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Abstract In the present paper, we study the semilinear elliptic problem −�u

− μ
u

|y|2 = |u|2∗(s)−2u

|y|s + f (x, u) in bounded domain. Replacing the Ambrosetti–

Rabinowitz condition by general superquadratic assumptions and the nonquadratic
assumption, we establish the existence results of positive solutions.

Keywords Positive solutions · Hardy–Sobolev–Maz’ya terms · Hardy–Sobolev
critical exponents · Mountain Pass Lemma · Local Palais–Smale condition

1 Introduction and Main Results

In this paper, we deal with the following semilinear elliptic problem with Dirichlet
boundary value conditions

⎧
⎪⎪⎨

⎪⎪⎩

−�u − μ u
|y|2 = |u|2∗(s)−2u

|y|s + f (x, u), in �,

u > 0, in �,

u = 0, on ∂�,

(1.1)
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where f ∈ C(� × R,R), � is a smooth bounded domain in R
N = R

k × R
N−k

with 2 ≤ k < N , a point x ∈ R
N is denoted as x = (y, z) ∈ R

k × R
N−k and

(0, z0) ∈ �, 0 ≤ μ < μ̄ = (k−2)2

4 for k > 2, and μ = 0 for k = 2. The so-called

Hardy–Sobolev critical exponent is denoted as 2∗(s) = 2(N−s)
N−2 , where 0 ≤ s < 2.

Clearly, 2∗ = 2∗(0) = 2N
N−2 is the Sobolev critical exponent. F(x, t) is the primitive

function of f (x, t) defined as F(x, t) =
∫ t

0
f (x, s)ds. H1

0 (�) is the Sobolev space

with its equivalent norm

‖u‖ =
(∫

�

(

|∇u|2 − μ
u2

|y|2
)

dx

) 1
2

due to the Hardy inequality

Ck

∫

RN

u2

|y|2 dx ≤
∫

RN
|∇u|2dx, ∀u ∈ D1,2(RN ),

where Ck = ( k−2
2 )2 is the best constant and is not attained. Let Sμ be the best Hardy–

Sobolev constant defined as

Sμ = inf
u∈D1,2(RN \(0,z0)),u �=0

∫

RN

(
|∇u|2 − μ u2

|y|2
)
dx

(∫

RN
|u|2∗(s)

|y|s dx
) 2

2∗(s)

. (1.2)

When k = N , (1.1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

−�u − μ u
|x |2 = |u|2∗(s)−2u

|x |s + f (x, u), in �,

u > 0, in �,

u = 0, on ∂�,

(1.3)

after the work of Brezis and Nirenberg [3], there are many papers concerning the
Dirichlet problem with critical exponents (see [1,6–9,11,17,19,26]). When μ = 0
and s = 0, problem (1.3) becomes the well-known Brezis–Nirenberg problem and
is studied extensively; for example, Nguyen and Lu [23] established the existence of
nontrivial nonnegative solutions in dimension two involving exponential nonlinearities
which had subcritical or critical exponential growth and did not satisfy the (AR)
condition.Whenμ �= 0, the problemhas its singularity at 0 and attractsmuch attention.
For instance, Ding and Tang [12] studied the existence of positive solutions for N ≥ 3
and 0 ≤ s < 2. Kang and Peng [18] showed the existence of positive solutions
replacing f (x, u) by λ|u|q−2u with q > 2 for 0 ≤ s < 2.

When 2 ≤ k < N , the singularity of the problem is more complicated. Very
recently, it attracts more attention. Bhakta and Sandeep [2] studied the regularity,
Palais–Smale characterization and existence of solutions in some special bounded
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domain and proved nonexistence of nontrivial solution with f (x, u) = 0. Ganguly
and Sandeep [14] researched the existence and nonexistence of sign-changing solu-
tions for the Brezis–Nirenberg type problem in the hyperbolic space, which is closely
related to Hardy–Sobolev–Maz’ya equations. Yang [28] showed the existence of pos-
itive solutions for N ≥ 3 with Neumann boundary condition and f (x, u) satisfying
some conditions. Wang and Wang [27] showed that the existence of infinitely many
solutions replacing f (x, u) by λu for N > 6+ s. More details about Hardy–Sobolev–
Maz’ya equations and elliptic equations in Hn (n-dimensional Hyperbolic space) can
be seen in [4,5,13,22] and their references.

In order to get a nontrivial solution, the Mountain Pass Lemma [25] is generally
exploited, when the equation involves superlinearity. To use this lemma, the authors
assume that f (x, t) satisfies the well-known Ambrosetti–Rabinowitz (AR) condition,
that is, for some ρ > 2, M > 0, for a.e. x ∈ � and all |t | ≥ M , there holds

0 < ρF(x, t) ≤ f (x, t)t.

It is known that the (AR) condition plays an important role in ensuring that anyCerami
(Ce) sequence of the functional is bounded. But this condition is very restrictive, and
there are many functions which do not satisfy the (AR) condition, for example

f (x, t) = 2t ln(1 + |t |).
The main purpose of this present paper is to establish the existence of positive
solutions for problem (1.1) with 2 ≤ k < N , 0 ≤ μ < μ̄ under the case

s = 2 − N − 2

N − k + √
(k − 2)2 − 4μ

and f (x, t) satisfying different conditions which

are weaker than the (AR) condition but play the same role as the (AR) condition. Here
are the main results of this paper:

Theorem 1 Suppose N ≥ 2k − 2− 2
√

(k − 2)2 − 4μ, 2 ≤ k < N, 0 ≤ μ < μ̄, and

s = 2 − N − 2

N − k + √
(k − 2)2 − 4μ

. f ∈ C(� × R
+,R) satisfies

( f1) f (x, t) ≥ 0 for t ≥ 0 and f (x, t) = 0 for t ≤ 0. lim sup
t→0+

f (x, t)

t
< λ uniformly

for x ∈ �, where 0 < λ < λ1 and λ1 is the first eigenvalue of −� − μ|y|−2,

( f2) lim
t→+∞

f (x, t)

t2∗(s)−1
= 0 uniformly for x ∈ �,

( f3) there exist a positive constantσ , a nonempty open subsetωwith (0, z0) ∈ ω ⊂ �,
and a nonempty open interval I ⊂ (0,+∞), so that f (x, t) ≥ σ > 0 for almost
everywhere x ∈ ω and for all t ∈ I .

Then, problem (1.1) admits at least one positive solution.

Remark 1 Firstly, when k = N , problem (1.1) has been researched in [20], in which
f (x, t) did not satisfy the (AR) condition. Secondly, there are many examples satis-
fying the assumptions of Theorem 1. For instance, we may take f (x, t) = λt with
0 < λ < λ1, or f (x, t) = λtq with λ > 0 and 1 < q < 2∗(s) − 1.
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Theorem 2 Suppose N ≥ 2k − 2 − 2
√

(k − 2)2 − 4μ, 2 ≤ k < N, 0 ≤ μ < μ̄ and

s = 2 − N − 2

N − k + √
(k − 2)2 − 4μ

. f ∈ C(� × R
+,R+) satisfies ( f3) and

( f4) lim
t→0+

f (x, t)

t
= 0 uniformly for x ∈ �,

( f5) lim
t→+∞

f (x, t)

t2∗−1 = 0 uniformly for x ∈ �,

( f6) lim
t→+∞

f (x, t)

t
= +∞ uniformly for x ∈ �,

( f7) | f (x, t)|τ ≤ a1 F̃(x, t)|t |τ for some a1 > 0, τ > 1 and (x, t) ∈ � × R
+ with t

large enough, where F̃(x, t) = 1
2 f (x, t)t − F(x, t).

Then, problem (1.1) possesses at least a positive solution.

Remark 2 Firstly, ( f6) and ( f7) can lead to F̃(x, t) = 1
2 f (x, t)t − F(x, t) → +∞

uniformly in x ∈ � as t → +∞. Secondly, there are also many functions satisfying
the conditions of Theorem 2. For example, onemay take f (x, t) = λtq with λ > 0 and
1 < q < 2∗−1. Thirdly, when k = N ,μ �= 0, and s �= 0, Ding and Tang [12] obtained
the existence of positive solutions with f (x, u) satisfying a global (AR) condition.
Here, we obtain the similar results as those in [12] when 2 ≤ k < N . Thus, our results
complete the existence of positive solutions for elliptic problem with Hardy–Sobolev
critical exponents.

Theorem 3 Suppose N ≥ 2k − 2− 2
√

(k − 2)2 − 4μ, 2 ≤ k < N, 0 ≤ μ < μ̄, and

s = 2 − N − 2

N − k + √
(k − 2)2 − 4μ

. f ∈ C(� × R
+,R) satisfies ( f1), ( f3), ( f5),

( f6) and

( f8) there exist two constants θ ≥ 1, θ0 > 0 such that θH(x, t) ≥ H(x, st) − θ0
for all x ∈ �, t ≥ 0 and s ∈ [0, 1], where H(x, t) = f (x, t)t − 2F(x, t) and
F(x, t) = ∫ t

0 f (x, s)ds.

Then, problem (1.1) admits at least one positive solution.

Remark 3 A condition similar to ( f8) was introduced by Jeanjean [16]. We can easily
verify that when θ = 1, ( f8) means that f (x,t)

t is nondecreasing with respect to t ≥ 0,
which leads to the (AR) condition. Thus, ( f8) gives a more general monotonicity
when θ > 1. Moreover, one can find some examples that satisfy ( f8) but

f (x,t)
t is not

monotone. For example, let

F(x, t) = t2 ln(1 + t2) + t sin t,

it follows that

f (x, t) = 2t ln(1 + t2) + 2t3

1 + t2
+ sin t + t cos t,
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then

H(x, t) = 2(t2 − 1) + 2

1 + t2
+ t2 cos t − t sin t.

Let θ = 1000, we can prove by some simple computation that f (x, t) satisfies ( f8)
but f (x,t)

t is not monotone any more.

Theorem 4 Suppose N ≥ 2k − 2− 2
√

(k − 2)2 − 4μ, 2 ≤ k < N, 0 ≤ μ < μ̄, and

s = 2 − N − 2

N − k + √
(k − 2)2 − 4μ

. f ∈ C(� × R
+,R) satisfies ( f1), ( f3) and

( f9) there exists q ∈ [2, 2∗) such that lim
t→+∞

f (x, t)

tq−1 = 0 uniformly for x ∈ �,

( f10) there exist constants D > 0, L > 0, and δ >
N (q−2)

2 , such that

f (x, t)t − 2F(x, t)

|t |δ ≥ D,

for t ≥ L and a.e. x ∈ �.

Then, problem (1.1) admits at least one positive solution.

Remark 4 Anonquadratic condition similar to ( f10)was introduced in [10]. Although
( f10) is weaker than the (AR) condition, it can guarantee the boundedness of the (Ce)
sequence. There are also many functions that satisfy ( f10) but do not satisfy the (AR)
condition. For example, f (x, t) = 2t ln(1 + t2) + 2t3

1+t2
, t ∈ R.

2 Proof of Theorems

To verify our main results, we make use of the following notations.

• The dual space of a Banach space E will be denoted by E ′.
• L p(�, |y|−sdx) denotes the weighted Sobolev space.
• →(resp. ⇀) denotes the strong (resp. weak) convergence.
• C , Ci (i=0, 1, 2 …) will denote various positive constants, and their values can
vary from line to line.

In order to study the positive solutions of problem (1.1), we first consider the
existence of nontrivial solutions to the problem

⎧
⎪⎪⎨

⎪⎪⎩

−�u − μ u
|y|2 = (u+)2

∗(s)−1

|y|s + f (x, u+), in �,

u > 0, in �,

u = 0, on ∂�,

(2.1)
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where u+ = max{u, 0}. The energy functional corresponding to problem (2.1) is given
by

I (u) = 1

2

∫

�

(

|∇u|2 − μ
u2

|y|2
)

dx − 1

2∗(s)

∫

�

(u+)2
∗(s)

|y|s dx −
∫

�

F(x, u+)dx,

(2.2)
for u ∈ H1

0 (�). Clearly, I is well defined and is C1 smooth thanks to the Hardy–
Sobolev–Maz’ya inequality [21]

(∫

RN

|u|2∗(s)

|y|s dx

) 2
2∗(s)

≤ S−1
μ

∫

RN

(

|∇u|2 − μ
u2

|y|2
)

dx, (2.3)

where Sμ = S(μ, N , k, s) is the best constant defined in (1.2). By the existence of the
one-to-one correspondence between the critical points of I and the weak solutions of
problem (2.1), we know that if u is a weak solution of problem (2.1), there holds

〈I ′(u), v〉 =
∫

�

(

(∇u,∇v) − μ
uv

|y|2
)

dx −
∫

�

(u+)2
∗(s)−1v

|y|s dx

−
∫

�

f (x, u+)vdx = 0,

for any v ∈ H1
0 (�).

Before proving ourmain results, we need the following lemmas. First, it is necessary
to give the estimates below. From [2,4,5,22], when s = 2 − N−2

N−k+
√

(k−2)2−4μ
, the

best constant Sμ given in (1.2) can be achieved by the following form of the extremal
function

U (y, z) = c(μ, k, N )
|y|

√
(k−2)2−4μ−(k−2)

2

((1 + |y|)2 + |z|2) 1
2∗(s)−2

,

where c(μ, k, N ) is a constant. In order to guarantee s ≥ 0, we suppose N ≥ 2k −
2 − 2

√
(k − 2)2 − 4μ in this article. For (0, z0) ∈ �, we can choose ρ, R > 0,

satisfying Bρ(0, z0) ⊂ � ⊂ BR(0, z0). Let ϕ ∈ C∞
0 (�) be a cutoff function such that

0 ≤ ϕ(x) ≤ 1 and

ϕ(x) =
{
1, x ∈ B ρ

2
(0, z0),

0, x /∈ Bρ(0, z0).

Denote T =
√

(k−2)2−4μ−(k−2)
2 . Set u∗

ε = ε
2−N
2 U (

y
ε
, z−z0

ε
) for ε > 0. Then,

u∗
ε(x) = c(μ, k, N )ε

1
2∗(s)−2

|y|T
((ε + |y|)2 + |z − z0|2) 1

2∗(s)−2
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is also an extremal function of Sμ and solves the equation

−�u − μ
u

|y|2 = |u|2∗(s)−2u

|y|s , in R
N .

For ε > 0, we define uε = ϕ(x)u∗
ε(x). We have the following estimates for uε.

Lemma 2.1 Suppose N ≥ 2k − 2− 2
√

(k − 2)2 − 4μ, 2 ≤ k < N, 0 ≤ μ < μ̄, and

s = 2 − N − 2

N − k + √
(k − 2)2 − 4μ

, then the following estimates hold

∫

�

|∇uε|2dx =
∫

RN
|∇u∗

ε |2dx + O
(
ε

2
2∗(s)−2

)
, (2.4)

∫

�

u2ε
|y|2 dx =

∫

RN

(u∗
ε)

2

|y|2 dx + O
(
ε

2
2∗(s)−2

)
, (2.5)

∫

�

|uε|2∗(s)

|y|s dx =
∫

RN

|u∗
ε |2∗(s)

|y|s dx + O

(

ε
2∗(s)

2∗(s)−2

)

. (2.6)

Proof First, we estimate (2.5). There holds

∫

�

u2ε
|y|2 dx =

∫

�

(ϕu∗
ε)

2

|y|2 dx =
∫

�

(u∗
ε)

2

|y|2 dx −
∫

�

(1 − ϕ2)
(u∗

ε)
2

|y|2 dx

=
∫

RN

(u∗
ε)

2

|y|2 dx −
∫

RN \�
(u∗

ε)
2

|y|2 dx −
∫

�

(1 − ϕ2)
(u∗

ε)
2

|y|2 dx

=
∫

RN

(u∗
ε)

2

|y|2 dx −
∫

RN \�
(u∗

ε)
2

|y|2 dx −
∫

�\B ρ
2
(0,z0)

(1 − ϕ2)
(u∗

ε)
2

|y|2 dx .

Then, we have

∫

RN \Bρ(0,z0)

(u∗
ε)

2

|y|2 dx = ε
2

2∗(s)−2

∫

RN \Bρ(0,z0)

|y|2T−2

((ε + |y|)2 + |z − z0|2) 2
2∗(s)−2

dx

= ε
2

2∗(s)−2

∫

RN \Bρ(0)

|y|2T−2

((ε + |y|)2 + |z|2) 2
2∗(s)−2

dx

≤ ε
2

2∗(s)−2

( ∫ +∞
ρ
2

∫ +∞
ρ
2

r2T+k−3t N−k−1

((ε + r)2 + t2)
2

2∗(s)−2

drdt

+
∫ ρ

2

0

∫ +∞
ρ
2

r2T+k−3t N−k−1

((ε + r)2 + t2)
2

2∗(s)−2

drdt

123



2340 R.-T. Jiang, C.-L. Tang

+
∫ +∞

ρ
2

∫ ρ
2

0

r2T+k−3t N−k−1

((ε + r)2 + t2)
2

2∗(s)−2

drdt

)

= ε
2T+N−2− 2

2∗(s)−2

(∫ +∞
ρ
2ε

r2T+k−3dr
∫ +∞

ρ
2ε

t N−k−1

((1 + r)2 + t2)
2

2∗(s)−2

dt

+
∫ ρ

2ε

0
r2T+k−3dr

∫ +∞
ρ
2ε

t N−k−1

((1 + r)2 + t2)
2

2∗(s)−2

dt

+
∫ +∞

ρ
2ε

r2T+k−3dr
∫ ρ

2ε

0

t N−k−1

((1 + r)2 + t2)
2

2∗(s)−2

dt

)

≤ ε
2T+N−2− 2

2∗(s)−2

(∫ +∞
ρ
2ε

r2T+k−3

(1 + r)
4

2∗(s)−2−N+k
dr

∫ +∞

0

t N−k−1

(1 + t2)
2

2∗(s)−2

dt

+
∫ ρ

2ε

0

r2T+k−3

(1 + r)
4

2∗(s)−2−N+k
dr

∫ +∞

0

t N−k−1

(1 + t2)
2

2∗(s)−2

dt

+
∫ +∞

ρ
2ε

r2T+k−3

(1 + r)
4

2∗(s)−2−N+k
dr

∫ +∞

0

t N−k−1

(1 + t2)
2

2∗(s)−2

dt

)

≤ Cε
2T+N−2− 2

2∗(s)−2

(∫ +∞
ρ
2ε

r2T+k−3

(1 + r)
4

2∗(s)−2−N+k
dr

+
∫ ρ

2ε

0

r2T+k−3

(1 + r)
4

2∗(s)−2−N+k
dr +

∫ +∞
ρ
2ε

r2T+k−3

(1 + r)
4

2∗(s)−2−N+k
dr

)

≤ Cε
2

2∗(s)−2 .

Then from above, one has

∫

RN \Bρ(0,z0)

(u∗
ε)

2

|y|2 dx = O
(
ε

2
2∗(s)−2

)
. (2.7)

By the same method, we get

∫

RN \BR(0,z0)

(u∗
ε)

2

|y|2 dx = O
(
ε

2
2∗(s)−2

)
.

Since

∫

RN \BR(0,z0)

(u∗
ε)

2

|y|2 dx ≤
∫

RN \�
(u∗

ε)
2

|y|2 dx ≤
∫

RN \Bρ(0,z0)

(u∗
ε)

2

|y|2 dx,

we obtain

∫

�

u2ε
|y|2 dx =

∫

RN

(u∗
ε)

2

|y|2 dx + O
(
ε

2
2∗(s)−2

)
.

123



Positive Solutions for Elliptic Problems Involving… 2341

Next, we estimate (2.6). In fact, there holds

∫

�

|uε|2∗(s)

|y|s dx =
∫

�

|ϕu∗
ε |2∗(s)

|y|s dx

=
∫

�

|u∗
ε |2∗(s)

|y|s dx −
∫

�

(1 − ϕ2∗(s))
|u∗

ε |2∗(s)

|y|s dx

=
∫

RN

|u∗
ε |2∗(s)

|y|s dx −
∫

RN \�
|u∗

ε |2∗(s)

|y|s dx −
∫

�

(1 − ϕ2∗(s))
|u∗

ε |2∗(s)

|y|s dx

=
∫

RN

|u∗
ε |2∗(s)

|y|s dx −
∫

RN \�
|u∗

ε |2∗(s)

|y|s dx −
∫

�\B ρ
2

(0,z0)
(1 − ϕ2∗(s))

|u∗
ε |2∗(s)

|y|s dx .

Since

∫

RN \BR(0,z0)

|u∗
ε |2∗(s)

|y|s dx ≤
∫

RN \�
|u∗

ε |2∗(s)

|y|s dx ≤
∫

RN \Bρ(0,z0)

|u∗
ε |2∗(s)

|y|s dx,

using the method similar to (2.7), one gets

∫

RN \BR(0,z0)

|u∗
ε |2∗(s)

|y|s dx = O

(

ε
2∗(s)

2∗(s)−2

)

.

Thus, we deduce

∫

�

|uε|2∗(s)

|y|s dx =
∫

RN

|u∗
ε |2∗(s)

|y|s dx + O

(

ε
2∗(s)

2∗(s)−2

)

.

Now, we estimate (2.4). Observe that

∫

�

|∇uε|2dx =
∫

�

|∇(ϕu∗
ε)|2dx =

∫

�

|u∗
ε |2|∇ϕ|2dx +

∫

�

(
∇u∗

ε ,∇(ϕ2u∗
ε)

)
dx,

and −�u∗
ε − μ

u∗
ε

|y|2 = |u∗
ε |2∗(s)−2u∗

ε

|y|s , one has

∫

�

(
∇u∗

ε ,∇(ϕ2u∗
ε)

)
dx = μ

∫

�

(ϕu∗
ε)

2

|y|2 dx +
∫

�

ϕ2 |u∗
ε |2∗(s)

|y|s dx .

When x ∈ B ρ
2
(0, z0), one has ∇ϕ = 0, then

∫

�

|u∗
ε |2|∇ϕ|2dx = O

(
ε

2
2∗(s)−2

)
.
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Therefore, one has
∫

�

|∇uε|2dx

=
∫

�

|u∗
ε |2|∇ϕ|2dx +

∫

�

ϕ2 |u∗
ε |2∗(s)

|y|s dx + μ

∫

�

ϕ2 |u∗
ε |2

|y|2 dx

≤ Cε
2

2∗(s)−2 +
∫

RN

|u∗
ε |2∗(s)

|y|s dx + Cε
2∗(s)

2∗(s)−2 + μ

∫

RN

|u∗
ε |2

|y|2 dx + Cε
2

2∗(s)−2

=
∫

RN

|u∗
ε |2∗(s)

|y|s dx + μ

∫

RN

|u∗
ε |2

|y|2 dx + Cε
2

2∗(s)−2 + Cε
2∗(s)

2∗(s)−2

=
∫

RN
|∇u∗

ε |2dx + C2ε
2

2∗(s)−2

and
∫

�

|∇uε|2dx

=
∫

�

|u∗
ε |2|∇ϕ|2dx +

∫

�

ϕ2 |u∗
ε |2∗(s)

|y|s dx + μ

∫

�

ϕ2 |u∗
ε |2

|y|2 dx

≥ Cε
2

2∗(s)−2 +
∫

RN

|u∗
ε |2∗(s)

|y|s dx + Cε
2∗(s)

2∗(s)−2 + μ

∫

RN

|u∗
ε |2

|y|2 dx + Cε
2

2∗(s)−2

=
∫

RN

|u∗
ε |2∗(s)

|y|s dx + μ

∫

RN

|u∗
ε |2

|y|2 dx + Cε
2

2∗(s)−2 + Cε
2∗(s)

2∗(s)−2

=
∫

RN
|∇u∗

ε |2dx + C1ε
2

2∗(s)−2 .

Thus, we obtain
∫

RN
|∇u∗

ε |2dx + C1ε
2

2∗(s)−2 ≤
∫

�

|∇uε|2dx ≤
∫

RN
|∇u∗

ε |2dx + C2ε
2

2∗(s)−2 .

The proof is completed. ��
For convenience, it is necessary to get the following estimates. Set

vε = uε/

(∫

�

u2
∗(s)

ε

|y|s dx

) 1
2∗(s)

.

Clearly,
∫

�

v
2∗(s)
ε

|y|s dx = 1.

Then, the following results can be obtained by the methods used in [15],

Sμ + C7ε
2

2∗(s)−2 ≤ ‖vε‖2 ≤ Sμ + C8ε
2

2∗(s)−2 , (2.8)
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and

∫

�

vqε dx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O(ε
q

2∗(s)−2 ), 1 < q < 2N
2N+

√
(k−2)2−4μ−(k−2)

,

O(ε
q

2∗(s)−2 | ln ε|), q = 2N
2N+

√
(k−2)2−4μ−(k−2)

,

O(ε
Tq+N− q

2∗(s)−2 ), 2N
2N+

√
(k−2)2−4μ−(k−2)

< q < 2∗.

(2.9)

We will use the function vε as a test function to estimate I (u) below.

Lemma 2.2 Suppose N ≥ 2k − 2 − 2
√

(k − 2)2 − 4μ, 0 ≤ μ < μ̄, and s =
2 − N − 2

N − k + √
(k − 2)2 − 4μ

. Assume that ( f1), ( f3), and ( f5) hold. There exists

u′ ∈ H1
0 (�) with u′ �≡ 0, such that

sup
t≥0

I (tu′) <
2 − s

2(N − s)
S

2∗(s)
2∗(s)−2
μ .

Proof Considering the functions

g(t) = I (tvε) = 1

2
t2‖vε‖2 − t2

∗(s)

2∗(s)
−

∫

�

F(x, tvε)dx,

g̃(t) = 1

2
t2‖vε‖2 − t2

∗(s)

2∗(s)
.

Note that g(0) = 0, g(t) > 0 for t > 0 small enough, and lim
t→+∞ g(t) = −∞. It

follows that sup
t≥0

g(t) can be achieved by some tε > 0.

First, we claim that tε is bounded. By

0 = g′(tε) = tε

(

‖vε‖2 − t2
∗(s)−2

ε − 1

tε

∫

�

f (x, tvε)vεdx

)

,

we have ‖vε‖2 = t2
∗(s)−2

ε + 1

tε

∫

�

f (x, tvε)vεdx ≥ t2
∗(s)−2

ε ; therefore, one gets

tε ≤ ‖vε‖
2

2∗(s)−2 � t0ε .

By (2.8), we get
tε ≤ C12. (2.10)

Now, we prove that tε is bounded below under ( f1) and ( f5). Obviously, one

has | f (x, t)t | ≤ ε|t |2∗ + Ct2, then ‖vε‖2 ≤ t2
∗(s)−2

ε + ε

∫

�

|tε|2∗−2|vε|2∗
dx +

C
∫

�

|vε|2dx . Due to H1
0 (�) ↪→ L2∗

(�) and (2.8), we can obtain
∫

�

|vε|2∗
dx ≤
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C‖vε‖2∗ ≤ C13(2Sμ)
2∗
2 for ε > 0 small enough. From (2.8), one has

∫

�

|vε|2dx →
0, as ε → 0. From above, combining with (2.9), we deduce that

t2
∗(s)−2

ε ≥ C. (2.11)

From (2.10) and (2.11), we obtain that tε is bounded for ε > 0 small enough.
Secondly, we compute sup

t≥0
g(t). Now we claim that

‖vε‖
2·2∗(s)
2∗(s)−2 ≤ S

2∗(s)
2∗(s)−2
μ + C14ε

2
2∗(s)−2 . (2.12)

In order to prove, we first verify the following inequality

(a + b)r ≤ ar + r(a + 1)r−1b, a > 0, r ≥ 1, 0 ≤ b ≤ 1.

Indeed, set φ(x) = (a+x)r −ar −r(a+1)r−1x , for 0 ≤ x ≤ 1. Obviously, φ′(x) ≤ 0
for all 0 ≤ x ≤ 1, so φ(b) ≤ φ(0) = 0; then, the inequality above holds. Then, let

a = Sμ, b = Cε
2

2∗(s)−2 , r = 2∗(s)
2∗(s)−2 , and combining with (2.8), we get (2.12).

It is easy to get that g̃(t) attains its maximum at t0ε and is increasing in the interval
[0, t0ε ], and combining with (2.12) we conclude that

I (tεvε) = g(tε) ≤ g̃(t0ε ) −
∫

�

F(x, tεvε)dx

= 2 − s

2(N − s)
‖vε‖

2·2∗(s)
2∗(s)−2 −

∫

�

F(x, tεvε)dx

≤ 2 − s

2(N − s)
S

2∗(s)
2∗(s)−2
μ + C14ε

2
2∗(s)−2 −

∫

�

F(x, tεvε)dx .

Therefore, in order to verify that sup
t≥0

I (tu′) <
2 − s

2(N − s)
S

2∗(s)
2∗(s)−2
μ , it is sufficient to

show that

C14ε
2

2∗(s)−2 −
∫

�

F(x, tεvε)dx < 0,

for ε > 0 small enough. To this purpose, we prove

lim
ε→0+ ε

− 2
2∗(s)−2

∫

�

F(x, tεvε)dx = +∞. (2.13)

In fact, if there existsm(t) such that f (x, t) ≥ m(t) > 0, combiningwith the definition
of vε, (2.6) and the boundedness of tε, we only need to verify

lim
ε→0+ ε

− 2
2∗(s)−2

∫

|x |<R
M

⎛

⎝
Cεε

1
2∗(s)−2 |y|T

(
(ε + |y|)2 + |z|2) 1

2∗(s)−2

⎞

⎠ dx = +∞, (2.14)
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where BR(0, z0) ⊂ �, without loss of generality, we assume R > 2 and M(t) =∫ t

0
m(s)ds is the primitive function of m(t) and

Cε = tε

(∫

�

u2
∗(s)

ε

|y|s dx

)− 1
2∗(s)

By (2.6), (2.10), and (2.11), we obtain that Cε is bounded. Through computation, one
has

ε
− 2

2∗(s)−2

∫

|x |<R
M

⎛

⎝
Cεε

1
2∗(s)−2 |y|T

(
(ε + |y|)2 + |z|2) 1

2∗(s)−2

⎞

⎠ dx

≥ ε
− 2

2∗(s)−2

∫ R
2

0

∫ R
2

0
M

⎛

⎝
Cεε

1
2∗(s)−2 rT

(
(ε + r)2 + s2

) 1
2∗(s)−2

⎞

⎠ rk−1sN−k−1drds

= ε
N− 2

2∗(s)−2

∫ R
2ε

0

∫ R
2ε

0
M

⎛

⎝
Cεε

T− 1
2∗(s)−2 rT

(
(1 + r)2 + s2

) 1
2∗(s)−2

⎞

⎠ rk−1sN−k−1drds

= ε
N− 2

2∗(s)−2

∫ R
2ε

0
rk−1(1 + r)N−kdr

∫ R
2ε(1+r)

0
M

⎛

⎝
Cεε

T− 1
2∗(s)−2 rT

(
1 + r)

2
2∗(s)−2 (1 + ρ2)

1
2∗(s)−2

⎞

⎠ ρN−k−1dρ.

Thus, we can deduce that for R′ = R
2 > 1, (2.14) is equivalent to

εN

ε
2

2∗(s)−2

∫ R′
ε

0
rk−1(1 + r)N−kdr

∫ R′
ε(1+r)

0
M

⎛

⎝
Cεε

T− 1
2∗(s)−2 rT

(
1 + r)

2
2∗(s)−2 (1 + ρ2)

1
2∗(s)−2

⎞

⎠ ρN−k−1dρ → +∞, (2.15)

as ε → 0+. Then, if we prove that

εN

ε
2

2∗(s)−2

∫ 1
ε

0
rk−1(1 + r)N−kdr

∫ 1
ε(1+r)

0
M

⎛

⎝
Cεε

T− 1
2∗(s)−2 rT

(
1 + r)

2
2∗(s)−2 (1 + ρ2)

1
2∗(s)−2

⎞

⎠ ρN−k−1dρ → +∞. (2.16)

as ε → 0+, then it is easy to check that (2.15) is established.
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Last, we will prove that (2.16) holds under ( f3). By ( f3), one gets

f (x, t) ≥ σχI (t) � m(t),

for almost everywhere x ∈ ω and for all t ≥ 0, where χI is the characteristic function
of I (I ⊂ (0,+∞)). Thus, for some constants η > 0 and B > 0, it follows that

M(t) ≥ η > 0,

for all t ≥ B. Then, we obtain

M

⎛

⎝
Cεε

T− 1
2∗(s)−2 rT

(
1 + r)

2
2∗(s)−2 (1 + ρ2)

1
2∗(s)−2

⎞

⎠ ≥ η,

for all ρ satisfying ρ ≤ C ′
ε

r
T (2∗(s)−2)

2

1 + r
ε

T (2∗(s)−2)−1
2 , where 0 < r < ε−1 and C ′

ε is

bounded and related to B and Cε. Then, it leads to

ε
N− 2

2∗(s)−2

∫ 1
ε

0
rk−1(1 + r)N−kdr

∫ 1
ε(1+r)

0
M

⎛

⎝
Cεε

T− 1
2∗(s)−2 rT

(
1 + r)

2
2∗(s)−2 (1 + ρ2)

1
2∗(s)−2

⎞

⎠ ρN−k−1dρ

≥ ηε
N− 2

2∗(s)−2

∫ 1
ε

0
rk−1(1 + r)N−kdr

∫ C ′
ε
r
T (2∗(s)−2)

2
1+r ε

T (2∗(s)−2)−1
2

0
ρN−k−1dρ

≥ Cηε
N− 2

2∗(s)−2+ T (2∗(s)−2)−1
2 (N−k)

∫ 1
ε

0
rk−1+ T (2∗(s)−2)(N−k)

2 dr

= C18ε
N−k
2 − 2

2∗(s)−2 ,

for N ≥ 2k − 2 −
√

(k − 2)2 − 4μ and s = 2 − N − 2

N − k + √
(k − 2)2 − 4μ

; then,

one has N−k
2 − 2

2∗(s)−2 < 0. Therefore, (2.16) holds. Then, we complete the proof of
Lemma 2.2. ��
Proof of Theorem 1 From the continuity of embeddings

H1
0 (�) ↪→ Lq(�)(1 ≤ q ≤ 2∗) and H1

0 (�) ↪→ L2∗(s)(�, |y|−sdx),

there exist C19, C20 > 0 such that

∫

�

|u|qdx ≤ C19‖u‖q ,
∫

�

|u|2∗(s)

|y|s dx ≤ C20‖u‖2∗(s). (2.17)

It follows from ( f1) and ( f2) that

|F(x, t)| ≤ 1

2
λ|t |2 + C21|t |2∗(s), (2.18)
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for all t ∈ R
+ and x ∈ �. By (2.17) and (2.18), one has

I (u) = 1

2
‖u‖2 − 1

2∗(s)

∫

�

(u+)2
∗(s)

|y|s dx −
∫

�

F(x, u+)dx

≥ 1

2
‖u‖2 − 1

2∗(s)

∫

�

(u+)2
∗(s)

|y|s dx − λ

2

∫

�

|u|2dx − C22

∫

�

|u|2∗(s)dx

≥ 1

2
‖u‖2 − C23

2∗(s)
‖u‖2∗(s) − λ

2λ1
‖u‖2 − C24‖u‖2∗(s),

for 0 < λ < λ1; therefore, there exists α > 0 such that I (u) ≥ α > 0 for all ‖u‖ = r ,
where r > 0 small enough. For any u ∈ H1

0 (�) with u+ �≡ 0, together with the
nonnegativity of F(x, t), one has

I (tu) = 1

2
t2‖u‖2 − 1

2∗(s)
t2

∗(s)
∫

�

(u+)2
∗(s)

|y|s dx −
∫

�

F(x, tu+)dx

≤ 1

2
t2‖u‖2 − 1

2∗(s)
t2

∗(s)
∫

�

(u+)2
∗(s)

|y|s dx,

then lim
t→+∞ I (tu) → −∞. Thus, we can find t ′ > 0 such that I (t ′u) < 0 when

‖t ′u‖ > r . According to the Mountain Pass Lemma (see [25]), there exists a sequence
{un} ⊂ H1

0 (�), such that as n → ∞,

I (un) → c > α and (1 + ‖un‖)‖I ′(un)‖ → 0 in
(
H1
0 (�)

)′
,

where

c = inf
γ∈�

max
t∈[0,1] I (γ (t)),

� = {γ ∈ C([0, 1], H1
0 (�))|γ (0) = 0, γ (1) = t ′u}.

It is easy to obtain that ( f2) leads to ( f5), then Lemma 2.2 holds if we replace ( f5) by
( f2). By the definition of c and Lemma 2.2, we obtain

0 < α < c = inf
γ∈�

max
t∈[0,1] I (γ (t)) ≤ max

t∈[0,1] I (t t
′u) ≤ sup

t≥0
I (tu) <

2 − s

2(N − s)
S

2∗(s)
2∗(s)−2
μ .

First, we claim that {un} is bounded in H1
0 (�). Indeed, by ( f2), for any ε > 0, there

exists M > 0, such that

|F(x, t)| ≤ ε|t |2∗(s), x ∈ �, t ≥ M; |F(x, t)| ≤ C1(ε), t ∈ (0, M];
| f (x, t)t | ≤ ε|t |2∗(s), x ∈ �, t ≥ M; | f (x, t)t | ≤ C2(ε), t ∈ (0, M].

Thus, we have

|F(x, t)| ≤ C1(ε) + ε|t |2∗(s), | f (x, t)t | ≤ C2(ε) + ε|t |2∗(s), (2.19)
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for any (x, t) ∈ � × R
+. Then, for ξ ∈ (2, 2∗(s)), one has

F(x, t) − 1

2
f (x, t)t ≤ F(x, t) − 1

ξ
f (x, t)t ≤ C3(ε) + ε|t |2∗(s), (2.20)

for any (x, t) ∈ � ×R
+. Set l(x, t) � |y|−s |t |2∗(s)−1 + f (x, t), we claim that l(x, t)

satisfies the (AR) condition. By (2.20), one easily gets

ξL(x, t) − l(x, t)t =
(

ξ

2∗(s)
− 1

)

|y|−s |t |2∗(s) + (
ξF(x, t) − f (x, t)t

)

≤
(

ξ

2∗(s)
− 1

)

|y|−s |t |2∗(s) + ξC4(ε) + ξε|t |2∗(s)

=
( (

ξ

2∗(s)
− 1

)

|y|−s + ξε

)

|t |2∗(s) + ξC4(ε),

so for ε > 0 sufficiently small, there exists M ′ > 0, such that

0 ≤ ξL(x, t) ≤ l(x, t)t, x ∈ �\{(0, z0)}, t ≥ M ′,

where L(x, t) =
∫ t

0
l(x, s)ds. Moreover, by ( f2), we obtain

L(x, t) − 1

ξ
l(x, t)t ≤ max

x∈�\{(0,z0)},0≤t≤M ′

(

F(x, t) − 1

ξ
f (x, t)t

)

� M0.

It follows from the inequalities above that

L(x, t) − 1

ξ
l(x, t)t ≤ M0, for all x ∈ �\{(0, z0)}, t ≥ 0. (2.21)

Then, one has

c + 1 + o(1) ≥ I (un) − 1

ξ
〈I ′(un), un〉

=
(
1

2
− 1

ξ

)

‖un‖2 +
(
1

ξ
− 1

2∗(s)

) ∫

�

(u+
n )2

∗(s)

|y|s dx

−
∫

�

(

F(x, u+
n ) − 1

ξ
f (x, u+

n )u+
n

)

dx

≥
(
1

2
− 1

ξ

)

‖un‖2 −
∫

�

(

L(x, u+
n ) − 1

ξ
l(x, u+

n )u+
n

)

dx

≥
(
1

2
− 1

ξ

)

‖un‖2 − M0|�|.

Thus, {un} is bounded. Due to the continuity of embedding H1
0 (�) ↪→ L2∗(s)(�),

we have
∫

�

|un|2∗(s)dx ≤ C < ∞. Up to a subsequence, still denoted by {un}, there
exists u0 ∈ H1

0 (�) satisfying
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un ⇀ u0, weakly in H1
0 (�),

un → u0, strongly in L p(�), 1 ≤ p < 2∗,
un(x) → u0(x), a.e. in �,

u2
∗(s)−1

n ⇀ u2
∗(s)−1

0 , weakly in
(
L2∗(s)(�, |y|−sdx)

)′
,

(2.22)

as n → ∞. By ( f2), for any ε > 0, there exists a(ε) > 0 such that

|F(x, t)| ≤ 1

2C24
ε|t |2∗(s) + a(ε) for (x, t) ∈ � × R

+.

Set δ = ε
2a(ε)

> 0. When E ⊂ �, meas E < δ, one gets

∣
∣
∣
∣

∫

E
F(x, u+

n )dx

∣
∣
∣
∣ ≤

∫

E
|F(x, u+

n )|dx
≤

∫

E
a(ε)dx + 1

2C24
ε

∫

E
|un|2∗(s)dx

≤ a(ε)measE + 1

2C24
εC24

≤ ε.

Hence,

{ ∫

�

F(x, u+
n )dx, n ∈ N

}

is equi-absolutely continuous. It follows from the

Vitali Convergence Theorem that

∫

�

F(x, u+
n )dx →

∫

�

F(x, u+
0 )dx, (2.23)

as n → ∞. Applying the same method, one has

∫

�

f (x, u+
n )undx →

∫

�

f (x, u+
0 )u0dx (2.24)

By (2.22) and (2.24), we have

lim
n→+∞〈I ′(un), v〉 =

∫

�

(

(∇u0,∇v) − μ
u0v

|y|2
)

dx −
∫

�

(u+
0 )2

∗(s)−1v

|y|s dx

−
∫

�

f (x, u+
0 )vdx = 0,

(2.25)

for all v ∈ H1
0 (�). Thus, u0 is a critical point of I , that is, u0 is a solution of problem

(1.1). Now we verify that u0 �≡ 0. Let v = u0 in (2.25), we get

‖u0‖2 −
∫

�

(u+
0 )2

∗(s)

|y|s dx −
∫

�

f (x, u+
0 )u0dx = 0. (2.26)
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Set wn = un − u0, then we have

∫

�

|∇un|2dx =
∫

�

|∇u0|2dx +
∫

�

|∇wn|2dx + o(1). (2.27)

From Brézis–Lieb’s lemma (see [3]), it follows that

∫

�

u2n
|y|2 dx =

∫

�

u20
|y|2 dx +

∫

�

w2
n

|y|2 dx + o(1). (2.28)

∫

�

(u+
n )2

∗(s)

|y|s dx =
∫

�

(u+
0 )2

∗(s)

|y|s dx +
∫

�

(w+
n )2

∗(s)

|y|s dx + o(1). (2.29)

By (2.23) and (2.27)–(2.29), one has

I (un) = I (u0) + 1

2
‖wn‖2 − 1

2∗(s)

∫

�

(w+
n )2

∗(s)

|y|s dx = c + o(1). (2.30)

Since 〈I ′(un), un〉 = o(1), combining with (2.23), (2.26), one has

‖wn‖2 −
∫

�

(w+
n )2

∗(s)

|y|s dx = o(1).

We may assume that as n → ∞,

‖wn‖2 → b,
∫

�

(w+
n )2

∗(s)

|y|s dx → b.

Clearly, b ≥ 0.We now suppose that u0 ≡ 0. If b = 0, then from (2.30), c = I (0) = 0,
which contradicts with c > 0. If b �= 0, we have from the definition of Sμ that

‖wn‖2 =
∫

�

(

|∇wn|2 − μ
w2
n

|y|2
)

dx ≥ Sμ

(∫

�

(w+
n )2

∗(s)

|y|s dx

) 2
2∗(s)

,

and b ≥ Sμb
2

2∗(s) , together with (2.30), we deduce

c + o(1) = I (u0) + 1

2
‖wn‖2 − 1

2∗(s)

∫

�

(w+
n )2

∗(s)

|y|s dx + o(1)

= I (u0) + o(1) +
(
1

2
− 1

2∗(s)

)

b

≥ 2 − s

2(N − s)
S

2∗(s)
2∗(s)−2
μ + o(1),
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which contradicts c <
2 − s

2(N − s)
S

2∗(s)
2∗(s)−2
μ . Therefore, u0 �≡ 0 and u0 is a nontrivial

solution of problem (2.1). Then, by 〈I ′(u0), u−
0 〉 = 0 where u−

0 = min{u0, 0}, one
has ‖u−

0 ‖ = 0, which implies that u0 ≥ 0. From (2.25), we get
∫

�

(∇u0,∇v)dx ≥ 0

for any v ∈ H1
0 (�), which means −�u0 ≥ 0 in �. By the strong maximum principle,

we know u0 is a positive solution of problem (1.1). Therefore, Theorem 1 holds. ��
Proof of Theorem 2 Obviously, ( f4) and ( f5) can ensure that I has a mountain pass
geometry and then there exists a (Ce)c sequence {un}, that is,

I (un) → c and (1 + ‖un‖)‖I ′(un)‖ → 0 as n → ∞.

We claim that {un} is bounded. In fact, there exists n0 > 0, such that for n ≥ n0, one
has

c + 1 ≥ I (un) − 1

2
〈I ′(un), un〉

=
(
1

2
− 1

2∗(s)

) ∫

�

(u+
n )2

∗(s)

|y|s dx +
∫

�

F̃(x, u+
n )dx

≥
∫

�

F̃(x, u+
n )dx .

(2.31)

Set

g(r) := inf

{

F̃(x, u) : x ∈ �, |u| ≥ r

}

.

By Remark 2, one deduces g(r) → +∞ as r → +∞. For 0 ≤ a < b, let

�n(a, b) :=
{

x ∈ �, a ≤ u+
n (x) < b

}

and

Cb
a := inf

{
F̃(x, u)

u2
: x ∈ �, a ≤ |u(x)| < b

}

;

thus for all x ∈ �n(a, b), one obtains

F̃
(
x, u+

n (x)
) ≥ Cb

a (u
+
n (x))2.

It follows from (2.31) that

c + 1 ≥
∫

�n(0,b)
F̃(x, u+

n )dx +
∫

�n(b,+∞)

F̃(x, u+
n )dx

≥ Cb
0

∫

�n(a,b)
|u+

n |2dx + g(b)|�n(b,+∞)|.
(2.32)
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Arguing directly, assume ‖un‖ → +∞. Set vn = un
‖un‖ , then ‖vn‖ = 1 and

∫

�

|vn|sdx ≤ Ms for all s ∈ [2, 2∗]. Using (2.32),

|�n(b,+∞)| ≤ c + 1

g(b)
→ 0, (2.33)

uniformly in n ≥ n0 as b → +∞. And for any fixed 0 ≤ a < b,

∫

�n(a,b)
(v+

n )2dx = 1

‖un‖2
∫

�n(a,b)
(u+

n )2dx ≤ C

‖un‖2 → 0, (2.34)

as n → ∞. It follows from (2.33) and the Hölder inequality that for r ∈ [2, 2∗],
p ∈ (r, 2∗), and a suitable constant C∗,

∫

�n(b,+∞)

(v+
n )rdx ≤ C∗|�n(b,∞)| p−r

p → 0, (2.35)

uniformly in n ≥ n0 as b → +∞. Let ε > 0, by ( f4), there exists aε > 0 such that

| f (x, u)| ≤ ε

M2
|u| for all |u| < aε. Consequently,

∫

�n(0,aε)

f (x, u+
n )

u+
n

(v+
n )2dx ≤

∫

�n(0,aε)

ε

M2
(v+

n )2dx ≤ ε, (2.36)

for all n. Combining ( f7), (2.31) with (2.35), we can take bε so large that

∫

�n(bε,+∞)

f (x, u+
n )

u+
n

(v+
n )2dx

≤
( ∫

�n(bε,+∞)

∣
∣
∣
∣
f (x, u+

n )

u+
n

∣
∣
∣
∣

τ

dx

) 1
τ
(∫

�n(bε,+∞)

(v+
n )αdx

) 2
α

≤
( ∫

�n(bε,+∞)

a1 F̃(x, u+
n )dx

) 1
τ
(∫

�n(bε,+∞)

(v+
n )αdx

) 2
α

≤ ε,

(2.37)

for all n ≥ n0, where α = 2τ

τ − 1
. Note that there is γ = γ (ε) > 0 independent of n

such that | f (x, u+
n )| ≤ γ u+

n for x ∈ �n(aε, bε). By (2.34), there exists n1 > 0 such
that ∫

�n(aε,bε)

f (x, u+
n )

u+
n

(v+
n )2dx ≤ γ

∫

�n(aε,bε)

(v+
n )2dx ≤ ε, (2.38)

for all n ≥ n1. Now (2.36), (2.37), and (2.38) imply that

∫

�

f (x, u+
n )u+

n

‖un‖2 dx =
∫

�

f (x, u+
n )

u+
n

(v+
n )2dx < 3ε, (2.39)
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for n ≥ max{n0, n1}. Since ‖vn‖ = 1, passing to a subsequence, there exists v ∈
H1
0 (�), such that

⎧
⎪⎨

⎪⎩

vn ⇀ v, weakly in H1
0 (�),

vn → v, strongly in L p(�), 1 ≤ p < 2∗,
vn(x) → v(x), a.e. in �.

Set �′ = {x ∈ � : v+(x) �= 0}, if meas �′ >0, then u+
n (x) → +∞ for a.e. x ∈ �′.

By ( f6), it is easy to get that for any M > 0, there exists C(M) > 0 such that

f (x, u+
n )u+

n ≥ M(u+
n )2 − C(M)

for all x ∈ � and n large enough. Hence,

∫

�

f (x, u+
n )u+

n

‖un‖2 dx ≥ M
∫

�

(v+
n )2dx − C(M)

‖un‖2 ,

then

0 = lim
n→∞

∫

�

f (x, u+
n )u+

n

‖un‖2 dx ≥ M
∫

�

(v+)2dx > 0,

which is a contradiction. Hence, meas �′=0. Therefore, v+(x) = 0 a.e. x ∈ �. By
Remark 2, for any m > 0, there exists L0 > 0 such that

t f (x, t) − 2F(x, t) ≥ m > 0,

for t > L0. It follows from ( f4) and ( f5) that |F(x, t)| ≤ C25(t
2 + t2

∗
) for all

(x, t) ∈ � × R
+. Hence, we have, for x ∈ � and |t | ≤ L0,

|t f (x, t) − 2F(x, t)| ≤ C26t
2,

where C26 = 2C25(1 + L2∗−2
0 ). The two inequalities above show that

t f (x, t) − 2F(x, t) ≥ −C27t
2, (2.40)

for all (x, t) ∈ � × R
+. From (1 + ‖un‖)‖I ′(un)‖ → 0, one has 〈I ′(un), un〉 → 0,

that is,

‖un‖2 −
∫

�

(u+
n )2

∗(s)

|y|s dx −
∫

�

f (x, u+
n )u+

n dx = o(1),
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and combining with (2.31), one deduces

c + 1 + o(1) ≥ I (un) − 1

2
〈I ′(un), un〉

=
(
1

2
− 1

2∗(s)

)

‖un‖2 −
(
1

2
− 1

2∗(s)

) ∫

�

f (x, u+
n )u+

n dx

+1

2

∫

�

(
f (x, u+

n )u+
n − 2F(x, u+

n )
)
dx .

Consequently, together with (2.39) and (2.40), we deduce

1

‖un‖2
(

c + 1 + o(1)

)

≥
(
1

2
− 1

2∗(s)

)

− 1

‖un‖2
(
1

2
− 1

2∗(s)

)∫

�

f (x, u+
n )u+

n dx

+ 1

2‖un‖2
∫

�

(
f (x, u+

n )u+
n − 2F(x, u+

n )
)
dx

≥
(
1

2
− 1

2∗(s)

)

− 3

(
1

2
− 1

2∗(s)

)

ε − C27

∫

�

(v+
n )2dx,

which implies 0 ≥ 1

2
− 1

2∗(s)
as n → ∞, a contradiction. Thus, {un} is bounded.

It is obvious that ( f4) leads to ( f1) and then Lemma 2.2 is also true if we replace
( f1) by ( f4). Thanks to ( f4), ( f5), and Lemma 2.2, similar to the proof of Theorem
1, we obtain a positive solution of problem (1.1). ��

Proof of Theorem 3 Due to ( f1), ( f5), and Lemma 2.2, one obtains that the proof of
Theorem 3 is similar to the proof of Theorem 2 and we only need to prove that the
(Ce)c sequence is bounded. In fact, let {un} ⊂ H1

0 (�) be a (Ce)c sequence, that is,

I (un) → c and (1 + ‖un‖)‖I ′(un)‖ → 0 as n → ∞. (2.41)

Assume that {un} is unbounded, there is a subsequence of {un} (still denoted by
{un}) satisfying ‖un‖ → +∞. Set ωn = un‖un‖ , then ‖ωn‖ = 1. Then, there exists

ω ∈ H1
0 (�) such that

⎧
⎪⎨

⎪⎩

ωn ⇀ ω, weakly in H1
0 (�),

ωn → ω, strongly in L p(�), 1 ≤ p < 2∗,
ωn(x) → ω(x), a.e. in �,

(2.42)

as n → ∞. We claim that ω+ = 0. It follows from (2.41) that

‖un‖2 −
∫

�

(u+
n )2

∗(s)

|y|s dx −
∫

�

f (x, u+
n )u+

n dx = o(1),
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which implies

∫

�

f (x, u+
n )u+

n dx = ‖un‖2 −
∫

�

(u+
n )2

∗(s)

|y|s dx + o(1) ≤ ‖un‖2 + o(1).

Then, ∫

�

f (x, u+
n )u+

n

‖un‖2 dx ≤ 1 + o(1). (2.43)

For x ∈ �+ := {x ∈ � : ω+(x) > 0}, u+
n (x) → +∞ as n → ∞. Combining with

( f6), we have

lim
n→∞

f (x, u+
n )

u+
n

(ω+
n )2 = +∞, a.e. x ∈ �+. (2.44)

If meas �+ > 0, using the Fatou’s lemma, (2.44) implies that as n → ∞,

∫

ω>0

f (x, u+
n )

u+
n

(ω+
n )2dx → +∞.

From (2.43), one has

1 + o(1) ≥
∫

�

f (x, u+
n )u+

n

‖un‖2 dx ≥
∫

�+
f (x, u+

n )

u+
n

(ω+
n )2dx → +∞,

which is a contradiction; then, one has meas �+ = 0, that is, ω+ = 0. Set a sequence

{tn} of real numbers such that I (tnu+
n ) = max

t∈[0,1] I (tu
+
n ). Let vn = S

2∗(s)
2(2∗(s)−2)
μ ωn , due to

the continuity of embedding H1
0 (�) ↪→ L2∗

(�), we have
∫

�

|vn|2∗
dx ≤ C23 < ∞.

By ( f5) and the same method as the proof of Theorem 1, one has

∫

�

F(x, v+
n )dx →

∫

�

F(x, 0)dx = 0,

as n → ∞. Because ‖un‖ → +∞ as n → ∞, one has
S

2∗(s)
2(2∗(s)−2)
μ

‖un‖ ∈ [0, 1] for n large

enough. By the definition of tn and vn = S
2∗(s)

2(2∗(s)−2)
μ

‖un‖ un , one has

I (tnun) ≥ I (vn) = 1

2
‖vn‖2 − 1

2∗(s)

∫

�

(v+
n )2

∗(s)

|y|s dx −
∫

�

F(x, v+
n )dx

≥ 1

2
‖vn‖2 − 1

2∗(s)
S

− 2∗(s)
2

μ ‖vn‖2∗(s) −
∫

�

F(x, v+
n )dx

=
(
1

2
− 1

2∗(s)

)

S
2∗(s)

2∗(s)−2
μ −

∫

�

F(x, v+
n )dx,
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which implies that I (tnun) → +∞ as n → ∞. Noting that I (0) = 0, I (un) → c,
thus 0 < tn < 1 when n is large enough. It follows that

∫

�

(

|∇(tnun)|2 − μ
(tnun)2

|y|2
)

dx −
∫

�

(tnu+
n )2

∗(s)

|y|s dx −
∫

�

f (x, tnu
+
n )tnu

+
n dx

= 〈I ′(tnun), tnun〉 = tn
d I (tnun)

dt
|t=tn= 0.

By ( f8), for 0 ≤ tn ≤ 1, we have θH(x, u+
n ) ≥ H(x, tnu+

n ) − θ0, then

∫

�

(
1

2
f (x, u+

n )u+
n − F(x, u+

n )

)

dx

= 1

2

∫

�

H(x, u+
n )dx

≥ 1

2θ

∫

�

(

H(x, tnu
+
n ) − θ0

)

dx

= 1

θ

∫

�

(
1

2
f (x, tnu

+
n )tnu

+
n − F(x, tnu

+
n )

)

dx − θ0

2θ
|�|

= 1

θ

(
1

2
‖tnun‖2 − 1

2

∫

�

(tnu+
n )2

∗(s)

|y|s dx −
∫

�

F(x, tnu
+
n )dx

)

− θ0

2θ
|�|

= 1

θ
I (tnun) + 1

θ

(
1

2∗(s)
− 1

2

) ∫

�

(tnu+
n )2

∗(s)

|y|s dx − θ0

2θ
|�|,

which implies that

∫

�

(
1

2
f (x, u+

n )u+
n − F(x, u+

n )

)

dx + 1

θ

(
1

2
− 1

2∗(s)

) ∫

�

(tnu+
n )2

∗(s)

|y|s dx

≥ 1

θ
I (tnun) − θ0

2θ
|�|

→ +∞, (2.45)

as n → ∞. But by θ ≥ 1 and 0 ≤ tn ≤ 1, we have
t2

∗(s)
n

θ
≤ 1; then, it follows from

(2.41) that
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c + 1 + o(1) ≥ I (un) − 1

2
〈I ′(un), un〉

≥
(
1

2
− 1

2∗(s)

) ∫

�

(u+
n )2

∗(s)

|y|s dx

+ ∫

�

( 1
2 f (x, u+

n )u+
n − F(x, u+

n )
)
dx

≥ 1

θ

(
1

2
− 1

2∗(s)

)∫

�

(tnu+
n )2

∗(s)

|y|s dx

+
∫

�

(
1

2
f (x, u+

n )u+
n − F(x, u+

n )

)

dx,

which contradicts (2.45). Therefore, {un} is bounded. ��
Proof of Theorem 4 It is obvious that ( f9) leads to ( f5) and then Lemma 2.2 is also
true if we replace ( f5) by ( f9). Due to ( f1), ( f9), and Lemma 2.2, one obtains that the
proof of Theorem 4 is similar to the proof of Theorem 2, and we only need to prove
that the (Ce)c sequence is bounded. In fact, let {un} ⊂ H1

0 (�) be a (Ce)c sequence,
that is,

I (un) → c and (1 + ‖un‖)‖I ′(un)‖ → 0 as n → ∞. (2.46)

By ( f10), there exist positive constants D, C28 > 0, such that

f (x, t)t − 2F(x, t) ≥ D|t |σ − C28, (2.47)

for all t ∈ R
+ and a.e. x ∈ �. Together with (2.46), one has

2c + 1 + o(1) ≥ 2I (un) − 〈I ′(un), un〉
=

(

1 − 2

2∗(s)

) ∫

�

(u+
n )2

∗(s)

|y|s dx +
∫

�

(

f (x, u+
n )un − 2F(x, u+

n )

)

dx

≥
(

1 − 2

2∗(s)

) ∫

�

(u+
n )2

∗(s)

|y|s dx + D
∫

�

|un|σ dx − C28|�|.

From above, we easily obtain that there exist constants C29, C30 > 0 such that

∫

�

(u+
n )2

∗(s)

|y|s dx ≤ C29,

∫

�

|un|σdx ≤ C30.

By ( f9), for any ε > 0, there exists a(ε) > 0 such that

|F(x, t)| ≤ εtq + a(ε) for (x, t) ∈ � × R
+,

then it follows that

1

2
‖un‖2 − I (un) = 1

2∗(s)

∫

�

(u+
n )2

∗(s)

|y|s dx +
∫

�

F(x, u+
n )dx

≤ C29

2∗(s)
+ C31

∫

�

|un|qdx + a(ε)|�|.
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By the Gagliardo–Nirenberg interpolation inequality, one has

∫

�

|un|qdx ≤
(∫

�

|un|σdx
) qt

σ
(∫

�

|un|2∗
dx

) q(1−t)
2∗

,

where 0 < σ ≤ q < 2∗, 1
q

= t

σ
+ 1 − t

2∗ , and t ∈ (0, 1]. Then, we deduce from

above inequality and Sobolev inequality

1

2
‖un‖2 ≤ C29

2∗(s)
+ a(ε)|�| + C31

∫

�

|un|qdx + I (un)

≤ C29

2∗(s)
+ C31

(∫

�

|un|σdx
) qt

σ
(∫

�

|un|2∗
dx

) q(1−t)
2∗ + a(ε)|�| + c + 1

≤ C29

2∗(s)
+ C32‖un‖q(1−t) + a(ε)|�| + c + 1.

Since by definition of q, we have q(1 − t) = 2∗(q − σ)

2∗ − σ
with σ >

N (q − 2)

2
, it

follows that q(1 − t) < 2. Thus, {un} is bounded. ��
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