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Abstract By establishing two new impulsive delay differential inequalities from
impulsive perturbation and impulsive control point of view, respectively, constructing
some Lyapunov functionals, and employing the matrix measure approach, some novel
and sufficient conditions are obtained to guarantee global power stability of neural
networks with impulses and proportional delays. The obtained stability criteria are
dependent on impulses and the proportional delay factor so that it is convenient to
derive some feasible impulsive control laws according to the proportional delay factor
allowed by such neural networks. It is shown that impulses can act as stabilizers to
globally power stabilize an unstable neural network with proportional delay based on
suitable impulsive control laws. Moreover, the power convergence rate can be esti-
mated and obtained by simple computation. Three numerical examples are given to
illustrate the effectiveness and advantages of the results obtained.
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1 Introduction

The stability problem of delayed neural networks has been extensively studied
over the past two decades for their potential applications in parallel computa-
tion, pattern recognition, associative memory complicated optimization, and so on,
see [4,6,21,25,32,35] and the references cited therein. Here, we would like to point
out that proportional delay is one of the many delay types, and the correspond-
ing systems with proportional delays have been used to model various problems
in many fields including population biology, electrodynamics, control theory, and
Web quality of service routing decision [1,8,9,14,22]. The proportional delay func-
tion τ(t) = (1 − q)t → +∞ as t → +∞, where the proportional delay factor
q is a constant and satisfies 0 < q < 1, and hence it is different from constant
delay and bounded time-varying delay. Meanwhile, although proportional delay and
unboundeddistributed delay are all unbounded timedelay, they are different each other.
Unbounded distributed delay [3,7,12,16,28,36,43] often requires that the delay ker-
nel functions ki j : R+ → R+ satisfy

∫ ∞
0 ki j (s)ds = 1,

∫ ∞
0 ski j (s)ds < ∞, or there

exist a positive numberμ such that
∫ ∞
0 eμski j (s)ds < ∞. The use of these inequalities

can make distributed delay easier to handle. Compared with unbounded distributed
delay, due to τ(t) = (1 − q)t → +∞ as t → +∞ and there being no any other
conditions, it is relatively difficult to deal with proportional delay in the derivation of
dynamic behaviors of systems. Therefore, it is necessary to investigate the dynamics
of systems with proportional delays. To be noted that the presence of an amount of
parallel pathways of a variety of axon sizes and lengths usually leads to the spatial
structure of neural networks, it is reasonable to introduce proportional delays into the
neural networks. In an amount of parallel pathways, affected by different materials
and topology, there may be some unbounded delays that are proportional to the time;
thus, we should choose suitable proportional delay factors in view of different cases
and adopt proportional delays to characterize these unbounded delays [42]. In addi-
tion, the proportional delay function τ(t) = (1 − q)t is monotonically increasing
with respect to time t > 0; then, one can control conveniently the system’s running
time according to the time delays of networks [41]. However, because of its special
structure and unboundedness nature, the study of the dynamics of neural networks
with proportional delays has been recognized to be difficult. As a result, neural net-
work models with proportional delays have received much consideration and some
interesting results for stability of neural networks with proportional delays have been
obtained in recent years, see [33,37–42] and references therein.

On the other hand, besides delay effects, impulsive phenomena can be found in
a wide variety of evolutionary process, particularly some biological systems such
as biological neural networks and bursting rhythm models in pathology. Therefore,
neural network models with delays and impulsive effects should be more accurate
to describe the evolutionary process of the systems [34]. The stability analysis for
delayed neural networkswith impulses has attracted considerable attention, and a large
number of results have been reported during the past two decades [2,3,5,15–19,23,27–
29,36,43]. For example, Rakkiyappan et al. [23] studied global exponential stability
of impulsive neural networks with bounded time-varying delays or constant delays
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by using Lyapunov–Krasovskii method and LMI techniques. Stamova et al. [27,29]
addressed global exponential stability for a class of impulsive neural networks with
bounded and unbounded distributed delays by applying piecewise continuous Lya-
punov functions andRazumikhin technique. Zhou in [43] dealt with global exponential
stability of BAM neural networks with unbounded distributed delays and impulses by
constructing Lyapunov functional and employing some analysis techniques. Li and
Rakkiyappan [16] studied the chaotic synchronization problem of neural networks
with bounded time-varying and unbounded distributed delays by utilizing the sta-
bility theory for impulsive functional differential equations and LMI approach. As
pointed out in [13], though for functional differential equations without impulses,
stability results established for equations with bounded delays are not obviously true
in general for unbounded delays. In addition, due to the restrictions imposed on the
delay kernel functions, the stability results obtained for unbounded distributed delays
are not valid for proportional delays. Thus, almost of all the existing stability results
for impulsive systems with bounded delays and unbounded distributed delays cannot
be applied to impulsive systems with proportional delays. As we know, proportional
delay may occur in neural processing and signal transmission, which can cause insta-
bility and even chaos behaviors [41,42]; a system in real life is often subjected to
instantaneous perturbations and experiences abrupt changes at certain moments of
time, and the presence of impulsive effect is often a key factor that affects the system
performances [34]. Therefore, it is of great significance to investigate the stability
and stabilization of neural networks with proportional delays and impulsive effects.
To date, there is few papers dealing with the stability problem of impulsive systems
with proportional delays [10,19,26], though many interesting results on stability and
stabilization of systems with unbounded time-varying delays, especially proportional
delays, have been reported in the literature [20,24,30,33,37–42]. Guan and Luo [10]
obtained some Razumikhin-type theorems on asymptotic stability of impulsive dif-
ferential systems with proportional delays by using the auxiliary function P , where
P(s) > Ms, M = ∏∞

k=1(1 + βk). However, it is difficult to choose an appropriate
function P since the presented Razumikhin condition is dependent on the concrete
value of the impulsive constant M . Song et al. [26] obtained some results for global
asymptotic stability of cellular neural networks (CNNs) with impulses and propor-
tional delays by using the nonlinear transformation y(t) = x(et ) to transform the
CNNs with impulses and proportional delays into certain equivalent impulsive CNNs
with time-varying coefficients and constant delays. It can be seen that, by means of the
variable transformation, systems with proportional delays do become certain equiva-
lent systems with constant delays and one may use the transformation on occasions,
but it does not always simplify the analysis. Li and Cao [19] recently introduced
a novel impulsive delay inequality to investigate the stability problem of impulsive
systems with unbounded time-varying delays from impulsive perturbation point of
view, but not impulsive control point of view. Moreover, it can be found that in these
results [10,19,26], impulses act as perturbations rather than stabilizers, and the sta-
bility results obtained in [10,26] are independent of time delays. It is well known that
the delay-dependent criteria are less conservative than the delay-independent ones,
and delay-dependent stability criteria are related to the size of delay so that they can
be used to design some better networks according to the allowed time delays of net-

123



2240 K. Guan

works. Therefore, it has both theoretical significance and practical value to employ
some new methods to establish certain suitable delay-dependent stability criteria for
NNs with proportional delays and impulses. It is noted that, by applying the matrix
measure approach and constructing some Lyapunov functions, Bai [5] obtained some
novel conditions ensuring global exponential stability for impulsiveNNswith bounded
time-varying delays. Since matrix measure can have positive as well as negative val-
ues, whereas a norm can assume only nonnegative values, the obtained results using
matrix measure are more precise than the ones using norms.

Motivated by the above consideration and particularly inspired by the work
of [5,19], a natural and interesting idea is to study the stability problem of NNs
with impulses and proportional delays by using the matrix measure method combined
with new inequality techniques. To the best of our knowledge, the global power sta-
bility of impulsive neural networks with proportional delays by the matrix measure
approach is seldom discussed. The remainder of this paper is organized as follows.
In Sect. 2, model description and preliminaries are presented, and two novel impul-
sive delay differential inequalities involving proportional delay are established from
impulsive perturbation and impulsive control point of view, respectively. In Sect. 3,
based on the two inequalities obtained, some global power stability criteria are estab-
lished by constructing some Lyapunov functionals and applying the matrix measure
approach. In Sect. 4, three numerical examples are given to illustrate the effectiveness
and advantages of our results. Some conclusions are given in Sect. 5.

2 Preliminaries and Model Description

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, Z+ the
set of positive integers, and Rn the n-dimensional real vector space, respectively. For
any interval J ⊆ R, set C(J,Rn) = {ψ : J → R

n is continuous} and PC(J,Rn) =
{ψ : J → R

n|ψ(t+) = ψ(t) for t ∈ J, ψ(t−) exists for t ∈ J , ψ(t−) = ψ(t) for all
but points tk ∈ J }. For x = (x1, . . . , x2)T ∈ R

n , the vector norm ‖x‖p (p = 1, 2,∞)

is defined as

‖x‖1 =
n∑

i=1

|xi |, ‖x‖2 =
( n∑

i=1

x2i

) 1
2
, ‖x‖∞ = max

1≤i≤n
|xi |.

And for a real square matrix A = (ai j )n×n ∈ R
n×n , the matrix measure of A is defined

as follows [5,31]:

μp(A) = lim
h→0+

‖E + hA‖p − 1

h
, (2.1)

where ‖ · ‖p is an induced matrix norm on Rn×n , E is the identity matrix with appro-
priate dimensions, and p = 1, 2,∞. The matrix measure μp(·) defined in (2.1) has
the following properties, and for the details of the ‖ · ‖p and μp(·), we refer the reader
to [5,31].
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Lemma 2.1 [5,31] Let A, B ∈ R
n×n and α ≥ 0. Then,

(1) − ‖A‖p ≤ μp(A) ≤ ‖A‖p; (2) μp(αA) = αμp(A);
(3) μp(A + B) ≤ μp(A) + μp(B).

Consider the following NNs with impulses and proportional delay

{
y′(t) = Ay(t) + BF(y(t)) + CG(y(qt))

) + I, t 
= tk, t ≥ 1,
�y(tk) = y(tk) − y(t−k ) = − Dk y(t

−
k ), k ∈ Z+,

(2.2)

where y ∈ R
n is the state vector of (2.2) and y′ denotes the right-hand derivative of

y; F,G : Rn → R
n are two activation functions; y(qt) = (y1(qt), · · ·, yn(qt))T;

q ∈ (0, 1) is proportional delay factor and qt = t − (1− q)t , in which (1− q)t is the
transmission delay; I = (I1, I2, · · ·, In)T is the external input; tk denotes the moment
when impulse occurs, 1 = t0 < t1 < . . . < tk < tk+1 < . . ., with limt→∞ tk = ∞; at
time instant tk , jumps in the state variable y are denoted by �y(tk) = y(tk) − y(t−k ),
where y(tk) = y(t+k ) and y(t−k ) = limt→t−k

y(t) exists; A, B,C, Dk ∈ R
n×n, where

Dk is usually called impulsive matrix.

Definition 2.1 A function y(t) : [q,+∞) → R
n is called a solution of system (2.2)

with the initial condition given by

y(t) = φ(t), φ ∈ C([q, 1],Rn), (2.3)

if y(t) is continuous at t 
= tk and t ≥ 1, y(tk) = y(t+k ) and y(t−k ) = limt→t−k
y(t)

exists, y(t) satisfies (2.2) for t ≥ 1 under the initial condition. Especially, a point
y∗ = (y∗

1 , · · ·, y∗
n )

T ∈ R
n is said to be an equilibrium point of (2.2), if y(t) = y∗

is a solution of (2.2), i.e., Ay∗ + BF(y∗) + CG(y∗) + I = 0 (zero matrix) and
Dk y∗ = 0, k ∈ Z+.

For any φ ∈ C([q, 1],Rn), we assume that there exists on the interval [q,∞)

a unique solution of the system (2.2) with the initial condition (2.3). Let y∗ be an
equilibrium point of (2.2), y(t) be any solution of (2.2), and x(t) = y(t) − y∗.
Substituting them into (2.2), we get the following NNs with impulses and proportional
delay

{
x ′(t) = Ax(t) + B f (x(t)) + Cg

(
y(qt)

)
, t 
= tk, t ≥ 1,

�x(tk) = x(tk) − x(t−k ) = −Dkx(t
−
k ), k ∈ Z+,

(2.4)

where f (x(t)) = F(x(t) + y∗) − F(y∗), g(x(qt)) = G(x(qt) + y∗) − G(y∗).
It is clear that the stability of the equilibrium point y∗ of (2.2) is equivalent to the

stability of the zero solution of (2.4). In the present paper, we mainly investigate the
stability of the zero solution of (2.4). We assume that the functions f, g : Rn → R

n

satisfy f (0) = g(0) = 0 and certain conditions such that system (2.4) has on the
interval [q,∞) a unique zero solution with the initial condition φ(t) ≡ 0, t ∈ [q, 1].
For any φ ∈ C([q, 1],Rn), let x(t) = x(t, φ) denote the solution of (2.4) with the
initial condition x(t) = φ(t), t ∈ [q, 1]. We present the following definition.
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Definition 2.2 The zero solution of system (2.4) is said to be power-rate globally
stable with power convergence rate λ (or simply globally power stable) if for any
initial data φ ∈ C([q, 1],Rn), there exist constants λ > 0, M ≥ 1 such that

‖x(t)‖p = ‖x(t, φ)‖p ≤ M‖φ‖pt
−λ, t ≥ 1,

where ‖φ‖p = supq≤s≤1 ‖φ(s)‖p.

Remark 2.1 One can easily find that global power stability implies global asymptotic
stability.

In this paper, we always assume that
(H1) f, g : Rn → R

n are Lipschtz continuous functions: There exist two positive
constants l1, l2 such that

‖ f (x) − f (y)‖p ≤ l1‖x − y‖p, ‖g(x) − g(y)‖p ≤ l2‖x − y‖p, ∀ x, y ∈ R
n .

In order to establish our main results, we first establish two impulsive differential
inequalities involving proportional delay, which extend the famous Halanay differen-
tial inequality [11] and will play an important role in qualitative analysis of impulsive
systems with proportional delays.

Lemma 2.2 Suppose that a > b ≥ 0 and u(t) ∈ PC([1,∞),R+) satisfies the scalar
impulsive differential inequality

⎧
⎨

⎩

D+u(t) ≤ −au(t) + b
(
supqt≤s≤t u(s)

)
, t ≥ t0 = 1, t 
= tk,

u(tk) ≤ αku(t−k ), k ∈ Z+,

u(t) = φ(t), t ∈ [q, 1],
(2.5)

where αk ∈ R+, φ ∈ C([q, 1],R), and D+u(t) denotes the upper right-hand Dini
derivative of u(t) at t. Then

u(t) ≤
(
supq≤s≤1 ‖φ(s)‖p

)( ∏

1<tk≤t
θk

)
t−λ, t ≥ 1, (2.6)

where θk = max{1, αk} and λ > 0 is a solution of the inequality λ − a + bq−λ ≤ 0.

Proof Define the function h(λ) = λ−a+bq−λ, λ ∈ [0,+∞). Since a > b ≥ 0 and
0 < q < 1, simple computing fields that h(0) = −a + b < 0 and limλ→+∞ h(λ) =
+∞.One can see that there exists at least a solutionλ > 0 satisfyingλ−a+bq−λ ≤ 0.
Set φ̂ = supq≤s≤1 ‖φ(s)‖p, and it is easy to find that

u(t) ≤ φ̂ ≤ φ̂t−λ, t ∈ [q, 1]. (2.7)

We shall prove that (2.7) implies that

u(t) ≤ φ̂t−λ, t ∈ [1, t1). (2.8)

123



Global Power Stability of Neural Networks with Impulses… 2243

To this end, we consider the following two possible cases.
Case 1. b = 0. From (2.5) and (2.7), u(t) satisfies

D+u(t) ≤ −au(t), u(1) ≤ φ̂, t ∈ [1, t1).

Since a ≥ λ and the inequality ex ≥ 1 + x, x > 0, we can get

u(t) ≤ φ̂e−a(t−1) ≤ φ̂e−λ(t−1) ≤ φ̂t−λ, t ∈ [1, t1).

Case 2. b > 0. We claim that for any z > φ̂ ≥ 0,

u(t) ≤ zt−λ = y(t), t ∈ [1, t1). (2.9)

If (2.9) is not true, from (2.7) and the continuity of u(t), y(t) as t ∈ [1, t1), then there
must exist a t∗ ∈ (1, t1) such that

u(t∗) = y(t∗), D+u(t∗) ≥ y′(t∗), (2.10)

u(t) < y(t), t ∈ [q, t∗). (2.11)

Using (2.5), (2.10), (2.11) and noting that b > 0, we obtain

D+u(t∗) ≤ − au(t∗) + b
(

sup
qt∗≤s≤t∗

u(s)
)

< − ay(t∗) + by(qt∗) = z(−a + bq−λ)(t∗)−λ

≤ − λz(t∗)−λ < −λz(t∗)−λ−1 = y′(t∗),

which contradicts the inequality in (2.10). Thus, (2.9) holds for any z > φ̂. Letting
z → φ̂, we get (2.8).

Using (2.5), (2.7), and (2.8), we can get u(t1) ≤ α1u(t−1 ) ≤ θ1φ̂t
−λ
1 , and so

u(t) ≤ θ1φ̂t
−λ, t ∈ [qt1, t1]. (2.12)

Next, we prove that (2.12) implies that

u(t) ≤ θ1φ̂t
−λ, t ∈ [t1, t2). (2.13)

If b = 0, one can find that

D+u(t) ≤ −au(t), u(t1) ≤ θ1φ̂t
−λ
1 , t ∈ [t1, t2).
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Thus, a calculation gives us

u(t) ≤ u(t1)e
−a(t−t1) ≤ θ1φ̂t

−λ
1 e−a(t−t1)

≤ θ1φ̂t
−λ
1 e−λ(t−t1) = θ1φ̂t

−λ
1

(
e
t1
(

t
t1

−1
))−λ

≤ θ1φ̂t
−λ
1

(
e
(

t
t1

−1
))−λ ≤ θ1φ̂t

−λ, t ∈ [t1, t2).

If b > 0, one can also claim that for any z > θ1φ̂ ≥ 0,

u(t) ≤ zt−λ = y(t), t ∈ [t1, t2). (2.14)

If (2.14) is not true, from (2.12) and the continuity of u(t), y(t) as t ∈ [t1, t2), then
there must exist a t∗ ∈ (t1, t2) such that

u(t∗) = y(t∗), D+u(t∗) ≥ y′(t∗), (2.15)

u(t) < y(t), t < t∗. (2.16)

By using (2.5), (2.7), (2.8), (2.15), (2.16) and b > 0, we also obtain

D+u(t∗) ≤ − au(t∗) + b
(

sup
qt∗≤s≤t∗

u(s)
)

< − ay(t∗) + by(qt∗) = z(−a + bq−λ)(t∗)−λ

≤ − λz(t∗)−λ < −λz(t∗)−λ−1 = y′(t∗),

which contradicts the inequality in (2.15). Thus, (2.14) holds for any z > θ1φ̂. Letting
z → θ1φ̂, we obtain (2.13). Similarly, we also have u(t) ≤ θ1θ2φ̂t−λ, t ∈ [qt2, t2].
By a simple induction, we can obtain

u(t) ≤ θ1 . . . θk−1φ̂t
−λ, t ∈ [tk−1, tk), k ∈ Z+.

This implies (2.6), and so the proof is completed. ��
Lemma 2.3 Suppose that u(t) ∈ PC([1,∞),R+) satisfies the scalar impulsive dif-
ferential inequality

⎧
⎪⎪⎨

⎪⎪⎩

D+u(t) ≤ au(t) + b
(

sup
qt≤s≤t

u(s)
)
, t ≥ t0 = 1, t 
= tk,

u(tk) ≤ αku(t−k ), k ∈ Z+,

u(t) = φ(t), t ∈ [q, 1],
(2.17)

where a ∈ R, b > 0, 0 < αk < 1, and 1 < γ = supk∈Z+
{ 1

αk

}
< +∞. If there exists

a small enough positive number λ > 0 such that

a + 2λ + bγ q−λ < − ln(αk−1)

tk − tk−1
, k ∈ Z+, (2.18)
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then

u(t) ≤ γ
(

sup
q≤s≤1

‖φ(s)‖p

)
t−λ, t ≥ 1, (2.19)

where we define α0 = γ −1.

Proof From (2.18), we can choose a suitable positive constant σ > 0 such that

a + γ bq−λ < (σ − λ), (2.20)

and

(σ + λ)(tk − tk−1) < − ln(αk−1) ≤ ln γ, k ∈ Z+. (2.21)

To prove (2.19), it is sufficient to show that

u(t) ≤ γ φ̂t−λ, t ∈ [tk−1, tk), k ∈ Z+, (2.22)

where φ̂ = supq≤s≤1 ‖φ(s)‖p. From (2.21) and note that 0 < q < 1, we have

1 < exp{(σ + λ)(t1 − 1)} < γ < γ q−λ. (2.23)

From (2.23) and the inequality exp(x) > 1 + x, x > 0, it then follows that

φ̂ < φ̂ exp{σ(t1 − 1)} < γ φ̂ exp{−λ(t1 − 1)} ≤ γ φ̂t−λ
1 . (2.24)

We first prove that

u(t) ≤ γ φ̂t−λ, t ∈ [1, t1). (2.25)

For this purpose, we only need to show that

u(t) ≤ γ φ̂t−λ
1 , t ∈ [1, t1). (2.26)

If (2.26) is not true, by (2.23), (2.24), and the inequality exp(x) > 1+ x, x > 0, then
there exists some t̄ ∈ (1, t1) such that for any s ∈ [q, 1],

u(t̄) > γ φ̂t−λ
1 ≥ γ φ̂ exp

{ − λ(t1 − 1)
}

> φ̂ exp
{
σ(t1 − 1)

}
> φ̂ ≥ u(s).

This implies that there exists some t̂ ∈ (1, t̄) such that

u(t̂) = γ φ̂t−λ
1 , u(t) ≤ u(t̂), t ∈ [q, t̂], (2.27)

and there exists t∗ ∈ [1, t̂] such that

u(t∗) = φ̂, u(t∗) ≤ u(t) ≤ u(t̂), t ∈ [t∗, t̂]. (2.28)
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Thus for any t ∈ [t∗, t̂], then [qt, t] ⊆ [qt∗, t̂]. It follows from (2.23), (2.27), and
(2.28) that for any s ∈ [qt, t],

u(s) ≤ u(t̂) = γ φ̂t−λ
1 < γ q−λφ̂ = γ q−λu(t∗) ≤ γ q−λu(t), t ∈ [t∗, t̂]. (2.29)

It follows from (2.17), (2.20), and (2.29) that for t ∈ [t∗, t̂],

D+u(t) ≤ au(t) + b
(

sup
qt≤s≤t

u(s)
)

≤ (a + bγ q−λ)u(t) ≤ (σ − λ)u(t). (2.30)

Using (2.23), (2.27), (2.28), and (2.30), we can arrive at

u(t̂) ≤ u(t∗) exp{(σ − λ)(t̂ − t∗)} = φ̂ exp{(σ − λ)(t̂ − t∗)}
< φ̂ exp{σ(t1 − 1)} < γ φ̂ exp{−λ(t1 − 1)} ≤ γ φ̂t−λ

1 = u(t̂),

which is a contradiction. So (2.26) holds and then (2.22) is true for k = 1.
Now we assume that (2.22) holds for k = 1, 2, . . . , l (l ≥ 1, l ∈ Z+), i.e.,

u(t) ≤ γ φ̂t−λ, t ∈ [tk−1, tk), k = 1, 2, . . . , l. (2.31)

Next, we shall prove that (2.22) holds for k = l + 1, i.e.,

u(t) ≤ γ φ̂t−λ, t ∈ [tl , tl+1). (2.32)

For the sake of contradiction, suppose that (2.32) is not true, let t = inf{t ∈
[tl , tl+1)|u(t) > γ φ̂t−λ}. Then by (2.17), (2.21), and (2.31), and applying again the
inequality exp(x) > 1 + x, x > 0, we obtain

u(tl) ≤ αlu(t−l ) ≤ αlγ φ̂t−λ
l = αlγ φ̂

( tl
tl+1

)−λ( tl+1

t

)−λ

t−λ

< αlγ φ̂
( tl
tl+1

)−λ

t−λ < γ φ̂ exp
{

− (σ + λ)(tl+1 − tl)
}( tl

tl+1

)−λ

t−λ

= γ φ̂ exp
{

− (σ + λ)tl
( tl+1

tl
− 1

)}( tl
tl+1

)−λ

t−λ

< γ φ̂ exp
{

− (σ + λ)
( tl+1

tl
− 1

)}( tl
tl+1

)−λ

t−λ

≤ γ φ̂
( tl+1

tl

)−σ

t−λ < γ φ̂t−λ, (2.33)

and so t 
= tl . Since u(t) is continuous in the interval [tl , tl+1), we have

u(t) = γ φ̂t−λ, and u(t) ≤ u(t), t ∈ [tl , t]. (2.34)
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From (2.33), we can see that there exists some t∗ ∈ [tl , t] such that

u(t∗) = αlγ φ̂
( tl
tl+1

)−λ

t−λ, and u(t∗) ≤ u(t) ≤ u(t), t ∈ [t∗, t]. (2.35)

On the other hand, for t ∈ [t∗, t], either qt ∈ [qt0, tl) or qt ∈ [tl , t]. Consider the
following two cases.

Case 1. qt ∈ [qt0, tl). Then, [qt, t] = [qt, tl)⋃[tl , t]. For any s ∈ [qt, t], either
s ∈ [qt, tl) or s ∈ [tl , t] ⊆ [tl , t]. If s ∈ [qt, tl), then by (2.31), we can deduce that

u(s) ≤ γ φ̂s−λ ≤ γ φ̂q−λt−λ ≤ q−λγ φ̂
( tl
tl+1

)−λ

t−λ. (2.36)

While s ∈ [tl , t], it follows from (2.34) that

u(s) ≤ u(t) = γ φ̂t−λ ≤ q−λγ φ̂
( tl
tl+1

)−λ

t−λ. (2.37)

From (2.36) and (2.37), it follows that for any s ∈ [qt, t],

u(s) ≤ q−λγ φ̂
( tl
tl+1

)−λ

t−λ, t ∈ [t∗, t]. (2.38)

Case 2. qt ∈ [tl , t]. Then, [qt, t] ⊆ [tl , t], and by (2.34), one can see that (2.37) holds
for any s ∈ [qt, t]. This implies that (2.38) holds.

In any case, from (2.35) and (2.38), we all have for any t ∈ [t∗, t], s ∈ [qt, t],

u(s) ≤ 1

αl
q−λu(t∗) ≤ 1

αl
q−λu(t) ≤ γ q−λu(t),

which implies that supqt≤s≤t u(s) ≤ γ q−λu(t). This together with (2.20) shows that
for t ∈ [t∗, t],

D+u(t) ≤ au(t) + b
(

sup
qt≤s≤t

u(s)
)

≤ (a + γ bq−λ)u(t) ≤ (σ − λ)u(t). (2.39)

Applying (2.21), (2.33)–(2.35), (2.39) and the inequality exp(x) > 1+ x, x > 0, we
can deduce that

u(t) ≤ u(t∗) exp{(σ − λ)(t − t∗)} = αlγ φ̂
( tl
tl+1

)−λ

t−λ exp{(σ − λ)(t − t∗)}

< γ φ̂ exp
{ − (σ + λ)(tl+1 − tl)

}
exp{(σ − λ)(t − t∗)}

( tl
tl+1

)−λ

t−λ

= γ φ̂ exp
{ − (σ + λ)(tl+1 − tl)

}
exp{σ(t − t∗)} exp{−λ(t − t∗)}

( tl
tl+1

)−λ

t−λ
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< γ φ̂ exp
{ − λ(tl+1 − tl)

}( tl
tl+1

)−λ

t−λ

= γ φ̂ exp
{

− λtl
( tl+1

tl
− 1

)}( tl
tl+1

)−λ

t−λ

≤ γ φ̂ exp
{

− λ
( tl+1

tl
− 1

)}( tl
tl+1

)−λ

t−λ

< γ φ̂t−λ = u(t),

which is a contradiction. Hence, the assumption is not true, and then (2.22) holds for
k = l + 1. By the mathematical induction method, we can conclude that (2.22) holds
for any k ∈ Z+. The proof is completed. ��
Remark 2.1 From the conditions of Lemmas 2.2 and 2.3, one can see that they are
established from impulsive perturbation and impulsive control point of view, respec-
tively. So they are complementary with each other. Moreover, Lemma 2.3 is different
from Lemma 2 in [19] since it is given from the impulsive control point of view.

3 Main Results

In this section, we always assume that β = supk∈Z+{‖E − Dk‖p} < +∞.

Theorem 3.1 Assume that (H1) holds and δ = infk∈Z+
{ tk
tk−1

}
> 1. If μp(A) <

−l1‖B‖p − l2‖C‖p, and there exists a positive constant λ such that

λ >
ln(max{1, β})

ln δ
, (3.1)

and

λ + μp(A) + l1‖B‖p + l2‖C‖pq
−λ ≤ 0, (3.2)

then the zero solution of (2.4) is globally power stable with power convergence rate
λ − ln(max{1,β})

ln δ
.

Proof Define the Lyapunov function V (t) = V (x(t)) = ‖x(t)‖p. Then, the upper
right-hand Dini derivative of V (x(t)) with respect to time t along the solution of
system (2.4) is as follows:

D+V (x(t))

= limh→0+
‖x(t + h)‖p − ‖x(t)‖p

h

= limh→0+
‖x(t) + hx ′(t) + o(h)‖p − ‖x(t)‖p

h

= limh→0+
‖x(t) + h[Ax(t) + B f (x(t)) + Cg(x(qt))] + o(h)‖p − ‖x(t)‖p

h
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≤ limh→0+
‖x(t) + hAx(t)‖p − ‖x(t)‖p

h
+ ‖B f (x(t))‖p + ‖Cg(x(qt))‖p

≤ limh→0+
‖E + hA‖p − 1

h
‖x(t)‖p + ‖B f (x(t))‖p + ‖Cg(x(qt))‖p.

From Assumption (H1), it follows that

‖ f (x(t))‖p ≤ l1‖x‖p, ‖g(x(qt))‖p ≤ l2‖x(qt)‖p. (3.3)

Thus,

D+V (x(t)) ≤ μp(A)‖x(t)‖p + l1‖B‖p‖x(t)‖p + l2‖C‖p‖x(qt)‖p

≤ μp(A)‖x(t)‖p + l1‖B‖p‖x(t)‖p + l2‖C‖p

(
sup

qt≤s≤t
‖x(s)‖p

)

= (μp(A) + l1‖B‖p)V (x(t)) + l2‖C‖p

(
sup

qt≤s≤t
V (x(s))

)

= −aV (x(t)) + b
(

sup
qt≤s≤t

V (x(s))
)
, t 
= tk, t ≥ 1,

where a = −(μp(A) + l1‖B‖p), b = l2‖C‖p. On the other hand, it follows from
(2.4) that

V (tk) = ‖x(tk)‖p = ‖(E − Dk)x(t
−
k )‖p ≤ ‖(E − Dk)‖p‖x(t−k )‖p ≤ βV (t−k ).

Note that a = −(μp(A)+l1‖B‖p) > l2‖C‖p = b ≥ 0 and it follows fromLemma2.2
that

V (x(t)) ≤
( ∏

1<tk≤t
max{1, β}

)(
sup

q≤s≤1
V (φ(s))

)
t−λ

=
( ∏

1<tk≤t
max{1, β}

)
‖φ‖pt

−λ, t ≥ 1, (3.4)

where λ > 0 is a solution of the inequality λ − a + bq−λ = λ + μp(A) + l1‖B‖p +
l2‖C‖pq−λ ≤ 0.Since the function l(x) = ln x ismonotonically increasing on [1,∞),
one can see that the number of points tk on [1, t] is equal to the number of points ln tk
on [0, ln t]. Thus, it follows from (3.4) that

‖x(t)‖p = V (x(t)) ≤ (
max{1, β}) ln t

ln δ
+1‖φ‖pt

−λ

= (
max{1, β})‖φ‖pt

−
(
λ− ln max{1,β}

ln δ

)
. (3.5)

By (3.5) and Definition 2.2, the zero of system (2.4) is globally power stable. The
proof is completed. ��
Remark 3.1 One can easily see that Theorem 3.1 only presents a result for the global
power stability of the zero solution of (2.4) under the condition “μp(A) < 0,” which
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shows its limitation. In addition, it can be seen that Lemma 2.2 is established from
the impulsive perturbation point of view, which implies that impulses may act as
perturbations rather than stabilizers. From the impulsive control point of view, based
on Lemma 2.3, the following desirable conditions can be derived to ensure the global
power stability of system (2.4).

Theorem 3.2 Assume that (H1) holds and 0 < β < 1, C 
= 0. If there exists a
constant λ > 0 such that

μp(A) + l1‖B‖p + 2λ + 1

β
l2‖C‖pq

−λ < − ln β

tk − tk−1
, k ∈ Z+, (3.6)

then the zero solution of (2.4) is globally power stable with power convergence rate
λ.

Proof Defining the Lyapunov function V (t) = V (x(t)) = ‖x(t)‖p as Theorem 3.1,
we have

D+V (t) ≤ (μp(A) + l1‖B‖p)V (x(t)) + l2‖C‖p

(
sup

qt≤s≤t
V (x(s))

)

= aV (x(t)) + b
(

sup
qt≤s≤t

V (x(s))
)
, t 
= tk, t ≥ 1,

where a = μp(A) + l1‖B‖p, and b = l2‖C‖p > 0. On the other hand, it follows
from (2.4) that

V (tk) = ‖x(tk)‖p = ‖(E − Dk)x(t
−
k )‖p

≤ ‖(E − Dk)‖p‖x(t−k )‖p ≤ βV (t−k ), k ∈ Z+.

This and (3.6) imply that the all conditions of Lemma 2.3 are satisfied, and thus

V (x(t)) ≤ β−1
(

sup
q≤s≤1

V (φ(s))
)
t−λ = β−1‖φ‖pt

−λ, t ≥ 1.

That is,

‖x(t)‖p ≤ β−1‖φ‖pt
−λ, t ≥ 1.

This shows that the zero of system (2.4) is globally power stable by Definition 2.2.
The proof is completed. ��
Remark 3.2 From the conditions of Lemma 2.3 and Theorem 3.2, we can find that
system (2.4) without impulses may be unstable; Theorem 3.2 shows that impulses
can be used to globally power stabilize an unstable system with proportional delay. In
addition, setψ(q, λ) = μp(A)+l1‖B‖p+2λ+ 1

β
l2‖C‖pq−λ, (q, λ) ∈ (0, 1)×(0,∞)

and it can be verified that ψ(q, λ) is decreasing with respect to q, and increasing in λ.
Therefore, when impulses are used to globally power stabilize an unstable system, the
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impulses may act more frequently if the proportional delay factor q becomes smaller;
and moreover, in order to gain higher power convergence rate, the impulses should act
more frequently.

Below, we are in a position to establish a result for the global power stability of the
following system with impulses and proportional delays:

{
x ′(t) = Ax(t) + B f (x(t)) + 1

t Cg(x(qt)), t 
= tk, t ≥ 1,
�x(tk) = x(tk) − x(t−k ) = −Dkx(t

−
k ), k ∈ Z+,

(3.7)

where q, A, B,C, Dk and f, g are defined as (2.4).

Remark 3.3 One may call system (3.7) Euler-type NNs since it is similar to first-
order ordinary Euler equations. The following theorem 3.3 presents some conditions
ensuring the global power stability of such NNs. It is shown that impulses can be used
to globally power stabilize such NNs.

Theorem 3.3 Assume that (H1) holds and ρ = supk∈Z+{tk − tk−1} < +∞. If β −
l2 ln q
q ‖C‖p < 1 and

−l1‖B‖p − l2
q

‖C‖p < μp(A) < −l1‖B‖p − l2
q

‖C‖p

− 1

ρ
ln

(
β − l2 ln q

q
‖C‖p

)
, (3.8)

then the zero solution of (3.7) is globally power stable with power convergence rate
λ, where λ is the unique positive solution of the following equation

λ + μp(A) + l1‖B‖p + l2
q

‖C‖p + ln
(
β − l2 ln q

q
‖C‖pq

−λ
)

= 0.

Proof Let the Lyapunov functional be in the form of

V (t) = V (xt ) = ‖x(t)‖p + l2
q

‖C‖p

∫ t

qt

1

s
‖x(s)‖pds.

Then, the upper right-hand Dini derivative of V (t) with respect to time t along the
solution of system (3.7) is as follows:

D+V (t) = limh→0+
‖x(t + h)‖p − ‖x(t)‖p

h
+ l2

qt
‖C‖p‖x(t)‖p − l2

t
‖C‖p‖x(qt)‖p

= limh→0+
‖x(t) + hx ′(t) + o(h)‖p − ‖x(t)‖p

h

+ l2
qt

‖C‖p‖x(t)‖p − l2
t
‖C‖p‖x(qt)‖p
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= limh→0+
‖x(t) + h[Ax(t) + B f (x(t)) + 1

t Cg(x(qt))] + o(h)‖p − ‖x(t)‖p

h

+ l2
qt

‖C‖p‖x(t)‖p − l2
t
‖C‖p‖x(qt)‖p

≤ limh→0+
‖x(t) + hAx(t)‖p − ‖x(t)‖p

h
+ ‖B f (x(t))‖p + 1

t
‖Cg(x(qt))‖p

+ l2
qt

‖C‖p‖x(t)‖p − l2
t
‖C‖p‖x(qt)‖p

≤ limh→0+
‖E + hA‖p − 1

h
‖x(t)‖p + ‖B f (x(t))‖p + 1

t
‖Cg(x(qt))‖p

+ l2
qt

‖C‖p‖x(t)‖p − l2
t
‖C‖p‖x(qt)‖p.

From (3.3), it follows that

D+V (t) ≤
(
μp(A) + l1‖B‖p + l2

q
‖C‖p

)
‖x(t)‖p

= η‖x(t)‖p ≤ ηV (t), t ∈ [tk−1, tk), k ∈ Z+,

where η = μp(A) + l1‖B‖p + l2
q ‖C‖p > 0 (by (3.8)). Then, we have

V (t) ≤ V (1)eη(t−1), t ∈ [1, t1), (3.9)

V (t) ≤ V (tk−1)e
η(t−tk−1), t ∈ [tk−1, tk), k = 2, 3, . . . . (3.10)

From (3.8), we have

0 < ηρ < − ln
(
β − l2 ln q

q
‖C‖p

)
. (3.11)

Define the function u given by

u(z) = (z + η)ρ + ln
(
β − l2 ln q

q
‖C‖pq

−z
)
, z ∈ [0,+∞).

From (3.11), we get u(0) < 0. Since u(z) → +∞ as z → +∞, and

u′(z) = ρ + ql2(ln q)2‖C‖pq−z

qβ − l2 ln q‖C‖pq−z
> 0, z ∈ (0,+∞),

there exists a unique positive constant λ > 0 such that u(λ) = 0, i.e.,

(λ + η)ρ = − ln
(
β − l2 ln q

q
‖C‖pq

−λ
)
. (3.12)
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By (3.9), we have for t ∈ [1, t1),

V (t) ≤
(
‖(x(1)‖p + l2

q
‖C‖p

∫ 1

q

1

s
‖x(s)‖pds

)
eη(t−1)

≤
(
1 − l2 ln q

q
‖C‖p

)
‖φ‖pe

η(t−1) ≤
(
1 − l2 ln q

q
‖C‖p

)
‖φ‖pe

η(t1−1).

Thus, using again the inequality ex > 1 + x (x > 0) yields

‖x(t)‖p ≤ V (t) ≤
(
1 − l2 ln q

q
‖C‖p

)
‖φ‖pe

ηρ

=
(
1 − l2 ln q

q
‖C‖p

)
e(λ+η)ρ‖φ‖pe

−λρ

≤
(
1 − l2 ln q

q
‖C‖p

)
e(λ+η)ρ‖φ‖pe

−λ(t−1)

≤
(
1 − l2 ln q

q
‖C‖p

)
e(λ+η)ρ‖φ‖pt

−λ

= M‖φ‖pt
−λ, t ∈ [1, t1), (3.13)

where λ > 0 as in (3.12), and M =
(
1 − l2 ln q

q ‖C‖p

)
e(λ+η)ρ > 1. Obviously,

‖x(t)‖p ≤ ‖φ‖p ≤ M‖φ‖p ≤ M‖φ‖pt
−λ, t ∈ [q, 1]. (3.14)

From (3.13) and (3.14), it follows that

‖x(t)‖p ≤ M‖φ‖pt
−λ, t ∈ [q, t1). (3.15)

On the other hand, from the second equation of (3.7), we have

‖x(tk)‖p = ‖(E − Dk)x(t
−
k )‖p ≤ ‖E − Dk)‖p‖x(t−k )‖p ≤ β‖x(t−k )‖p

≤ ‖x(t−k )‖p, k = 1, 2, . . . . (3.16)

Thus, (3.15) and (3.16) imply that

sup
qt1≤s≤t1

‖x(s)‖p ≤ M‖φ‖p(qt1)
−λ = Mq−λ‖φ‖pt

−λ
1 . (3.17)
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It follows from (3.12), (3.15), and (3.17) that

V (t1) = ‖x(t1)‖p + l2
q

‖C‖p

∫ t1

qt1

1

s
‖x(s)‖pds

≤ β‖x(t−1 )‖p + l2
q

‖C‖p

∫ t1

qt1

1

s
‖x(s)‖pds

≤ M‖φ‖pt
−λ
1

(

β − l2 ln q

q
‖C‖pq

−λ

)

= e−(λ+η)ρM‖φ‖pt
−λ
1 . (3.18)

Next, we shall show that

V (tk) ≤ e−(λ+η)ρM‖φ‖pt
−λ
k , k = 1, 2, . . . . (3.19)

Obviously, (3.19) holds for k = 1 by (3.18). If we assume that it holds for k =
1, 2, . . . ,m(m ∈ Z+), i.e.,

V (tk) ≤ e−(λ+η)ρM‖φ‖pt
−λ
k , k = 1, 2, . . . ,m. (3.20)

then we have for t ∈ [tm, tm+1),

‖x(t)‖p ≤ V (t) ≤ V (tm)eη(t−tm )

≤ e−(λ+η)ρM‖φ‖pt
−λ
m eη(t−tm ) ≤ e−λρM‖φ‖pt

−λ
m

≤ e−λ(t−tm )M‖φ‖pt
−λ
m =

(
etm

(
t
tm

−1
))−λ

M‖φ‖pt
−λ
m

≤
(
e
(

t
tm

−1
))−λ

M‖φ‖pt
−λ
m ≤ M‖φ‖pt

−λ. (3.21)

Using (3.20) and (3.21), similar to (3.17), we can verify that

sup
qtm+1≤s≤tm+1

‖x(s)‖p ≤ M‖φ‖p(qtm+1)
−λ = M‖φ‖pq

−λt−λ
m+1. (3.22)

From (3.12), (3.16), (3.21), and (3.22), we obtain

V (tm+1) = ‖x(tm+1)‖p + l2
q

‖C‖p

∫ tm+1

qtm+1

1

s
‖x(s)‖pds

≤ β‖x(t−m+1)‖p + l2
q

‖C‖p

∫ tm+1

qtm+1

1

s
‖x(s)‖pds

≤ β‖x(t−m+1)‖p + l2
q

‖C‖p

∫ tm+1

qtm+1

1

s
‖x(s)‖pds

≤ M‖φ‖pt
−λ
m+1

(

β − l2 ln q

q
‖C‖pq

−λ

)

= e−(λ+η)ρM‖φ‖pt
−λ
m+1,
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which implies that (3.19) holds for k = m + 1, and hence (3.19) holds for each
k = 1, 2, . . . . Thus, for t ∈ [tk, tk+1), k = 1, 2, . . ., we have by (3.19) that

‖x(t)‖p ≤ V (t) ≤ V (x(tk))e
η(t−tk )

≤ e−(λ+η)ρM‖φ‖pt
−λ
k eη(t−tk ) ≤ e−λρM‖φ‖pt

−λ
k

≤ M‖φ‖pe
−λ(t−tk )t−λ

k = M‖φ‖p

(
e
tk
(

t
tk

−1
))−λ

t−λ
k

≤ M‖φ‖p

(
e

(
t
tk

−1
))−λ

t−λ
k ≤ M‖φ‖pt

−λ.

This together with (3.13) shows that the zero solution of (3.7) is globally power stable
in terms of Definition 2.2. The proof is completed. ��

Remark 3.4 The main contribution of this paper lies in the following aspects: (1) A
new method is proposed based on establishing the novel impulsive delay differential
inequalities from impulsive perturbation and impulsive control point of view, respec-
tively, which is different from the past work on this topic. We also believe that the
new inequalities will play an important role in qualitative analysis of impulsive sys-
tems with proportional delays. (2) The global power stability of neural networks with
impulses and proportional delays by using the matrix measure approach is seldom
discussed, which implies that the results obtained in the present paper are completely
new and complement the previous studies to some extent. (3) Our sufficient condi-
tions ensuring the stability and stabilization of neural networks with impulses and
proportional delays are dependent on the proportional delay factors and impulses.
It can be seen that our results are less conservative than those in [10,26], and one
can design some feasible impulsive controllers according to the proportional delay
factor allowed by such neural networks. In particular, impulses can act as stabilizers
to globally power stabilize an unstable neural network with proportional delay. (4)
The sufficient conditions and the power convergence rates can be also easily checked
by simple computing, and they are effective to implement in real problems. (5) The
obtained results play an important role in establishing a QoS routing algorithm based
on neural networks with proportional delays and impulses.

4 Examples

In this section, three numerical examples along with their simulations are given to
illustrate the effectiveness and advantages of the results obtained.

Example 4.1 Consider the system with impulses and proportional delay

⎧
⎪⎪⎨

⎪⎪⎩

x ′(t) = Ax(t) + B f (x(t)) + 1
t Cg(x(qt)), t ≥ 1, t 
= tk,

�x(tk) = x(tk) − x(t−k ) = −Dkx(t
−
k ), tk = k + 1, k ∈ Z+,

x(t) = φ(t), t ∈ [q, 1],
(4.1)
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where q = 0.8, f (t) = ( f1(t), f2(t))T = g(t), fi (t) = sin t, i = 1, 2, φ =
(φ1, φ2)

T ∈ C([0.8, 1],R2), and

A =
(
a1 0
0 a2

)

=
(
0.3 0
0 0.3

)

, B =
(

0 0.4
0.3 0

)

, C =
(
0.05 0
0 0.1

)

,

Dk =
(
0.6 0
0 0.6

)

, k ∈ Z+.

It is clear that l1 = l2 = 1 and ρ = supk∈Z+{tk − tk−1} = 1. A simple calculation
fields that μ2(A) = 0.3, ‖B‖2 = 0.4, ‖C‖2 = 0.1, and β = 0.4. Thus, we have

β − l2 ln q

q
‖C‖2 = 0.4278 < 1, −l1‖B‖2 − l2

q
‖C‖2 − 1

ρ
ln

(
β − l2 ln q

q
‖C‖2

)

= 0.3239 > μ2(A).

By Theorem 3.3, it can be verified that the zero solution of (4.1) is globally power
stable with the power convergence rate λ = 0.024.

Remark 4.1 (1) The zero solution of system (4.1) without impulsive effects is unstable
(see Fig. 1). This shows that some appropriate conditions imposed on the jumps can
make unstable equations globally power stable, and furthermore globally stable. Thus,
impulses can be used to stabilize some unstable systems with proportional delays.
The numerical simulations are shown in Figs. 1 and 2 when the initial condition
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Fig. 1 State trajectories of system (4.1) without impulses
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Fig. 2 State trajectories of system (4.1)

φ(t) ≡ (1, 2)T, t ∈ [0.8, 1]. One can see that the results in [10] do not give any
information on the global asymptotic stability of (4.1), and so our results in this paper
complement those results in [10]. In addition, those results in [26] can also not be
applied to (4.1) since the coefficients are variable and a1 = a2 = 0.3 > 0.

(2) If we consider a differential system, in which f, g, A, B,C , and Dk as same as
(4.1) but the proportional delay factor q is variable. A calculation reveals the fact that
the system with the above parameters is globally power stable as q ∈ [0.2388, 1), and
that the proportional delay factor q is larger and the convergence is higher. Thus, one
can stabilize the original system impulse free by choosing suitable impulsive control
laws according to the proportional delay factor q. For example, let us consider the
system

{
x ′(t) = Ax(t) + B f (x(t)) + 1

t Cg(x(0.5t)), t ≥ 1,

x(t) = φ(t), t ∈ [0.5, 1]. (4.2)

Applying Theorem 3.3, one can verify that system (4.2) can be stabilized via the
impulsive controller (tk, H)k∈Z+ :

{
H = dE, d ∈ [0.7321, 1.2679],
supk∈Z+{tk − tk−1} = 1,

where H is impulsive matrix. This shows the feasibility of our control schemes. In
addition, the system (4.2) cannot be stabilized if one chooses the impulsive controller
(tk, H)k∈Z+ :
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Fig. 3 State trajectories of system (4.2) with the impulsive controller (1 + k, 0.75E)k∈Z+
{
H = 1.8E,

supk∈Z+{tk − tk−1} = 1.

This partly shows the advantages of our results. The simulations are shown in Figs. 3
and 4 when the initial condition φ(t) ≡ (1, 2)T, t ∈ [0.5, 1].

(3) Here, we would like to point out that Theorem 3.3 can still be employed to
investigate the global power stability of neural networkswith negative feedback though
the matrix A = 0.3E in Example 4.1 for some explanations. For instance, take A =
−0.3E and the others f, g, q, B,C, Dk are the same as (4.1); one can easily see that
the all conditions of Theorem 3.3 are satisfied since β − l2 ln q

q ‖C‖2 = 0.4278 < 1,
and

−l1‖B‖2 − l2
q

‖C‖2 − 1

ρ
ln

(
β − l2 ln q

q
‖C‖2

)
= 0.3239 > μ2(A)

= −0.3 > −l1‖B‖2 − l2
q

‖C‖2 = −0.525.

Therefore, the zero solution of (4.1) with the above parameters is globally power stable
byTheorem3.3.A simple calculation gives us the power convergence rateλ = 0.6143.

Example 4.2 Consider the following neural networks with impulses and proportional
delay

⎧
⎨

⎩

x ′(t) = Ax(t) + B f (x(t)) + Cg(x(0.5t)), t ≥ 1, t 
= tk,
�x(tk) = −Dkx(t

−
k ), k ∈ Z+,

x(t) = φ(t), 0.5 ≤ t ≤ 1,
(4.3)
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Fig. 4 State trajectories of system (4.2) with the impulsive controller (1 + k, 1.8E)k∈Z+

where f (t) = g(t) = ( f1(t), f2(t))T, fi (t) = 1
2

(|t + 1| − |t − 1|), i = 1, 2,
φ = (φ1, φ2)

T ∈ C([0.5, 1],R2), and

A =
(−1.5 0

0 −1.5

)

, B =
(

0.5 0.5
−0.5 0.5

)

, C =
(

0.3 0.3
−0.2 0.2

)

,

Dk =
(−0.45 0

0 −0.45

)

, k ∈ Z+.

It can be verified that l1 = l2 = 1, β = supk∈Z+{‖E − Dk‖2} = 1.45, μ2(A) =
−1.5, ‖B‖2 = 0.7071, and ‖C‖2 = 0.18. For simplicity, set δ = tk

tk−1
= 2.2, k ∈ Z+,

and one canfind that (3.1) and (3.2) hold for any positive numberλ ∈ (0.4713, 0.5325].
In particular, choosing λ = 0.5, we have

λ >
ln

(
max{1, β})
ln δ

= ln 1.45

ln 2.2
= 0.4713,

and

λ + μ2(A) + l1‖B‖2 + l2‖C‖2q−λ = λ − 0.7929 + 0.18(0.5)−λ = −0.0383 < 0.

It can be concluded that the zero solution of (4.3) is globally power stable by Theo-
rem 3.1.

Remark 4.2 (1) It is well known that impulses potentially destroy system’s stability.
Example 4.2 shows that one can still keep the stability of the original system under
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Fig. 5 State trajectories of system (4.3) without impulses

appropriate impulsive perturbations if one canwork out an appropriate scheme accord-
ing to the proportional delay factor allowed by such neural networks. The simulations
are shown in Figs. 5 and 6, here the initial condition φ(t) ≡ (−10, 20)T, t ∈ [0.5, 1].

(2) Theorem 5 in [26] cannot be applied to system (4.3) since one can see that for
any positive numbers a1, a2 > 0,

max
{ 1

d1

2∑

i=1

li
(a1
ai

|ai1| + a1
ai

|bi1|
)
,
1

d2

2∑

i=1

li
(a2
ai

|ai2| + a2
ai

|bi2|
)}

= max
{ 1

1.5

(
0.8 + 0.7 × a1

a2

)
,

1

1.5

(
0.7 + 0.8 × a2

a1

)}
≥ 1.

Therefore, our results complement the relative ones in [26].

Example 4.3 Consider the following neural networks with impulses and proportional
delay

⎧
⎨

⎩

x ′(t) = Ax(t) + B f (x(t)) + Cg(x(0.5t)), t ≥ 1, t 
= tk,
�x(tk) = −Dkx(t

−
k ), k ∈ Z+,

x(t) = φ(t), 0.5 ≤ t ≤ 1,
(4.4)

where f, g, B,C are defined as (4.3), and A = diag(−0.1, 0.3), Dk = diag(0.5, 0.5),
k ∈ Z+.

It can be verified that μ2(A) = 0.3 and β = supk∈Z+{‖E − Dk‖2} = 0.5. For
simplicity, we consider the equidistant impulsive interval �t = tk − tk−1, k ∈ Z+.
Let λ = 0.5, it is easy to verify that if the following inequality holds

123



Global Power Stability of Neural Networks with Impulses… 2261

0 5 10 15 20 25
−10

−5

0

5

10

15

20

time t

x1
(t

),
 x

2(
t)

x1
x2

Fig. 6 State trajectories of (4.3) as tk
tk−1

= 2.2, k∈Z+

μ2(A) + l1‖B‖2 + 2λ + 1

β
l2‖C‖2q−λ = 2.5162 < − ln β

tk − tk−1

= 0.6931

�t
, k ∈ Z+, (4.5)

then all the conditions of Theorem 3.2 hold, which means that the zero solution of
system (4.4) is globally power stable with power convergence rate λ = 0.5. It is
clear that (4.5) holds if �t < 0.2755. Thus, we can construct the impulsive controller
(1 + 0.2k, 0.5E)k∈Z+ to ensure that system (4.4) is globally power stable. In Figs. 7
and 8 are shown the simulations when the initial condition φ(t) ≡ (− 0.2, 0.3)T, t ∈
[0.5, 1]. Fig. 7 indicates the dynamics of system (4.4) without impulses on the time
interval [1,10], which shows that the system (4.4)without impulsive effects is unstable.
And Fig. 8 depicts the state trajectories of system (4.4) with the impulsive con-
troller (1+ 0.2k, 0.5E)k∈Z+ on the time interval [1,5]. This shows the validity of our
scheme.

Remark 4.3 Example 4.3 shows that impulses can be used to globally stabilize an
unstable system with proportional delays based on some suitable impulsive control
laws. In addition, from the viewpoint of impulsive effects, Example 4.2 is given in
terms of impulsive perturbation and Example 4.3 is presented in terms of impul-
sive control, which implies that Theorems 3.1 and 3.2 are complementary with each
other.
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Fig. 7 State trajectories of system (4.4) without impulses
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Fig. 8 State trajectories of system (4.4) with the impulsive controller (1 + 0.2k, 0.5E)k∈Z+
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5 Conclusions

In this paper, we have investigated the global power stability and stabilization of
neural networks with impulses and proportional delays. By establishing two new
impulsive delay differential inequalities, constructing some Lyapunov functionals,
and employing the matrix measure approach, some novel and sufficient conditions
are obtained to guarantee the global power stability of neural networks with impulses
and proportional delay from impulsive perturbation and impulsive control point of
view, respectively. The obtained conditions can be easily checked in practice. Our
results give some schemes of impulsive controller design based on the proportional
delay factor. Three numerical examples are included to illustrate the effectiveness and
advantages.
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