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Abstract
A class of well-balanced numerical schemes for the one-dimensional shallow water
equations with temperature gradient is constructed. The construction of the schemes
is based on two steps: the first step to absorb the nonconservative term and the second
step to deal with the evolution of the system. Algorithms for computing contact waves
which absorb the nonconservative term are developed. Furthermore, to improve the
accuracy, the underlying numerical fluxes can be formed as convex combinations of
a pair of numerical fluxes of a low and stable scheme and a higher and fast scheme.
The schemes are well balanced and can retain the positivity of the water height and
the water temperature. Numerical tests show that the schemes are stable and have a
good accuracy.
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1 Introduction

In this paper, we will construct a class of well-balanced numerical schemes for the
following one-dimensional shallow water equations with variable topography and
temperature gradient (see Ripa [25,26])

ht + (hu)x = 0,

(hu)t +
(
hu2 + g

2
h2θ

)
x

= −ghθax ,

(hθ)t + (uhθ)x = 0, (1.1)

where h is the height of the water from the bottom to surface, u is the velocity, g is the
gravity constant, θ is the temperature and a is the height of the bottom from a given
level.

System (1.1) is a hyperbolic system of balance laws with a nonconservative source
term on the right-hand side. Often, nonconservative terms cause lots of inconvenience
for standard numerical schemes. For example, errors may be increasing when the
mesh sizes get smaller. Therefore, the study on numerical approximations for systems
of balance laws containing nonconservative terms is interesting and attracts many
authors.

It has been shown that, by supplementing with the trivial equation

at = 0, (1.2)

one can rewrite system (1.1) in the form of nonconservative system of conservation
laws

Ut + A(U)Ux = 0. (1.3)

Recall that solutions of (1.3) can be understood in the sense of nonconservative prod-
ucts; see [12]. Recently, the Riemann problem for the shallow water equations with
horizontal temperature gradients (1.1)–(1.2) was investigated in [33].

To deal with the nonconservativeness of system (1.1), we use the stationary waves.
These waves result in equilibrium states, which are independent of time. The equilib-
rium states are incorporated into a suitable numerical flux. To improve the efficiency,
we form a class of numerical fluxes to be convex combinations of a pair of numerical
fluxes, where the first one is of a first-order (stable) scheme and the second one is of a
high-order (fast) scheme. For example, such a pair can be the numerical fluxes of the
Lax–Friedrichs (first-order, stable) scheme and of the Lax–Wendroff (second-order,
fast) scheme. Schemes of this kind are fast and well balanced in the sense that they
can capture exactly stationary waves. Many numerical tests are conducted, which all
show that the schemes can give a good accuracy. Furthermore, we will show that the
scheme using the underlying numerical flux of the Lax–Friedrichs scheme possesses
interesting properties: The positivity of the water height and water temperature is
conserved.

We note that numerical schemes for the Ripa system were constructed in [7,16,
28,36]. Well-balanced schemes for shallow water equations with variable topogra-
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phy were considered in [13,14,22–24,27]. Positively conservative schemes were built
in [11,35]. Godunov-type schemes for hyperbolic systems of balance laws in noncon-
servative forms are considered in [2,9,21,29]. Well-balanced numerical schemes for
a single conservation law with source term were studied in [3,5,6,15]. Well-balanced
schemes for the model of a fluid flow in a nozzle with variable cross section were
constructed in [18,19]. Numerical schemes for two-phase flowmodels were presented
in [1,4,8,10,30]. The Riemann problem for other hyperbolic systems in nonconserva-
tive form is considered in [17,20,31,32]. See also the references therein.

The organization of this paper is as follows. Section 2 is devoted to basic properties
of system (1.1)–(1.2). Numerical schemes will be constructed in Sect. 3. Furthermore,
properties of the schemes are also established.Numerical tests are conducted in Sect. 4,
where the errors are computed for different mesh sizes. Finally, we will make several
conclusions and discussions in Sect. 5.

2 Basic Properties and StationaryWaves

In this section, we recall basic properties and investigate the admissible stationary
waves of system (1.1).

2.1 Basic Properties of System

To study basic properties of system (1.1), one often supplement the system with the
trivial equation

at = 0.

Then, the system can be transformed to the following system

ht + uhx + hux = 0,

ut + uux + gθhx + gh

2
θx + gθax = 0,

θt + uθx = 0,

at = 0. (2.1)

Thus, if one formally sets the unknown function in the form U = (h, u, θ, a)T, one
can rewrite system (2.1) in the nonconservative form

Ut + A(U)Ux = 0, (2.2)

where the matrix A(U) is given by

A(U) =

⎛
⎜⎜⎜⎝

u h 0 0

gθ u
gh

2
gθ

0 0 u 0
0 0 0 0

⎞
⎟⎟⎟⎠ . (2.3)
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786 M. D. Thanh, N. X. Thanh

The characteristic equation of the matrix A(U) is given by

|A(U) − λI | = 0,

which gives us four eigenvalues

λ1 = u − √
gθh, λ2 = u, λ3 = u + √

gθh, λ4 = 0. (2.4)

The corresponding eigenvectors can be chosen as

r1 =
(
−√

ghθ, gθ, 0, 0
)T

,

r2 = (−h, 0, 2θ, 0)T ,

r3 =
(√

ghθ, gθ, 0, 0
)T

,

r4 =
(
ghθ,−gθu, 0, u2 − ghθ

)T
. (2.5)

From these formulas, one can see that the first and the fourth characteristic fields may
coincide. Indeed, letting

(λ1(U), r1(U)) = (λ4(U), r4(U)),

we obtain a hypersurface of the space (h, u, θ, a) on which the first and the fourth
characteristic fields coincide

C+ = {(h, u, θ, a)|u = √
gθh}. (2.6)

Similarly, the third and the fourth characteristic fields may coincide:

(λ3(U), r3(U)) = (λ4(U), r4(U))

on the hypersurface of the space (h, u, θ, a)

C− = {(h, u, θ, a)|u = −√
gθh}. (2.7)

Furthermore, the second and the fourth eigenvalues may coincide when u = 0:

C0 = {(h, u, θ, a)|u = 0}. (2.8)

Therefore, system (2.2) may not be strictly hyperbolic in the entire domain.
On the other hand, it holds that

Dλ2(U) · r2(U) = Dλ4(U) · r4(U) = 0,

Dλ1(U) · r1(U) = Dλ3(U) · r3(U) = 3

2
gθ �= 0, h > 0.
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Fig. 1 Projection of strictly
hyperbolic areas in the (h, u)

plane

This means that the second and the fourth characteristic fields (λ2, r2), (λ4, r4) are
linearly degenerate, and the first and the third characteristic fields (λ1, r1), (λ3, r3)
are genuinely nonlinear in the open half-space {(h, u, θ, a)|h > 0}.

From (2.6), (2.7), (2.8), it is convenient to set

C = C+ ∪ C0 ∪ C−

which is the hypersurface on which the system fails to be strictly hyperbolic. We have
seen that the system lacks strict hyperbolicity only on the surface C. However, this
surface divides the phase domain into three sub-domains which are disjoint regions,
or areas, denoted by G1,G2 and G3, so that in each region the system is strictly
hyperbolic. More precisely,

G1 = {(h, u, θ, a) ∈ R+ × R × R+ × R+|λ4 < λ1 < λ2 < λ3},
G+

2 = {(h, u, θ, a) ∈ R+ × R × R+ × R+|λ1 < λ4 < λ2 < λ3},
G−

2 = {(h, u, θ, a) ∈ R+ × R × R+ × R+|λ1 < λ2 < λ4 < λ3},
G2 = G+

2 ∪ G−
2 ,

G3 = {(h, u, θ, a) ∈ R+ × R × R+ × R+|λ1 < λ2 < λ3 < λ4};

see Fig. 1.
Let us recall the concept of supercritical and subcritical regions in thewater resource

engineering. The Froude number is defined by

Fr(U) = |u|√
ghθ

.

If a state U such that Fr(U) = 1, then it is said to be a critical state. If Fr(U) > 1,
thenU is said to be a supercritical state. If Fr(U) < 1, thenU is said to be a subcritical
state.
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2.2 The Curve of StationaryWaves

First, consider stationary smooth solutions of system (1.1),which are time-independent
solutions. It is not difficult to check that such a stationary smooth solution satisfies the
following ordinary differential equations

(hu)′ = 0,(
u2

2
+ gθ(h + a)

)′
= 0,

θ ′ = 0, (2.9)

where (.)′ = d/dx . Thus, the trajectory of the system of three differential equa-
tions (2.9) passing through a fixed point (h0, u0, θ0, a0) satisfy the following algebraic
equations

hu = h0u0,

u2

2
+ gθ(h + a) = u20

2
+ gθ(h0 + a0),

θ = θ0. (2.10)

Stationary contact discontinuities associated with the fourth characteristic field λ4
can be obtained as the limit of stationary smooth solutions; see [33]. Precisely, one can
take a sequence of stationary smooth solutions of (1.1), which can be parameterized
in terms of the water height h in the form u = u(h), θ = θ(h), a = a(h). Then, by
letting the water height h tend to a jump h±, that is,

h −→ h±,

and setting

u± = u(h±), θ± = θ(h±), a± = a(h±),

we can see that the states U± = (h±, u±, θ±, a±)T satisfy the jump conditions

[hu] = 0,[
u2

2
+ gθ(h + a)

]
= 0,

[θ ] = 0. (2.11)

This implies that the curve of stationary contact waves which consists of all right-hand
states U that can be connected to a given left-hand state U0 by a four-contact wave
can be parameterized in h:
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W0(U0) : u = u(h) = h0u0
h

,

θ = θ(h) = θ0,

a = a(h) = u20 − u2

2gθ0
+ h0 − h + a0.

(2.12)

Substituting for u in the third equation of system (2.12), and re-arranging terms, we
obtain

u = u(h) = h0u0
h

,

θ = θ(h) = θ0,

a = a(h) = u20
2gθ0

(
1 − h20

h2

)
+ h0 − h + a0. (2.13)

Therefore, if the topography levels on both sides of a discontinuity are known, we can
determine the water height from the nonlinear algebraic equation

a − a0 + u20
2gθ0

(
h20
h2

− 1

)
+ h − h0 = 0.

Thus, given a stateU0 on the one side of a four-contact discontinuity, we can determine
the state U on the other side by first evaluating the water height to be a zero of the
function

ϕ(h) = a − a0 + u20
2gθ0

(
h20
h2

− 1

)
+ h − h0. (2.14)

The other quantities of that state will follow from (2.13).
Let us now discuss about the finding zeros of the function ϕ in (2.14). Set

hmin(U0) :=
(
u20h

2
0

gθ0

) 1
3

,

amax(U0) := u20
2gθ0

(
1 − h20

h2min

)
+ h0 − hmin + a0.

It is easy to verify that

amax(U0) = h0
2

⎛
⎝ u

2
3
0

g
1
3 θ

1
3
0 h

1
3
0

− 1

⎞
⎠

2 ⎛
⎝2 + u

2
3
0

g
1
3 θ

1
3
0 h

1
3
0

⎞
⎠ + a0. (2.15)

We can see from Eq. (2.15) that amax(U0) ≥ a0 and the equality happens only along
the curve u2 = ghθ on which the system is not strictly hyperbolic.

Interesting properties of the function ϕ defined by (2.14) are obtained in the fol-
lowing lemma.

123



790 M. D. Thanh, N. X. Thanh

Lemma 2.1 Supposeu0 �= 0. The functionϕ(h), h > 0 is smooth, is convex, is decreas-
ing in the interval (0, hmin) and is increasing in the interval (hmin,+∞), and satisfies
the limit conditions

lim
h→0

ϕ(h) = lim
h→+∞ ϕ(h) = +∞. (2.16)

Consequently, if a ≤ amax, the function ϕ has two zeros h∗(U0, a), h∗(U0, a) such
that h∗(U0, a) ≤ hmin(U0) ≤ h∗(U0, a). The inequalities are strict whenever a <

amax(U0).

Proof The smoothness of the function ϕ and the limit conditions at infinity (2.16) are
obvious. Moreover, we have

ϕ′(h) = 1 − u20h
2
0

gθ0h3
(2.17)

(for u0 �= 0). Thus, ϕ′(h) is positive if

h >

(
u20h

2
0

gθ0

) 1
3

= hmin(U0),

and ϕ′(h) < 0 if 0 < h < hmin(U0). This establishes the monotonicity properties of
ϕ. Furthermore, we have

ϕ′′(h) = 3
u20h

2
0

gθ0h4
≥ 0

which establishes the convexity of ϕ. Consequently, ϕ attains its minimum value at
hmin(U0). That is,

min ϕ = ϕ(hmin(U0)).

If a < amax(U0), then the minimum value ϕ(hmin(U0)) is negative. It is derived from
the limit conditions (2.16) that the equation ϕ(h) = 0 has exactly two distinct roots. In
addition, it is not difficult to see that the two roots of the equation ϕ(h) = 0 coincide
when a = amax(U0). �


It is arisen from the above lemma that there are two choices of a contact wave
from a given state. To select a physical contact wave, we need to impose an additional
admissibility criterion as follows:

(MC) (Monotonicity criterion)—Along any stationary curve W0(U0), the
bottom level a is monotone as a function of h. The total variation in the
bottom-level component of any Riemann solutionmust not exceed |aL−aR |,
where aL and aR are left-hand and right-hand bottom levels.

Note that a similar condition was used in [20,33]. Under the monotonicity crite-
rion, a stationary contact wave always remain in the closure of each of the strictly
hyperbolic domains. That is, if a state on the one side of an admissible four-contact
discontinuity U0 ∈ Ḡi , where Ḡi denotes the closure of the region Gi , then the state
on the other side of that contact U still belongs to Ḡi , i = 1, 2, 3; see [33]. Since the
point (hmin(U0), h0u0/hmin(U0)) is critical, we deduce the following algorithm for
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the computation of the admissible contact wave with a given state on the one side and
given left-hand and right-hand levels of topography.

(i) IfU0 is a supercritical state, then the smaller root h∗(U0, a) of ϕ defined by (2.14)
is selected and can be computed by Newton’s method with a starting point in the
interval (0, hmin(U0));

(ii) If U0 is a subcritical state, then the larger root h∗(U0, a) of ϕ defined by (2.14)
is selected and can be computed by Newton’s method with a starting point in the
interval (hmin(U0),+∞).

3 Numerical Schemes

In this section, we construct well-balanced numerical schemes for approximating
solutions of system (1.1), relying on the arguments in the previous sections. Given
a uniform time step �t and a special mesh size �x , define x j = j � x, j ∈ Z,
tn = n � t, n ∈ N, and denote by Un

j the approximate value of the exact solution

U = (h, hu, hθ)T of system (1.1) at the time tn in the interval (x j−1/2, x j+1/2). Set

λ = �t

�x
,

where λ is required to satisfy the CFL condition

λ <
CFL coefficient

maxh,u{|u| + √
ghθ} , 0 < CFL coefficient ≤ 1.

3.1 Constructing theWell-Balanced Schemes

The method we use to construct the well-balanced scheme consists of two steps:

Step 1: First, the source term on the right-hand side of system (1.1) will be absorbed
in stationary contact waves at each grid node: For each state Un

j at the time
tn in the interval (x j−1/2, x j+1/2), there is a state Un

j−1,+ on the left and a
state Un

j+1,− on the right of that interval that can be connected to Un
j by a

contact wave.
Step 2: Second, the states on both sides of the contactwaves in Step 1will be incorpo-

rated in a standard numerical flux for conservation laws:Un
j−1,+ andUn

j+1,−
which will replaceUn

j−1 andU
n
j+1, respectively, in a standard numerical flux

for conservation laws.

Precisely, the scheme is defined by

Un+1
j = Un

j − λ
(
k(Un

j ,U
n
j+1,−) − k(Un

j−1,+,Un
j )

)
, (3.1)
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where k, which will be referred to as the underlying numerical flux, can be any stan-
dard numerical flux for conservation laws. For example, one may take the underlying
numerical flux to be the one of the Lax–Friedrichs schemes:

kLF (U,V) = 1

2
(f(U) + f(V)) − 1

2λ
(V − U). (3.2)

The computation of the states Un
j+1,−,Un

j−1,+ is now discussed. In scheme (3.1),
the states

Un
j+1,− = [(h, hu, hθ)T]nj+1,−,Un

j−1,+ = [(h, hu, hθ)T]nj−1,+

are defined by observing that the entropy is constant across each stationary jump, and
by computing hnj+1,−, unj+1,−, θnj+1,− from the system

hnj+1u
n
j+1 = hnj+1,−u

n
j+1,−,

(unj+1)
2

2
+ gθnj+1(h

n
j+1 + a j+1) = (unj+1,−)2

2
+ gθnj+1(h

n
j+1,− + a j ),

θnj+1 = θnj+1,−, (3.3)

and computing hnj−1,+, unj−1,+, θnj−1,+ from the system

hnj−1u
n
j−1 = hnj−1,+u

n
j−1,+,

(unj−1)
2

2
+ gθnj−1(h

n
j−1 + a j−1) = (unj−1,+)2

2
+ gθnj−1(h

n
j−1,+ + a j ),

θnj−1 = θnj−1,+. (3.4)

Observe that from Eq. (2.15), we have

amax(Un
j+1) = hnj+1

2

⎛
⎝ (unj+1)

2
3

g
1
3 (θnj+1)

1
3 (hnj+1)

1
3

− 1

⎞
⎠

2 ⎛
⎝2 + (unj+1)

2
3

g
1
3 (θnj+1)

1
3 (hnj+1)

1
3

⎞
⎠ + anj+1.

(3.5)

Thus, amax(Un
j+1) ≥ a j+1 and therefore system (3.3) have a solution provided

amax(Un
j+1) ≥ a j .

To ensure that the scheme always works, we may modify the value a j and re-assign it
to a new value amax(Un

j+1), if necessary. A similar procedure is used for system (3.4).
In particular, the bottom function a is expected not to have too large jumps near the
critical surface.

Scheme (3.1) is well balanced in the sense that it can capture exactly stationary
waves. Indeed, it holds for any stationary waves that
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hnj+1u
n
j+1 = h ju j ,

(unj+1)
2

2
+ gθnj+1(h

n
j+1 + a j+1) = u2j

2
+ gθnj+1(h j + a j ),

θnj+1 = θ j , (3.6)

and

hnj−1u
n
j−1 = h ju j ,

(unj−1)
2

2
+ gθnj−1(h

n
j−1 + a j−1) = u2j

2
+ gθnj−1(h j + a j ),

θnj−1 = θ j . (3.7)

This yields

hnj+1,− = h j , u
n
j+1,− = u j , θ

n
j+1,− = θ j ,

hnj−1,+ = h j , u
n
j−1,+ = u j , θ

n
j−1,+ = θ j .

Thus,
Un

j+1,− = Un
j , Un

j−1,+ = Un
j ,

and therefore, the scheme gives
Un+1

j = Un
j .

This means that the solution is stationary.
Now, it is interesting to observe that a particular choice of scheme (3.1), which

takes the underlying numerical flux (3.2), can preserve the positivity of the height and
temperature of water.

Theorem 3.1 Scheme (3.1)–(3.2) is positively conservative for the water height. That
is, if h0j ≥ 0 for all j ∈ Z, then hnj ≥ 0 for all n ∈ N, j ∈ Z.

Proof We need only to verify that for an arbitrary fixed n, if hnj ≥ 0,∀ j , then hn+1
j ≥

0,∀ j . Indeed, it is not to difficult to check that hnj−1,+ and hnj+1,− are also nonnegative
for all j . Moreover, it follows from Eq. (3.1) that

hn+1
j = hnj−1,+ + hnj+1,−

2
+ λ

2

(
hnj−1,+u

n
j−1,+ − hnj+1,−u

n
j+1,−

)

≥ hnj−1,+ + hnj+1,−
2

− λ

2
max{|unj−1,+|, |unj+1,−|}

(
hnj−1,+ + hnj+1,−

)

≥ hnj−1,+ + hnj+1,−
2

(
1 − λmax{|unj−1,+|, |unj+1,−|}

)

≥ 0

due to the CFL condition. This completes the proof of Theorem 3.1.
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Theorem 3.2 Scheme (3.1)–(3.2) is positively conservative for the water temperature:
if θ0j ≥ 0 for all j ∈ Z, then θnj ≥ 0 for all n ∈ N, j ∈ Z.

Proof By induction, we need only to show that for any fixed n ≥ 0, if θnj ≥ 0 for all

integers j , then θn+1
j ≥ 0 for all integers j . Indeed, since the temperature θ remains

constant across stationary waves, it holds that

θnj−1,+ = θnj−1 ≥ 0, θnj+1,− = θnj+1 ≥ 0,

for all integers j . It therefore follows from Eq. (3.1) that

hn+1
j θn+1

j = hnj−1,+θnj−1,+ + hnj+1,−θnj+1,−
2

+ λ

2

(
hnj−1,+θnj−1,+u

n
j−1,+ − hnj+1,−θnj+1,−u

n
j+1,−

)

≥ hnj−1,+θnj−1,+ + hnj+1,−θnj+1,−
2

− λ

2
max{|unj−1,+|, |unj+1,−|}

(
hnj−1,+θnj−1,+ + hnj+1,−θnj+1,−

)

≥ hnj−1,+θnj−1,+ + hnj+1,−θnj+1,−
2

(
1 − λmax{|unj−1,+|, |unj+1,−|}

)

≥ 0

due to the CFL condition. Since hn+1
j ≥ 0, we get θn+1

j ≥ 0. �


3.2 Fast and Stable Schemes by Underlying Numerical Fluxes

In general, one may choose any standard numerical flux k in (3.1) as the underlying
numerical flux. To make the scheme fast and stable, we form the underlying numer-
ical flux to be any convex combination of the numerical fluxes of a first-order and
stable scheme and a high-order one. For example, one can take the following convex
combinations

k(U,V) = θkLF (U,V) + (1 − θ)kLW (U,V), (3.8)

for 0 ≤ θ ≤ 1, where kLW is the Lax–Wendroff numerical flux:

kLW (U,V) = 1

2
(f(U) + f(V)) − λ

2
A2(U,V)(V − U), (3.9)

and

U = (h, hu, hθ)T,

f(U) =
(
hu, hu2 + gh2θ

2
, uhθ

)T

,

A(U,V) = Â j− 1
2
is a Roe matrix.
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In particular, taking θ = 1/2 in (3.8) leads us to the one of the FORCE schemes
(see [34]):

kFORCE (U,V) = 1

2
kLF (U,V) + 1

2
kLW (U.V). (3.10)

Let us construct a Roe matrix of system (1.1) as follows. The matrix Â j− 1
2

=
A(U j−1,U j ) is chosen to be some approximation to f ′(U) valid a neighborhood of
the data U j−1 and U j . So Â j− 1

2
satisfies condition:

f(U j ) − f(U j−1) = Â j− 1
2
(U j − U j−1). (3.11)

Parameter vector Z: U = U(Z) invertible Z = Z(U). We will integrate along the path

Z(ξ) = Z j−1 + (Z j − Z j−1)ξ, 0 ≤ ξ ≤ 1, (3.12)

where Zi = Z(Ui ) for i = j − 1, j . Then Z′(ξ) = Z j − Z j−1 is independent of ξ ,
and so

f(U j )−f(U j−1) =
∫ 1

0

d

dξ
f(U(Z(ξ)))dξ =

∫ 1

0
f ′(U(Z(ξ)))dξ(Z j−Z j−1). (3.13)

We also have

U j − U j−1 =
∫ 1

0

d

dξ
U(Z(ξ))dξ =

∫ 1

0
U′(Z(ξ))dξ(Z j − Z j−1). (3.14)

Setting

Ĉ j− 1
2

=
∫ 1

0
f ′(U(Z(ξ)))dξ, (3.15)

B̂ j− 1
2

=
∫ 1

0
U′(Z(ξ))dξ. (3.16)

From (3.13), (3.14), we obtain

f(U j ) − f(U j−1) = Ĉ j− 1
2
(Z j − Z j−1), (3.17)

U j − U j−1 = B̂ j− 1
2
(Z j − Z j−1). (3.18)

From (3.18), and from using

Â j− 1
2

= Ĉ j− 1
2
B̂−1

j− 1
2
,
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we obtain the relation (3.11). Now, set in system (1.1),

U =
⎡
⎣

h
hu
hθ

⎤
⎦ =

⎡
⎣
U 1

U 2

U 3

⎤
⎦ . (3.19)

It holds that

f(U) =

⎡
⎢⎢⎣

hu

hu2 + gh2θ

2
uhθ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

U 2

(U 2)2

U 1 + gU 1U 3

2
U 2U 3

U 1

⎤
⎥⎥⎥⎦ . (3.20)

From (3.19), (3.20), we obtain Jacobian matrix for the shallow equations with flat
bottom (a is constant):

∂f(U)

∂U
=

⎡
⎢⎢⎢⎢⎣

0 1 0

−
(
U 2

U 1

)2

+ gU 3

2

2U 2

U 1

gU 1

2

−U 2U 3

(U 1)2

U 3

U 1

U 2

U 1

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎣

0 1 0

−u2 + ghθ

2
2u

gh

2−uθ θ u

⎤
⎥⎦ .

(3.21)

As a parameter vector, one may choose

Z = U√
h

=
⎡
⎣

√
h√
hu√
hθ

⎤
⎦ =

⎡
⎣
Z1

Z2

Z3

⎤
⎦ .

A straight calculation gives us

∂U(Z)

∂Z
=

⎡
⎣
2Z1 0 0
Z2 Z1 0
Z3 0 Z1

⎤
⎦ , (3.22)

and

∂f(U(Z))

∂Z
=

⎡
⎢⎢⎣

Z2 Z1 0
3g(Z1)2Z3

2
2Z2 g(Z1)3

2
0 Z3 Z2

⎤
⎥⎥⎦ . (3.23)

From (3.12), it holds for each component p = 1, 2, 3 that

Z p = Z p
j−1 + (Z p

j − Z p
j−1)ξ, p = 1, 3, 0 ≤ ξ ≤ 1.
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This yields

∫ 1

0
Z p(ξ)dξ =1

2
(Z p

j−1 + Z p
j ) = Z

p
,

∫ 1

0
(Z1)2Z3dξ =1

4
(Z1

j−1)
2Z3

j−1 + 1

12
(Z1

j−1)
2Z3

j + 1

6
Z1
j−1Z

1
j Z

3
j−1+

1

6
Z1
j−1Z

1
j Z

3
j

+ 1

12
(Z1

j )
2Z3

j−1 + 1

4
(Z1

j )
2Z3

j = Z ,

∫ 1

0
(Z1)3dξ =1

2
(Z1

j + Z1
j−1).

1

2

[
(Z1

j )
2 + (Z1

j−1)
2
]

= Z
1
h,

where

h = h j−1 + h j

2
,

Z = h
3
2
j−1θ j−1

4
+ h j−1

√
h jθ j

12
+

√
h j h j−1θ j−1

6
+

√
h j−1h jθ j

6
+ h j

√
h j−1θ j−1

12
+ h

3
2
j θ j

4
.

Substituting (3.22) into (3.16), we have

B̂ j− 1
2

=
⎡
⎢⎣
2Z

1
0 0

Z
2

Z
1

0

Z
3

0 Z
1

⎤
⎥⎦ ,

which yields the inverse matrix

B̂−1
j− 1

2
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2Z
1 0 0

− Z
2

2(Z
1
)2

1

Z
1 0

− Z
3

2(Z
1
)2

0
1

Z
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, substituting (3.23) into (3.16), we have

Ĉ j− 1
2

=

⎡
⎢⎢⎢⎣

Z
2

Z
1

0

3gZ

2
2Z

2 gZ
1
h

2
0 Z

3
Z
2

⎤
⎥⎥⎥⎦ .
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So

Â j− 1
2

= A(U j−1,U j ) = A(U j ,U j−1) = Ĉ j− 1
2
B̂−1

j− 1
2

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0

3gZ

4Z
1 −

(
Z
2

Z
1

)2

− gh

4

Z
3

Z
1

2Z
2

Z
1

gh

2

− Z
2

Z
1

Z
3

Z
1

Z
3

Z
1

Z
2

Z
1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

Z
2

Z
1 =

√
h j−1u j−1 + √

h ju j√
h j−1 + √

h j
,

Z
3

Z
1 =

√
h j−1θ j−1 + √

h jθ j√
h j−1 + √

h j
,

Z
1 =

√
h j−1 + √

h j

2
.

Specially, if U j−1 = U j then Â j− 1
2
is Jacobian matrix in (3.21) where h = h j , u =

u j , θ = θ j .

4 Numerical Tests

This section is devoted to numerical tests, where the exact solutions and the approxi-
mate solutions are computed and compared. The errors are computed for differentmesh
sizes, where we take the underlying numerical flux in our well-balanced scheme (3.1)
to be the one of the Lax–Friedrichs schemes (3.2) and the FORCE scheme (3.10). The
exact solution is denoted by U = (h, u, θ)T, and the approximate solution at the step
size h is denoted by ULF

h ,UFORCE
h corresponding to the scheme using the numerical

flux of the Lax–Friedrichs scheme and of the FORCE scheme, respectively.
Exact solutions and approximate solutions of the Riemann problem for (1.1) will

be computed on the interval x ∈ [−1, 1] at the time t = 0.1. The CFL constant is
chosen to be λ = 0.5 in all of the tests.

4.1 StationaryWaves

In the last section, scheme (3.1) is shown to be well balanced in the sense that it can
capture exactly stationary waves. It is interesting to see the numerical demonstration
of this property. One can see that the errors are very small and almost stable, since
they are caused by the errors from the input data.
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Fig. 2 Exact stationary wave (4.1) approximated by the well-balanced scheme with 250 mesh points

Table 1 Errors of numerical
approximations for different
mesh sizes for test case of height
bottom discontinuous

N ||U − ULF
h ||L1 ||U − UFORCE

h ||L1
250 1.1786×10−5 1.155×10−5

500 1.1504×10−5 1.1385×10−5

1000 1.1369×10−5 1.1311×10−5

2000 1.1303×10−5 1.1274×10−5

4000 1.127×10−5 1.1256×10−5

4.1.1 Test 1: Stationary Contact Discontinuities

This test is devoted to a stationary discontinuity of system (1.1)

(h, u, θ, a)(x, t) =
{

(hL , uL , θL , aL), if x < 0,

(hR, uR, θR, aR), if x > 0,
(4.1)

where the left-hand and the right-hand states of the wave are approximately given by

(hL , uL , θL , aL) = (0.2, 3, 3, 1.2),

(hR, uR, θR, aR) = (0.118727337921731, 5.053595999899697, 3, 1).
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Fig. 3 Exact stationary wave with bottom height continuous approximated by the well-balanced scheme
with 250 mesh points

Table 2 Errors of numerical
approximations for different
mesh sizes for test case of height
bottom continuous

N ||U − ULF
h ||L1 ||U − UFORCE

h ||L1
250 1.3074×10−4 1.3237×10−4

500 1.4068×10−4 1.4147×10−4

1000 1.367×10−4 1.3699×10−4

2000 1.3601×10−4 1.364×10−4

4000 1.3424×10−4 1.3448×10−4

Table 3 States for the exact
solution near dry zone in Test 3

h u θ a

UL 0.01 4 3 1.2

U1 0.00757245265656 5.28230440178 3 1

U2 0.0553068463584 3.0397850844 3 1

U3 0.0478971339495 3.0397850844 4 1

UR 0.02 2 4 1
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Fig. 4 Test 3: Exact Riemann solution with Riemann data (4.3) approximated by the well-balanced scheme
with Lax–Friedrichs and FORCE flux

As mentioned above, the approximate solutions are computed by the well-balanced
scheme with the numerical fluxes (3.2) and (3.10). The exact solution, which is a
stationary contact discontinuity, and the approximate solutions are plotted in Fig. 2.
The errors for different mesh sizes are given in Table 1.

123



802 M. D. Thanh, N. X. Thanh

Table 4 Errors of numerical
approximations for different
mesh sizes for Test 3

N ||U − ULF
h ||L1 ||U − UFORCE

h ||L1
250 0.16423 0.10371

500 0.096432 0.061294

1000 0.055003 0.034385

2000 0.032295 0.020713

4000 0.019649 0.012904

Figure 2 and Table 1 show that the approximate solutions almost coincide with the
exact solution. The very errors are caused by the errors from the input data and the
tolerance of the code iterative algorithm.

4.1.2 Test 2: Smooth Stationary Waves

Let us take the exact solution to be a smooth stationary wave. The solution is thus
independent of time. Precisely, let us take the smooth topography as

a(x) = 2 + tan−1(x), (4.2)

and the initial water height, water velocity and water temperature as

(h0, u0, θ0) = (3, 1.5, 3).

Then, the exact solution is given by algebraic system (2.10). Note that the values of
the exact solution at any mesh point x j can be computed by the exact solution and the
approximate solutions are displayed in Fig. 3. The corresponding errors are given in
Table 2.

From this test, one can see that the approximate solutions almost coincide with the
exact solution. The errors are stable and caused by the input data and the tolerance of
the code for iterative algorithms.

4.2 Nonstationary Solutions

4.2.1 Test 3: Solutions Near Dry Zone and in the Supercritical Region

This test is aimed to show the convergence in the supercritical region and the positive
conservation for the water height of the scheme, as demonstrated by Theorem 3.1.
For this purpose, we take an exact nonstationary solution of the Riemann problem for
(1.1) near the dry zone, i.e.,

h ≈ 0,

in an interval. Then, wewill check that the scheme still gives the approximate solutions
whose water height remains well above zero. Precisely, the Riemann data are given
by
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Fig. 5 Test 4: Exact Riemann solution with Riemann data (4.4) approximated by the well-balanced scheme
with Lax–Friedrichs and FORCE flux

(h, u, θ, a)(x, 0) =
{

(0.01, 4, 3, 1.2), if x < 0,

(0.02, 2, 4, 1), if x > 0.
(4.3)

The exact solution begins with a stationary contact wave from UL to U1, followed
by a 1-shock wave from U1 to U2, a 2-contact from U2 to U3, and finally a 3-shock
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Table 5 Errors of numerical
approximations for different
mesh sizes for Test 4

N ||U − ULF
h ||L1 ||U − UFORCE

h ||L1
250 0.19767 0.13497

500 0.1282 0.08828

1000 0.081036 0.053296

2000 0.051389 0.034103

4000 0.03438 0.023685

wave from U3 to UR ; see Table 3. It is not difficult to check that both left-hand and
right-hand states UL ,UR belong to the supercritical region.

The exact solution of the Riemann problem for (1.1) and the approximate solutions
by our scheme are plotted in Fig. 4. The corresponding errors are given in Table 4.
The errors become smaller as the mesh sizes are smaller.

The picture on the left upper corner of Fig. 4 shows approximate values of the water
height by the scheme for different mesh sizes, which all remain well positive.

4.2.2 Test 4: Solutions in Both Supercritical and Subcritical Regions

In this test, we consider the approximation for the Riemann problem when the left-
hand state is supercritical and the right-hand state is subcritical. Precisely, the Riemann
data are given by

(h, u, θ, a)(x, 0) =
{

(0.2, 3, 3, 1), if x<0,

(0.195816152469433, 0.182801122801997, 5, 1.1), if x>0.
(4.4)

See Fig. 5 and Table 5 for the comparison of the errors of the well-balanced scheme
with Lax–Friedrichs and FORCE flux.

In this test, one can see that the errors are small and decrease significantly when
the mesh sizes tends to zero.

4.2.3 Test 5: Approximation in Subsonic Region

In this test,we consider the approximationof the exact solutionof theRiemannproblem
when the left-hand and right-hand states are subcritical. Precisely, the Riemann data
are given by

(h, u, θ, a)(x, 0)=
{
(1, 3, 2, 1), if x<0,
(0.912012600264880,−0.176048159061341, 3, 1.1), if x>0.

(4.5)
The exact solution and the approximate solutions are plotted in Fig. 6. The errors

and orders of accuracy are given in Table 6.
Again, in this test, the scheme still possesses a very good accuracy. When using

the underlying numerical flux of the FORCE scheme, the scheme has a much better
accuracy than using the one of the Lax–Friedrichs schemes.
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Fig. 6 Test 5: Exact Riemann solution with Riemann data (4.5) approximated by the well-balanced scheme
with Lax–Friedrichs and FORCE flux

5 Conclusions

Numerical scheme (3.1) for the shallow water equations with variable topography and
horizontal temperature gradient is constructed and tested. It is well balanced in the
sense that it can capture stationary waves. In addition, the scheme with a particular
choice of the underlying numerical flux to be the one of the Lax–Friedrichs schemes
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Table 6 Errors and orders of accuracy of well-balanced scheme using Lax–Friedrichs and FORCE flux in
Test 5

N ||U − ULF
h ||L1 LF’s order ||U − UFORCE

h ||L1 FORCE’s order

250 0.18749 0.11594

500 0.11534 0.7009 0.072534 0.6766

1000 0.068111 0.7599 0.042699 0.7645

2000 0.042547 0.6788 0.027594 0.6298

4000 0.027285 0.6409 0.018083 0.6097

possesses interesting properties: it preserves the positivity of the water height and
the positivity of the temperature. This well-balanced scheme provides us with very
reasonable accuracy. It is interesting to note that we can improve the accuracy of the
scheme by using the underlying numerical flux obtained as a convex combination of
the numerical fluxes of a first-order and stable scheme and a high-order one, such as the
FORCE scheme. Tests show that the scheme is convergent for all the circumstances
when the exact solution belongs to either the supercritical region or the subcritical
region, or expands in both supercritical and subcritical regions.
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