state at the same time. Up to now, a wide variety
of design methods for control of delayed neural networks have been studied mainly
including stabilization, adaptive control, fuzzy control. The H∞ control problem is
to design state feedback controllers such that, in addition to the requirement of the
robust finite-time stability of the closed-loop system, a specified performance level
is also required to be achieved. In the literature, singular systems (also referred to as
differential-algebraic equations, implicit systems, descriptor systems or generalized
state-space systems) arise in a variety of practical systems such as biological systems,
artificial electronic systems, system recognition, target tracking, static image process-
ing and associative memory [4,9,29]. Both delay-independent and delay-dependent
stability conditions for singular time delay systems have been extensively obtained by
using the SVD approach and Lyapunov function method [7,8,10,15,24–26]. Mean-
while, considering the singular neural networks is of great significance [11,12,19].
Since the singular neural networks are usually described by nonlinear time delay
equations, the results on stability and control of such systems are relative few. The
main difficulty in studying singular neural networks is to solve the problem of exis-
tence and uniqueness of solutions. Some delay-dependent sufficient conditions for
optimizing the size of singular neural networks using SVD approach can be found
in [11]. The authors of Kumaresan and Balasubramaniam [12] provided solutions
to optimal control for stochastic linear singular systems using neural networks with
quadratic performance. More interesting criteria for stochastic stability of discrete-
time singular neural networks with Markovian jump and time-varying delays were
given in [19]. It is also worth mentioning that the problem of existence of the solution
and the time-varying delays are not taken into account in the mentioned papers. For
nonlinear discrete-time singular systems, since problems of existence and uniqueness
of solutions and finite-time stability, regularity, causality need to be considered simul-
taneously, the finite-time stability analysis for such systems is more complicated and
the methods of analyzing the existence and uniqueness of solution to singular systems
in the mentioned papers are difficult to be applied. On the other hand, it should be
noticed that almost the existing results for singular nonlinear discrete-time systems
were developed in the context of Lyapunov asymptotic stability and control while very
little attention has been paid to the finite-time stability and control of such systems.
To the best of the our knowledge, the problems of the existence of solutions and the
finite-time H∞ control for singular discrete-time neural networks with delay have not
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been yet investigated, these problems are important and challenging in both theory
and practice.

In this paper, we consider H∞ finite-time stability and control of nonlinear sin-
gular discrete-time delay neurals network-based systems. First, by using the implicit
function theorem and singular value decompositionmethod, LMI sufficient conditions
are established which guarantees that the discrete-time singular neural networks are
regular, causal and have unique solution in a neighborhood of the origin. Then, based
on Lyapunov function method, delay-dependent sufficient conditions for designing
state feedback controllers of H∞ finite-time control are derived in terms of LMIs.
The design of such controllers can be carried out in a systematic and computationally
efficient manner via the use of LMI-based algorithms [6]. The result of this paper can
be considered as a further development of the results obtained in [11,12,19]. Last,
numerical examples are provided to illustrate the validity and effectiveness of the
proposed results.

The structure of the paper is as follows. Section 2 presents problem statement
and some technical propositions needed for the proof of the main results. Sufficient
conditions for the existence and uniqueness of the solution and for designing state
feedback controllers for robust H∞ control problemare presented in Sect. 3.Numerical
examples illustrated that the obtained results are given in Sect. 4.

Notation Z+ denotes the set of all nonnegative integers; Rn denotes then-dimensional
space with the scalar product x�y; Rn×r denotes the space of (n × r)−dimension
matrices; A� denotes the transpose of matrix A; A is positive definite (A > 0) if
x�Ax > 0 for all x �= 0; A > B means A − B > 0. The notation diag{. . .} stands
for a block-diagonal matrix. The symmetric term in a matrix is denoted by ∗.

2 Problem Formulation and Preliminaries

Consider the following discrete-time singular neural networks with time-varying
delays and disturbances
⎧
⎪⎨

⎪⎩

Ex(k + 1) = Ax(k) + W f (x(k)) + W1g(x(k − h(k))) + Bu(k) + Cω(k), k ∈ Z+,

z(k) = A1x(k) + Dx(k − h(k)) + B1u(k),

x(k) = ϕ(k), k ∈ {−h2, . . . , 0} ,

(1)
where x(k) ∈ Rn is the state; u(k) ∈ Rm is the control input; z(k) ∈ Rp is the
observation output; n is the number of neural; f (x(k)) = [ f1(x1(k)), f2(x2(k)), . . . ,
fn(xn(k))], g(x(k − h(k))) = [g1(x1(k − h(k))), g2(x2(k − h(k))), . . . , gn(xn(k −
h(k)))] are activation functions, where fi , gi , i = 1, n, satisfy the following condi-
tions

∃ai > 0: | fi (ξ)| � ai |ξ |, ∀i = 1, n, ∀ξ ∈ R,

∃bi > 0: |gi (ξ)| � bi |ξ |, ∀i = 1, n, ∀ξ ∈ R. (2)

The matrix E ∈ Rn×n is singular and rank(E) = r � n. The diagonal matrix
A = diag{a1, a2, . . . , an}, |ai | < 1 ∀i = 1, n represents the self-feedback term; the
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matricesW,W1 ∈ Rn×n are the connection weight matrices; B ∈ Rn×m, B1 ∈ Rp×m

are the control matrices; C ∈ Rn×q is the disturbance matrix; A1, D ∈ Rp×n are the
observation matrix; the time-varying delay functions h(k) satisfy the condition

0 < h1 � h(k) � h2 ∀k ∈ Z+, (3)

where h1, h2 are given positive integers; ϕ(k) is the initial function; the external
disturbance ω(k) ∈ Rq satisfies the condition

N∑

k=0

ω�(k)ω(k) < d, (4)

where d > 0 is a given number.

Definition 1 [4] The pair (E, A) is said to be regular if characteristic polynomial
det(sE − A), where s ∈ C , is not identical zero. The pair (E, A) is said to be causal
if deg(det(sE − A)) = rank(E). System (1) with u(k) = 0 is said to be regular and
causal if the pair (E, A) is regular and causal.

Definition 2 (Robust finite-time stability [5]) Given positive numbers N , c1, c2, c1 <

c2, and a symmetric positive-definite matrix R, unforced system (1) (u(k) = 0) is
robustly finite-time stable w.r.t. (c1, c2, R, N ) if

max
k∈{−h2,...,0}

ϕ�(k)Rϕ(k) � c1 	⇒ x�(k)Rx(k) < c2 ∀k = 1, 2, . . . , N

for all disturbances ω(k) satisfying (4).

Definition 3 (H∞ finite-time stability [1]) Given positive numbers γ, N , c1, c2, c1 <

c2, and a symmetric positive-definite matrix R, unforced system (1) (u(k) = 0) is H∞
finite-time stable w.r.t. (c1, c2, R, N ) if the following two conditions hold:

(i) System (1) is robustly finite-time stable w.r.t. (c1, c2, R, N ).
(ii) Under the zero initial condition (i.e., ϕ(k) = 0 ∀k ∈ {−h2,−h2 +1, . . . , 0}), the

output z(k) satisfies

N∑

k=0

z�(k)z(k) � γ

N∑

k=0

ω�(k)ω(k) (5)

for all disturbances ω(k) satisfying (4).

Definition 4 (H∞ finite-time control) Given positive numbers γ, N , c1, c2, c1 < c2,
and a symmetric positive-definite matrix R, the finite-time H∞ control problem for
system (1) has a solution if there exists a state feedback controller u(k) = Kx(k) such
that the resulting closed-loop system is H∞ finite-time stable w.r.t. (c1, c2, R, N ).
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Proposition 1 (SchurComplement Lemma [3])Given constantmatrices X,Y, Z with
appropriate dimensions satisfying X = X�,Y = Y� > 0, then

X + Z�Y−1Z < 0 ⇐⇒
[
X Z�
Z −Y

]

< 0.

Proposition 2 (The Implicit Function Theorem [28]) Suppose that V is open in Rn+p,
and F = (F1, . . . , Fn): V −→ Rn is C1 on V . Suppose further that F(x0, t0) = 0
for some (x0, t0) ∈ V , where x0 ∈ Rn and t0 ∈ Rp. If Jacobian matrix

∂(F1, . . . , Fn)

∂(x1, . . . , xn)
(x0, t0)

is nonsingular, then there is an open set W ⊂ Rp, containing t0 and a unique contin-
uously differentiable function g:W −→ Rn such that g(t0) = x0, and F(g(t), t) = 0
for all t ∈ W.

3 Main Results

Consider singular discrete-time neural networks (1). Due to rank(E) = r ≤ n, there

are two nonsingular matrices M,G ∈ Rn×n such that MEG =
[
Ir 0
0 0

]

. Let us

denote

M =
[
M1
M2

]

, M̄ =
[
0 0
0 In−r

]

M, MAG =
[
A11 A12
A21 A22

]

,

M−�PM−1 =
[
P11 P12
P21 P22

]

,

F = diag{a1, . . . , an}, H = diag{b1, . . . , bn}, Φ12 = Φ13 = 0, Φ14 = A�
1 D,

Φ11 = −δE�PE + (h2 − h1 + 1)Q + S1 + A�
1 A1 + F2 − PM̄ A − AM̄�P,

Φ15 = −PM̄W, Φ16 = −PM̄W1, Φ17 = −PM̄C, Φ2i = 0, i = 3, 8,

Φ22 = δh1(−S1 + S2),

Φ18 = AP, Φ44 = −δh1Q + D�D + H2, Φ3i = 0, i = 4, 8, Φ4i = 0, i = 5, 8,

Φ55 = Φ66 = −I, Φ33 = −δh2 S2, Φ56 = Φ57 = Φ67 = 0, Φ58 = W�P,

Φ68 = W�
1 P, Φ77 = −γ

δN
I, Φ78 = C�P, Φ88 = −P.

We first show the existence and uniqueness of the solution and the regularity and
causality of system (1).

Theorem 1 Given positive constants γ, N , δ ≥ 1 unforced system (1) (u(k) = 0)
is regular, causal and has unique solution if there exist symmetric positive-definite
matrices P, Q, S1, S2 such that the following LMI holds :

Φ = [
Φi j

]

8×8 < 0. (6)
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Proof First, we prove that unforced system (1) is regular and causal. From (6), it
follows that Φ11 < 0. Since Q > 0, S1 > 0, F > 0 and G is nonsingular, we have
G�(−δE�PE − PM̄ A − AM̄�P)G < 0 and hence

− δG�E�M�M−�PM−1MEG − G�PM̄ AG − G�AM̄�PG < 0

⇐⇒ −δ

[
P11 0
0 0

]

−
[
(G�P)12A21 (G�P)12A22

(G�P)22A21 (G�P)22A22

]

−
[
(G�P)12A21 (G�P)12A22

(G�P)22A21 (G�P)22A22

]�
< 0

⇐⇒
[
	 	

	 −(G�P)22A22 − A�
22(G

�P)�22

]

< 0,

where 	 represents matrices that are not relevant in the discussion. The last inequality
shows that (G�P)22A22 + A�

22(G
�P)�22 > 0. Assume that A22 is singular, then there

exists a vector 0 �= η ∈ R
n−r such that A22η = 0. We have

η� [
(G�P)22A22 + A�

22(G
�P)�22

]
η = η�(G�P)22A22ηη�A�

22(G
�P)�22η = 0,

i.e., thematrix (G�P)22A22+A�
22(G

�P)�22 is not positive definite. This contradiction
enable us to confirm that A22 is nonsingular matrix. Hence, according to Definition 1
and [4], the system is regular and causal. We now are in position to prove that the
system has a unique solution. By setting

γi = d

d(xi (k))
fi (xi (k))

∣
∣
∣
xi (k)=0

,

λi = d

d(xi (k − h(k)))
gi (xi (k − h(k)))

∣
∣
∣
xi (k−h(k))=0

,

the functions fi (xi (k)) and gi (xi (k − h(k))) can be presented in a neighborhood of
the origin as

fi (xi (k)) = γi xi (k) + αi (xi (k)),

gi (xi (k − h(k))) = λi xi (k − h(k)) + βi (xi (k − h(k))),

where αi (0) = 0, βi (0) = 0 and

d

d(xi (k))
αi (xi (k))

∣
∣
∣
xi (k)=0

= 0, lim
xi (k)→0

αi (xi (k))

xi (k)
= 0,

d

d(xi (k − h(k)))
βi (xi (k − h(k)))

∣
∣
∣
xi (k−h(k))=0

= 0, lim
xi (k−h(k))→0

βi (xi (k − h(k)))

xi (k − h(k))
= 0.
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We then have

f (x(k)) = Γ x(k) + α(x(k)),

g(x(k − h(k))) = Λx(k − h(k)) + β(x(k − h(k))),
(7)

where Γ = diag{γ1, . . . , γn},Λ = diag{λ1, . . . , λn} and

α(x(k)) = [
α1(x1(k)), . . . , αn(xn(k))

]�
, β(x(·)) = [

β1(x1(·)), . . . , βn(xn(·))
]�

,

lim
x(k)→0

α(x(k))

‖x(k)‖ = 0, lim
x(k−h(k))→0

β(x(k − h(k)))

‖x(k − h(k))‖ = 0.

Therefore, unforced system (1) can be represented by

Ex(k + 1) = (A + WΓ )x(k) + W1Λx(k − h(k)) + Wα(x(k))

+W1β(x(k − h(k))) + Cω(k).

Combining conditions (2) and (7) gives

x�(k)Γ 2x(k) + 2x�(k)Γ α(x(k)) + α�(x(k))α(x(k))

= f �(x(k)) f (x(k)) ≤ x�(k)F2x(k).

Letting ‖x(k)‖ → 0, we can see that

Γ 2 � F2. (8)

Let Υ :=
[
I4×4 0
Γ4,0 I4×4

]

, Γ4,0 =

⎡

⎢
⎢
⎣

Γ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , then

Φ < 0 ⇐⇒ Φ̄ := Υ �ΦΥ < 0

where Φ̄ = [
Φ̄i j

]

8×8 with

Φ̄11 = −δE�PE + (h2 − h1 + 1)Q + S1 + A�
1 A1 + F2 − Γ 2

−PM̄(A + WΓ ) − (A + WΓ )�M̄�P.

From (8) and Φ̄11 < 0, we get

−δE�PE − PM̄(A + WΓ ) − (A + WΓ )�M̄�P < 0.

Similar to the proof of (E, A) being regular and causal in the first step, it can be
obtained that the pair (E, A + WΓ ) is regular and causal. That is the approximation
system of unforced system (1) in a neighborhood of the origin:

Ex(k + 1) = (A + WΓ )x(k) + W1Λx(k − h(k)) + Cω(k) (9)
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is regular and causal. Setting

MWΓ G =
[
Γ̂11 Γ̂12

Γ̂21 Γ̂22

]

, G−1x(k) =
[
x1(k)
x2(k)

]

,

G−1x(k − h(k)) =
[
x1(k − h(k))
x2(k − h(k))

]

,

G−1ϕ(k) =
[
ϕ1(k)
ϕ2(k)

]

, MW f (x(k))

=
[
f 1

(
x1(k), x2(k)

)

f 2(x1(k), x2(k))

]

, MCω(k) =
[
ω1(k)
ω2(k)

]

MW1g(x(k − h(k))) =
[
g1

(
x1(k − h(k)), x2(k − h(k))

)

g2
(
x1(k − h(k)), x2(k − h(k))

)

]

,

unforced system (1) is restricted system equivalent to the following system

x1(k + 1) = A11x
1(k) + A12x

2(k) + f 1(·) + g1(·) + ω1(k)

0 = A21x
1(k) + A22x

2(k) + f 2(·) + g2(·) + ω2(k),

x1(k) = ϕ1(k), x2(k) = ϕ2(k), k ∈ {−h2, . . . , 0}.
(10)

Since system (9) is regular and causal, the matrix

∂F(x1, x2, f 2, g2, w2)

∂x2(k)

∣
∣
∣
∣x1(k)=x1(k−h(k))=0
x2(k)=x2(k−h(k))=0
ω2(k)=0

= A22 + Γ̂22,

where F(x1, x2, f 2, g2, w2) := A21x1(k) + A22x2(k) + f 2(·) + g2(·) + ω2(k), is
nonsingular. From Proposition 2, it follows that in a neighborhood of (0, 0, 0, 0, 0),
there exists a unique continuous differentiable function f̂ 2(x1(k), x1(k−h(k)), x2(k−
h(k)), ω2(k)) on x1(k), x1(k − h(k)), x2(k − h(k)), ω2(k) such that

0 = A21x
1(k) + A22 f̂

2(·) + f 2(·) + g2(·) + ω2(k),

and f̂ 2(0, 0, 0, 0) = 0.That is in a neighborhood of (0, 0, 0, 0, 0), the second equation
of (10) has a unique solution:

x2(k) = f̂ 2(x1(k), x1(k − h(k)), x2(k − h(k)), ω2(k)), f̂ 2(0, 0, 0, 0) = 0.

Substituting the above solution to the first equation of (10), we obtain

x1(k + 1) = A11x
1(k) + A12 f̂

2(·) + f 1(·) + g1(·) + ω1(k)

So the system has a unique solution. This completes the proof of the theorem. ��
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Remark 1 It should bementioned that the existence of a solution is a fundamental issue
for nonlinear singular systems. The authors in [18] provided a sufficient condition for
the existence and uniqueness of the solution of discrete systems with nonlinear per-
turbation by using the fixed point principle. In Theorem 1, using the implicit function
theorem we propose a sufficient condition for not only the existence and uniqueness
of the solution of system (1), but also the regularity and casualty of the system. The
condition is given in terms of LMIs, which can be efficiently solved by using LMI
control toolbox algorithm [6].

In the sequel, we give the solution to H∞ finite-time stability of unforced system
(1).

Theorem 2 Given positive numbers γ, N , δ ≥ 1, c1, c2 and a symmetric positive-
definite matrix R. Unforced system (1) is H∞ finite-time stable w.r.t. (c1, c2, R, N ) if
there exist symmetric positive-definite matrices P, Q, S1, S2, positive scalars λi , i =
1, 5 such that the following LMIs hold:

Ψ = [
Ψi j

]

11×11 < 0, (11)

E�PE < λ1R, Q < λ2R, λ3R < S1 < λ4R, S2 < λ5R, (12)
[
vi j

]

5×5 < 0, (13)

where

Ψ11 = −δE�PE + (h2 − h1 + 1)Q + S1 − PM̄ A − AM̄�P, Ψ15 = −PM̄W,

Ψ16 = −PM̄W1, Ψ17 = −PM̄C, Ψ19 = A�
1 , Ψ1,10 = F, Ψ22 = Φ22,

Ψ33 = −δh2 S2, Ψ44 = −δh1Q, Ψ49 = D�, Ψ4,11 = H,

Ψ18 = AP, Ψ55 = Ψ66 = Ψ99 = −I,

Ψ10,10 = Ψ11,11 = −I, Ψ58 = W�P, Ψ68 = W�
1 P, Ψ77 = − γ

δN
I,

Ψ78 = C�P, Ψ88 = −P,

Ψi j = 0 for any other i, j : j > i, Ψi j = Ψ �
j i , i > j,

ρ = c1
h2(h2+1)−h1(h1−1)

2 δN+h2 ,

v11 = γ d − c2λ3, v12 = c1δ
N+1λ1, v13 = ρλ2, v33 = −ρλ2, v14

= c1δ
N+h1h1λ4,

v22 = −c1δ
N+1λ1, v15 = c1δ

N+h2(h2 − h1)λ5, v23 = v24 = v25 = v34

= v35 = v45 = 0, v44 = −c1δ
N+h1h1λ4, v55 = −c1δ

N+h2(h2 − h1)λ5.
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Proof Consider the following nonnegative quadratic functions: V (k) = ∑3
i=1 Vi (k)

where

V1(k) = x�(k)E�PEx(k),

V2(k) =
−h1+1∑

s=−h2+1

k−1∑

t=k−1+s

δk−1−t x�(t)Qx(t),

V3(k) =
k−1∑

s=k−h1

δk−1−s x�(s)S1x(s) +
k−h1−1∑

s=k−h2

δk−1−s x�(s)S2x(s).

Denoting η(k) := [x�(k), f �(·), g�(·), ω�(k)]�,M := [A,W,W1,C] and taking
the difference variation of Vi (k), i = 1, 2, 3, we have

V1(k + 1) − δV1(k) = x�(k + 1)E�PEx(k + 1) − δx�(k)E�PEx(k)
= ηT (k)M�PMη(k) − δx�(k)E�PEx(k),

V2(k + 1) − δV2(k) =
−h1+1∑

s=−h2+1

k∑

t=k+s

δk−t x�(t)Qx(t)

−
−h1+1∑

s=−h2+1

k−1∑

t=k−1+s

δk−t x�(t)Qx(t)

� (h2 − h1 + 1)x�(k)Qx(k) − δh1x�(k − h(k))Qx(k − h(k))

V3(k + 1) − δV3(k) =
k∑

s=k+1−h1

δk−s x�(s)S1x(s) −
k−1∑

s=k−h1

δk−s x�(s)S1x(s)

+
k−h1∑

s=k+1−h2

δk−s x�(s)S2x(s) −
k−h1−1∑

s=k−h2

δk−s x�(s)S2x(s)

= x�(k)S1x(k) + x�(k − h1)
[
δh1(−S1 + S2)

]
x(k − h1)

− δh2x�(k − h2)S2x(k − h2).
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Thus we get

V (k + 1) − δV (k) ≤ η�(k)M�PMη(k) + x�(k)[−δE�PE
+ (h2 − h1 + 1)Q + S1

+ A�
1 A1]x(k) + 2x�(k)A�

1 Dx(k − h(k))

+ x�(k − h1)
[
δh1(−S1 + S2)

]
x(k − h1)

+ x�(k − h2)
[
−δh2 S2

]
x(k − h2)

+ x�(k − h(k))
[
−δh1Q + D�D

]
x(k − h(k))

+ ω�(k)
[
− γ

δN
I
]
ω(k) + γ

δN
ω�(k)ω(k)

− z�(k)z(k). (14)

The following estimations hold true by the assumption (2):

0 ≤ − f �(x(k)) f (x(k)) + x�(k)F2x(k),

0 ≤ −g�(x(k − h(k)))g(x(k − h(k))) + x�(k − h(k))H2x(k − h(k)). (15)

Multiplying by −2x�(k)PM̄ the both side of Eq. (1) and note that M̄ E = 0, we
obtain

0 = −2x�(k)PM̄ Ax(k) − 2x�(k)PM̄W f (x(k))

− 2x�(k)PM̄W1g(x(k − h(k))) − 2x�(k)PM̄Cω(k). (16)

By setting

ξ(k) :=
[
x�(k), x�(k − h1), x

�(k − h2), x
�(k

− h(k)), f �(x(k)), g�(x(k − h(k))), ω�(k)
]�

we see that

η�(k)M�PMη(k) = ξ�(k)Υ �P−1Υ ξ(k),

where Υ := [
PA 0 0 0 PW PW1 PC

]
. Combining (14), (15), (16) gives

V (k+1)−δV (k) ≤ ξ�(k)(Φ̃ +Υ �P−1Υ )ξ(k)+ γ

δN
ω�(k)ω(k)− z�(k)z(k) (17)
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where

Φ̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11 0 0 Φ14 Φ15 Φ16 Φ17
∗ Φ22 0 0 0 0 0
∗ ∗ −δh2 S2 0 0 0 0
∗ ∗ ∗ Φ44 0 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ − γ

δN
I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Furthermore, if we set

Φ̂11 = −δE�PE + (h2 − h1 + 1)Q + S1 + F2 − PM̄ A − AM̄�P,

then the following relations holds

Φ̃ + Υ �P−1Υ < 0 ⇐⇒ Φ < 0 ⇐⇒ Ψ < 0.

As a result, from (11) and (17) it follows that

V (k + 1) ≤ δV (k) + γ

δN
ω�(k)ω(k) ∀k ∈ Z+. (18)

By iteration, and taking assumption (4) into account, the inequality (18) implies

V (k + 1) ≤ δk+1V (0) + γ

δN

k∑

s=0

δk−sω�(s)ω(s)

< δN+1V (0) + γ d, ∀k = 0, 1, . . . , N . (19)

Using assumption (12) and x(k) = ϕ(k), k ∈ {−h2,−h2 + 1, . . . , 0}, it is easily seen
that

V (0) = x�(0)E�PEx(0) +
−h1+1∑

s=−h2+1

−1∑

t=−1+s

δ−1−t x�(t)Qx(t)

+
−1∑

s=−h1

1

δ1+s
x�(s)S1x(s) +

−h1−1∑

s=−h2

1

δ1+s
x�(s)S2x(s)

<
[
λ1 + λ2

h2(h2 + 1) − h1(h1 − 1)

2
δh2−1 + λ4h1δ

h1−1

+ λ5(h2 − h1)δ
h2−1

]
c1. (20)

Associating (19) with (20), we get

V (k + 1) < δN+1σ + γ d ∀k = 0, 1, . . . , N , (21)
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where

σ =
[

λ1 + λ2
h2(h2 + 1) − h1(h1 − 1)

2δ1−h2
+ λ4h1δ

h1−1 + λ5(h2 − h1)δ
h2−1

]

c1.

On the other hand, according to (12) again, the following estimation holds

V (k + 1) ≥ V3(k + 1) ≥
k∑

s=k+1−h1

δk−s x�(s)S1x(s)

≥ x�(k)S1x(k) > λ3x
�(k)Rx(k). (22)

Moreover, by the Schur complement lemma ([3]) condition (13) is equivalent to

γ d − c2λ3 + c1δ
N+1λ1 + ρλ2 + c1δ

N+h1h1λ4 + c1δ
N+h2(h2 − h1)λ5 < 0

⇐⇒ γ d − c2λ3 + δN+1σ < 0. (23)

Consequently, we get from (21), (22) and (23) that:

x�(k)Rx(k) <
1

λ3
[δN+1σ + γ d] < c2 ∀k = 1, 2, . . . , N ,

which implies that the unforced system is robustly finite-time stable w.r.t.
(c1, c2, R, N ). To complete the proof of the theorem, it remains to show the γ -level
condition (5). For this, from (17) it follows that

V (k + 1) � δV (k) + γ

δN
ω�(k)ω(k) − z�(k)z(k),

and hence by iteration it derives that

V (k) � δkV (0) +
k−1∑

s=0

1

δ1+s−k

[ γ

δN
‖ω(s)‖2 − ‖z(s)‖2

]
.

Since V (0) = 0, the above inequality implies

k−1∑

s=0

δk−1−s z�(s)z(s) �
k−1∑

s=0

δk−1−s γ

δN
ω�(s)ω(s)

For k = N + 1, we have

N∑

s=0

δN−s z�(s)z(s) � γ

N∑

s=0

δN−s

δN
ω�(s)ω(s). (24)
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Since 1 ≤ δN−s ≤ δN ∀s ∈ {0, 1, . . . , N }, (24) immediately yields

N∑

s=0

z�(s)z(s) ≤ γ

N∑

s=0

ω�(s)ω(s),

which implies that condition (5) holds. The proof of the theorem is completed. ��
We are now in position to solve the problem of finite-time H∞ control for system

(1) by designing a state feedback controller u(k) = Kx(k) such that the resulting
closed-loop system

Ex(k + 1) = (A + BK )x(k) + W f (x(k)) + W1g(x(k − h(k))) + Cω(k), k ∈ Z+,

z(k) = (A1 + B1K )x(k) + Dx(k − h(k)),

x(k) = ϕ(k), k ∈ {−h2,−h2 + 1, . . . , 0}, (25)

is H∞ finite-time stable.

Theorem 3 Given positive constants γ, N , δ ≥ 1, c1, c2 and a symmetric positive-
definite matrix R. The finite-time H∞ control problem of system (1) has a solution
if there exist symmetric positive-definite matrices Ui , Vj with i = 1, 4, j = 1, 5, a
matrix Y such that the following LMIs hold:

Ω = [
Ωi j

]

11×11 < 0, (26)
[−V1 U1E�

∗ −U1

]

< 0, (27)

U2 < V2, U3 < V4, U4 < V5, (28)

[Vi j ]5×5 < 0, (29)
[
V3 − c2U3 γ dU1R

∗ −γ dR

]

< 0. (30)

Moreover, the state feedback controller is given by

u(k) = YU−1
1 x(k), k ∈ Z+,

where ρ = c1
h2(h2+1)−h1(h1−1)

2 δN+h2 and

Ω11 = δU1 + (h2 − h1 + 1)U2 +U3 + δ(U1E
� + EU1) − M̄(AU1 + BY )

− (U1A + Y�B�)M̄�,

Ω15 = −M̄W, Ω16 = −M̄W1, Ω17 = −M̄C, Ω18 = U1A + Y�B�,

Ω19 = U1A
�
1 + Y�B�

1 , Ω1,10 = U1F, Ω22 = δh1(−U3 +U4), Ω33 = −δh2U4,

Ω44 = −δh1U2, Ω49 = U1D
�, Ω4,11 = U1H, Ω68 = W�

1 , Ω55 = Ω66 = −I,

Ω99 = Ω10,10 = Ω11,11 = −I, Ω77 = − γ

δN
I, Ω78 = C�,
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Ω88 = −U1, Ω58 = W�,

Ωi j = 0 for any other i, j: j > i, Ωi j = Ω�
j i , i > j,

V11 = −V3, V12 = c1δ
N+1V1, V13 = ρV2, V14 = c1δ

N+h1h1V4, V15

= c1δ
N+h2(h2 − h1)V5,

V22 = −c1δ
N+1V1, V23 = V24 = V25 = 0, V33 = −ρV2, V34 = V35 = V45 = 0,

V44 = −c1δ
N+h1h1V4, V55 = −c1δ

N+h2(h2 − h1)V5.

Proof Using Theorem 2, closed-loop system (25) is H∞ finite-time stable if there
exist symmetric positive-definite matrices P, Q, S1, S2, positive scalars λi , i = 1, 5,
such that conditions (11), (12) and (13), where matrices A + BK , A1 + B1K will in
place of the matrices A, A1, hold. In other words, in proportion to (11), we have

Θ = [
Θi j

]

11×11 < 0, (31)

where

Θ11 = −δE�PE + (h2 − h1 + 1)Q + S1 − PM̄(A + BK ) − (A + BK )�M̄�P,

Θ18 = (A + BK )�P, Θ19 = (A1 + B1K )�, Θi j

= Ψi j for any other i, j : j � i, Θi j = Θ�
j i , i > j.

Pre- and post-multiplying (31) by the matrix:

diag
{
P−1, P−1, P−1, P−1, I, I, I, P−1, I, I, I

}
> 0

and then define new matrix variables as follows:

U1 = P−1, U2 = P−1QP−1, U3 = P−1S1P
−1, U4 = P−1S2P

−1,

we easily obtain the following equivalent inequality

Θ̄ < 0, (32)

where Θ̄ = [
Θ̄i j

]

11×11 with

Θ̄11 = −δU1E
�U−1

1 EU1 + (h2 − h1 + 1)U2 +U3 − M̄(A + BK )U1

− U1(A + BK )�M̄�,

Θ̄18 = U1(A + BK )�, Θ̄19 = U1(A1 + B1K )�,

Θ̄i j = Ωi j for any other i, j : j � i, Θ̄i j = Θ̄�
j i , i > j.

Letting Y� = U1K�, K = YU−1
1 , (32) becomes

Ω̄ < 0, (33)
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where Ω̄ = [
Ω̄i j

]

11×11 with

Ω̄11 = −δU1E
�U−1

1 EU1 + (h2 − h1 + 1)U2 +U3 − M̄(AU1 + BY )

− (U1A + Y�B�)M̄�,

Ω̄18 = U1A + Y�B�, Ω̄19 = U1A
�
1 + Y�B�

1 ,

Ω̄i j = Ωi j , for any other, i, j : j � i, Ω̄i j = Ω̄�
j i , ∀i, j : i > j.

It is easy to see that

−δU1E
�U−1

1 EU1 � δ(U1E
� + EU1 +U1),

hence condition (33) holds if condition (26) holds. For getting (29), post-multiplying
matrix (13): [vi j I ]5×5 by the matrix diag{R, R, R, R, R} > 0 and then pre- and post-
multiplying thederivedmatrix againby thematrix diag{P−1, P−1, P−1, P−1, P−1} >

0, and setting new variables

V1 = P−1(λ1R)P−1, V2 = P−1(λ2R)P−1,

V3 = −γ dP−1RP−1 + c2P
−1(λ3R)P−1,

V4 = P−1(λ4R)P−1, V5 = P−1(λ5R)P−1,

we reach (29) as expected. To obtain the inequalities (27) and (28), we just pre- and
post-multiplying (12) by the matrix P−1. Indeed, we prove (27) as illustrator

E�PE < λ1R ⇐⇒ P−1E�PEP−1 < P−1(λ1R)P−1

⇐⇒ U1E
�U−1

1 EU1 < V1

⇐⇒ −V1 +U1E
�U−1

1 EU1 < 0,

which is equivalent to (27) by Proposition 1. Finally, note that

V3 = −γ dP−1RP−1 + c2P
−1(λ3R)P−1 < −γ dP−1RP−1 + c2P

−1S1P
−1

= −γ dU1RU1 + c2U3,

we get V3 − c2U3 + γ dU1R[γ dR]−1γ dRU1 < 0, which is evidently equivalent to
(30) by Proposition 1. The proof of the theorem is complete. ��
Remark 2 The results obtained in Theorems 2 and 3 can be regarded as an extension
of the results of [11,12,19] on H∞ control for discrete-time neural network (1). To
the best of our knowledge, this is the first time that the problem of H∞ control of
nonlinear singular discrete-time neural network systems with time-varying delays
and disturbances. Note that Theorems 2 and 3 provide delay-dependent sufficient
conditions for the H∞ finite-time stability and control of the singular neural networks
with time-varying delays. The obtained conditions are formulated in terms of LMIs,
which can be efficiently solved by using various convex optimization algorithm.
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4 Numerical Examples

In this section, we provide some numerical examples. It is worth noting that the finite-
time stability and control problem for system (1) is first time studied and solved in our
paper and there have not been any similar results obtained for system (1) such that the
following examples are given to illustrate the validity and effectiveness of the derived
conditions only. In the case, when the discrete-time neural networks (1) reduce to the
nonsingular system (E = I ), our result can be viewed as an extension of existing
results [13,19,22,27].

Example 1 Consider unforced system (1) (u(k) = 0), where

E =
[
1 − 1.1
1 − 1.1

]

, A =
[
0.95 0
0 0.2

]

, W =
[− 0.025 0.02

0.015 0.025

]

,

W1 =
[

0.02 0.01
− 0.025 0.02

]

,

C =
[
0.35
0.25

]

, F =
[
0.25 0
0 0.35

]

, H =
[
0.2 0
0 0.2

]

,

A1 = [
0.7 − 0.3

]
, D = [

0.2 − 0.1
]
, R =

[
1.7 0
0 1.3

]

,

h(k) = 2 + 13 cos2
kπ

2
, k ∈ Z+.

By simple calculation, we can find

M =
[
1 0
1 −1

]

, G =
[
1 1.1
0 1

]

, MEG =
[
1 0
0 0

]

, M̄ =
[
0 0
1 −1

]

.

For given h1 = 2, h2 = 15, N = 60, d = 1, c1 = 1, c2 = 8 and γ = 1, the LMIs
(11)–(13) are feasible with δ = 1.0001 and

P =
[

0.0078 − 0.1673
− 0.1673 12.0088

]

, Q =
[

0.0899 − 0.0249
− 0.0249 0.0525

]

,

S1 =
[

7.5618 − 0.0008
− 0.0008 5.7823

]

, S2 =
[
0.0017 0

0 0.0013

]

,

λ1 = 17.7476, λ2 = 0.0646, λ3 = 4.4471, λ4 = 4.4506, λ5 = 0.0015.

Since the inequalities (6) and (11) are equivalent, the system is regular, causal, and it
has a unique solution and is robustly H∞ finite-time stable w.r.t. (1, 8, R, 60).
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Example 2 Consider singular system (1), where

E =
[
1 − 1.1
1 − 1.1

]

, A =
[
0.35 0
0 0.15

]

, W =
[− 0.02 0.015

0.01 0.02

]

,

W1 =
[

0.01 0.015
− 0.02 0.025

]

,

B =
[
0.25
0.45

]

, C =
[
0.15
0.3

]

, F =
[
0.25 0
0 0.15

]

, H =
[
0.15 0
0 0.2

]

,

A1 = [
0.75 − 0.15

]
,

D = [− 0.15 0.1
]
, B1 = 0.2, R =

[
1.2 1
1 1.4

]

,

h(k) = 2 + 12 sin2
kπ

2
.

We can find that

M =
[
2 0
2 −2

]

, G =
[
0.5 0.55
0 0.5

]

, MEG =
[
1 0
0 0

]

, M̄ =
[
0 0
2 −2

]

.

For given h1 = 2, h2 = 14, N = 40, d = 1, c1 = 2, c2 = 25 and γ = 1, the LMIs
(26)–(30) are feasible with δ = 1.0001 and

U1 =
[
0.1054 0.2102
0.2102 0.4589

]

, U2 =
[
0.0022 0.0048
0.0048 0.0107

]

,

U3 =
[
0.0844 0.1942
0.1942 0.4585

]

, U4 =
[
0.0012 0.0032
0.0032 0.0102

]

,

V1 =
[
0.5522 1.2965
1.2965 3.0661

]

, V2 =
[
0.0023 0.0049
0.0049 0.0110

]

,

V3 =
[
1.9826 4.5768
4.5768 10.8473

]

, V4 =
[
0.0869 0.2012
0.2012 0.4841

]

,

V5 =
[
0.0018 0.0048
0.0048 0.0156

]

, Y = [− 0.2115 − 1.0007
]
.

The H∞ finite-time control problem of system (1), by Theorem 3, has a solution, and
the state feedback controller is given by

u(k) = [
27.1655 −14.6259

]
x(k), k ∈ Z+.

Figure 1 shows the response solution with the initial condition

ϕ(k) =
[
0.4
0.8

]

, k ∈ {−14,−13, . . . , 0}.
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Fig. 1 Response solution of the closed-loop system

5 Conclusion

The problem of H∞ finite-time stability and control of nonlinear singular discrete-time
neural networks with time-varying delays and disturbances has been studied in this
paper. Based on the singular systems theory and Lyapunov functional method, we have
provided new delay-dependent sufficient conditions for the existence and uniqueness
of solutions and the H∞ finite-time control for such systems. The conditions for the
existence of state feedback controllers are easy to check by using MATLAB LMI
control toolbox.
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