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Abstract
In this paper, the boundedness problem of factorizable four-dimensional matrices
on the space of double sequences is investigated. As an application of our results,
the lower bounds and the operator norms of four-dimensional Cesàro matrix and
four-dimensional Copson matrix are obtained, which provide an extension of Hardy’s
discrete inequality and Copson’s discrete inequality to double series, respectively.
Finally, we present complementary results for the operator norm and lower bound of
the four-dimensional Hausdorff matrices.
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1 Introduction

By �, we denote the space of all real or complex valued double sequences which is
the vector space with coordinatewise addition and scalar multiplication. The spaceLp

of double sequences [3] is defined by

Lp =
{(

xn,m
) ∈ � :

∞∑
n=0

∞∑
m=0

∣∣xn,m
∣∣p < ∞

}
,

where 1 ≤ p < ∞, which is a complete space with the norm
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610 G. Talebi

‖x‖Lp :=
( ∞∑
n=0

∞∑
m=0

∣∣xn,m
∣∣p)1/p

.

Formore information on the normed spaces of double sequences anddomain of triangle
matrices in normed/paranormed sequence spaces, and the matrix transformations and
summability theory, we refer the readers to the textbook [1] and the recent papers
[2,4,7–9,14,17] and [21–29].

Let X and Y be two double sequence spaces andH = (hnmjk) be a four-dimensional
infinite matrix of real or complex numbers. Then, we say that H defines a matrix
mapping from X into Y , and we denote it by writing H : X → Y , if for every double
sequence x = (xn,m) ∈ X the double sequence Hx = {(Hx)n,m}, the H-transform of
x , exists and is in Y , where

(Hx)n,m =
∞∑
j=0

∞∑
k=0

hnmjk x j,k, (n,m = 0, 1, . . .).

The purpose of this paper is to establish the lower bound and the operator norm of
factorizable four-dimensional matrices as operators on the double sequence spaceLp.
For p ∈ R\{0}, the lower bound involved here is the number L p(H), which is defined
as the supremum of those �, obeying the following inequality

‖Hx‖Lp
≥ � ‖x‖Lp

,

where x ≥ 0, x ∈ Lp and H = (hnmjk) is a nonnegative four-dimensional matrix.
Also, we consider the upper bound k > 0, of the form

‖Hx‖Lp ≤ k ‖x‖Lp ,

for all nonnegative sequences x . The constant k is not depending on x . We seek the
smallest possible value of k and denote the best upper bound by ‖H‖Lp

as the operator
norm of H onLp.When we deal with two-dimensional matrices, we use, respectively,
the notation L p(A) and ‖A‖�p for the lower bound and the operator norm of the
matrix A on �p, where �p is the space of all real or complex p−absolutely summable
sequences.

2 Main Results

Our main results are as follows.

Theorem 2.1 Let A = (anj ) and B = (bmk) be two nonnegative infinite matrices
with the lower bounds L p(A) and L p(B), respectively. Let H = (anj bmk) be the four-
dimensional matrix constructed from A and B. Then,

L p(H) = L p(A)L p(B)
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Complementary Results on the Boundedness Problem of… 611

Proof Let x = (x jk) be a nonnegative double sequence in Lp. Then,

∞∑
n=0

∞∑
m=0

⎛
⎝ ∞∑

j=0

∞∑
k=0

anj bmkx jk

⎞
⎠

p

=
∞∑
n=0

∞∑
m=0

⎛
⎝ ∞∑

j=0

anj

∞∑
k=0

bmkx jk

⎞
⎠

p

=
∞∑
n=0

∞∑
m=0

⎛
⎝ ∞∑

j=0

anj ymj

⎞
⎠

p (
ymj :=

∞∑
k=0

bmkx jk

)

≥ (
L p (A)

)p ∞∑
m=0

∞∑
j=0

y pmj

= (
L p (A)

)p ∞∑
j=0

∞∑
m=0

( ∞∑
k=0

bmkx jk

)p

≥ (
L p (A)

)p(
L p (B)

)p ∞∑
j=0

∞∑
k=0

x p
jk .

This implies that

L p (H) ≥ L p (A) L p (B) .

In order to see that one even has equality, look at double sequences of the form

x jk = ς jηk .

Then, one has that

∞∑
n=0

∞∑
m=0

⎛
⎝ ∞∑

j=0

∞∑
k=0

anj bmkx jk

⎞
⎠

p

=
∞∑
n=0

⎛
⎝ ∞∑

j=0

anjς j

⎞
⎠

p ∞∑
m=0

( ∞∑
k=0

bmkηk

)p

.

Now let α > L p (A) and β > L p (B). Then, there exist nonnegative sequences (ς j )

and (ηk) such that

∞∑
n=0

⎛
⎝ ∞∑

j=0

anjς j

⎞
⎠

p

< α p
∞∑
j=0

ς
p
j ,

and

∞∑
m=0

( ∞∑
k=0

bmkηk

)p

< β p
∞∑
k=0

η
p
k .
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612 G. Talebi

Then,

∞∑
n=0

∞∑
m=0

⎛
⎝ ∞∑

j=0

∞∑
k=0

anj bmkx jk

⎞
⎠

p

< (αβ)p
∞∑
j=0

ς
p
j

∞∑
k=0

η
p
k .

This implies that

L p (H) < αβ.

Consequently,

L p (H) ≤ L p (A) L p (B) . �	

Theorem 2.2 Let A = (anj ) and B = (bmk) be two nonnegative infinite matrices with
the norms ‖A‖�p and ‖B‖�p , respectively. Let H = (anj bmk) be the four-dimensional
matrix constructed from A and B. Then,

‖H‖Lp = ‖A‖�p
‖B‖�p

Proof The proof can be easily adapted from the one of Theorem 2.1 and so is omitted.
�	

To provide some applications of the above Theorems, we refer the readers to the
next two sections.

3 Extension of Hardy’s and Copson’s Inequalities

In this section, using Theorems 2.1 and 2.2, we are going to provide an extension
of Hardy’s and Copson’s inequalities to double series. First, consider the Hardy’s
inequality [13]

∞∑
n=0

(
n∑

k=0

xk
n + 1

)p

≤
(

p

p − 1

)p ∞∑
k=0

x p
n (1 < p < ∞) , (3.1)

where xk ≥ 0 for all k ∈ N and the constant
(

p
p−1

)p
is the best possible. Inequality

(3.1) can be rewritten as ‖C(1)‖�p = p
p−1 , where C(1) = (cnk)n,k≥0 is the Cesàro

matrix of order 1, defined by

cnk =
{ 1

n+1 0 ≤ k ≤ n,

0 otherwise.
(3.2)
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Complementary Results on the Boundedness Problem of… 613

Now, consider the four-dimensional Cesàro matrix of order 1 and 1, C(1,1) = (
hnmjk

)
defined by

hnmjk =
{ 1

(n+1)(m+1) (0 ≤ j ≤ n, 0 ≤ k ≤ m) ,

0 o.w.

Obviously, this matrix can be factorized as hnmjk = cnj cmk where cnj and cmk are
defined by (3.2). Applying Theorem 2.2, we have

‖C(1,1)‖Lp
= ‖C(1)‖�p

‖C(1)‖�p =
(

p

p − 1

)2

.

This leads us to the following generalization of Hardy’s inequality.

Corollary 3.1 Let 1 < p < ∞ and x = (xnk) be nonnegative sequence of real numbers
in Lp. Then,

∞∑
n=0

∞∑
m=0

⎛
⎝ n∑

j=0

m∑
k=0

x jk
(n + 1) (m + 1)

⎞
⎠

p

≤
(

p

p − 1

)2p ∞∑
n=0

∞∑
m=0

x p
nm . (3.3)

The constant
(

p
p−1

)2p
in (3.3) is the best possible.

Inequality (3.3) is an extension of Hardy’s inequality to double series. It can be
extended to multiple series [16].

Next, consider the Copson’s inequality [11] [see also ([13], Theorem 344)]

∞∑
n=0

( ∞∑
k=n

xk
k + 1

)p

≥ pp
∞∑
k=0

x p
k (0 < p ≤ 1) , (3.4)

where xk ≥ 0 for all k ∈ N. The inequality switch order when p > 1 and the constant
pp is the best possible. Again, inequality (3.4) can be rewritten as L p

(
C(1)t

) = p,
where C(1)t denotes the transpose of C(1), and C(1) is the Cesàro matrix of order 1,
defined by (3.2). The transpose of the Cesàro matrix is called Copson matrix. Now,
consider the four-dimensional Copson matrix Ct(1,1) = (

hnmjk
)
defined by

hnmjk =
{ 1

( j+1)(k+1) ( j ≥ n , k ≥ m ) ,

0 o.w.

Since the four-dimensional Copson matrix Ct(1,1) can be factorized as
hnmjk = ctnj c

t
mk , where cnj and cmk are defined by (3.2), applying Theorem 2.1

we have

L p
(
Ct(1,1)

) = L p
(
C(1)t

)
L p

(
C(1)t

) = p2,
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614 G. Talebi

whenever 0 < p ≤ 1. Further, since
∥∥C(1)t

∥∥
�p

= p, by Theorem 2.2, we deduce
that

∥∥Ct(1,1)∥∥Lp
= ∥∥C(1)t

∥∥
�p

∥∥C(1)t
∥∥

�p
= p2,

for 1 < p < ∞. These lead us to the following generalization of Copson’s inequality.

Corollary 3.2 Let x = (xnk) be nonnegative sequence of real numbers. Then

∞∑
n=0

∞∑
m=0

⎛
⎝ ∞∑

j=n

∞∑
k=m

x jk
( j + 1) (k + 1)

⎞
⎠

p

≥ p2p
∞∑
n=0

∞∑
m=0

x p
nm (0 < p ≤ 1) . (3.5)

The inequality switch order when p > 1 and the constant p2p is the best possible.

Inequality (3.5) is an extension of Copson’s inequality to double series. It can be
extended to multiple series [18].

4 Complimentary Results for Four-Dimensional HausdorffMatrices

Let dμ and dλ be two Borel probability measures on [0,1] and Hμ×λ = (hnmjk) be
the four-dimensional Hausdorff matrix defined by [15]

hnmjk =
⎧⎨
⎩

∫ 1

0

∫ 1

0
(nj )(

m
k )α jβk(1 − α)n− j (1 − β)m−kdμ(α) × dλ(β), 0≤ j ≤ n, 0 ≤ k ≤ m,

0 otherwise,

for all n,m, j, k ∈ N. Clearly, we have

hnmjk =
(
n
j

) (m
k

)
	

n− j
1 	m−k

2 μ j,k,

where

μ j,k :=
∫ 1

0

∫ 1

0
α jβkdμ(α) × dλ(β) , ( j, k = 0, 1, . . .)

and

	
n− j
1 	m−k

2 μ j,k =
n− j∑
s=0

m−k∑
t=0

(−1)s+t
(
n− j
s

) (
m−k
t

)
μ j+s,k+t .

The four-dimensional Hausdorff matrix contains some famous classes of matrices.
These classes are as follows:
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Complementary Results on the Boundedness Problem of… 615

1. The choices dμ(α) = η(1 − α)η−1dα and dλ(β) = γ (1 − β)γ−1dβ give the
four-dimensional Cesàro matrix of order η and γ which is denoted by C(η, γ ).

2. The choices dμ(α) = point evaluation at α = η and dλ(β) = point evaluation at
β = γ give the four-dimensional Euler matrix of order η and γ which is denoted
by E(η, γ ),

3. The choices dμ(α) = |logα|η−1 /�(η)dα and dλ(β) = |logβ|γ−1 /�(γ )dβ give
the four-dimensional Hölder matrix of order η and γ , which is denoted byH(η, γ ).

4. The choices dμ(α) = ηαη−1dα and dλ(β) = γβγ−1dβ give the four-dimensional
Gamma matrix of order η and γ which is denoted by � (η, γ ).

The four-dimensional Cesàro, Hölder and Gamma matrices have nonnegative entries
whenever η > 0 and γ > 0, and also the four-dimensional Euler matrices, when
0 < η < 1 and 0 < γ < 1.

The study of the boundedness problem of four-dimensional Hausdorff matrices
goes back to the some recent works of the author. For example, it is proved in ([19],
Theorem 3.1) that

∥∥Hμ×λ

∥∥Lp
=

∫ 1

0

∫ 1

0
(αβ)

− 1
p dμ (α) × dλ (β) (1 < p < ∞). (4.1)

Further, it is proved in ([20], pp. 7–8) that

L p

(
Ht

μ×λ

)
=

∫ 1

0

∫ 1

0
(αβ)

1−p
p dμ (α) × dλ (β) (0 < p ≤ 1), (4.2)

and

L p
(
Hμ×λ

) ≥
∫ 1

0

∫ 1

0
(αβ)

− 1
p dμ (α) × dλ (β) (0 < p ≤ 1). (4.3)

According to the Hellinger–Toeplitz theorems ([6], Propositions 7.2 and 7.3), (4.1),
(4.2) and (4.3), respectively, give

∥∥∥Ht
μ×λ

∥∥∥Lp
=

∫ 1

0

∫ 1

0
(αβ)

1−p
p dμ (α) × dλ (β) (1 < p < ∞), (4.4)

and

L p
(
Hμ×λ

) =
∫ 1

0

∫ 1

0
(αβ)

− 1
p dμ (α) × dλ (β) (−∞ < p < 0), (4.5)

and

L p

(
Ht

μ×λ

)
≥

∫ 1

0

∫ 1

0
(αβ)

1−p
p dμ (α) × dλ (β) (−∞ < p < 0). (4.6)
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616 G. Talebi

The proof of (4.1), (4.2) and (4.3), in those papers, is all based on the special version
of four-dimensional Euler matrix. On the other hand, the four-dimensional Hausdorff
matrix can be factorized as

hnmjk = h(μ)
nj h

(λ)
mk , (4.7)

where Hμ = (h(μ)
nj )nj is the classical (two-dimensional) Hausdorff matrix [5] cor-

responding to the Borel probability measure dμ (and similarly for Hλ). A similar
factorization holds for the transpose Ht

μ×λ. Therefore, (4.1), (4.2) and (4.3), can be
obtained by a different way. In fact they are all special cases of Theorems 2.1 and
2.2, using the classical results on lower bounds and norms of the classical (two-
dimensional) Hausdorff matrices in [6,10,12]. For example, to achieve (4.4), consider
the transpose of the four-dimensional Hausdorff matrices as operators selfmap of the
space Lp. Applying Theorem 2.2, we have the following result.

Theorem 4.1 Let p be fixed, 1 < p < ∞ andHμ×λ be the four-dimensional Hausdorff
matrix associated with the measures dμ and dλ. Then, the transpose Ht

μ×λ is bounded

onLp if and only if both
∫ 1
0 α

1−p
p dμ(α) < ∞ and

∫ 1
0 β

1−p
p dλ (β) < ∞, and we have

∥∥∥Ht
μ×λ

∥∥∥Lp
=

∫ 1

0

∫ 1

0
(αβ)

1−p
p dμ (α) × dλ (β).

Proof For the classical (two-dimensional)HausdorffmatrixHμ, it is proved byBennett

[5] that Ht
μ is bounded on �p if and only if

∫ 1
0 α

1−p
p dμ(α) < ∞, and that

∥∥Ht
μ

∥∥
�p

=∫ 1
0 α

1−p
p dμ(α). The result of the theorem is now a consequence of Theorem 2.2. �	

Let E(η, γ ), C(η, γ ), H(η, γ ) and � (η, γ ) be the four-dimensional Euler matri-
ces, Cesàro matrices, Hölder matrices and Gamma matrices, respectively. Applying
Theorem 4.1 to these matrices, we have the following corollary.

Corollary 4.2 Let p be fixed, 1 < p < ∞ and η, γ > 0. Then,

1.
∥∥Et(η, γ )

∥∥Lp
= (ηγ )

1−p
p , η ≤ 1, γ ≤ 1.

2.
∥∥Ct(η, γ )

∥∥Lp
= �(η+1)�2

(
1
p

)
�(γ+1)

�
(
η+ 1

p

)
�

(
γ+ 1

p

) .

3.
∥∥Ht(η, γ )

∥∥Lp
= 1

�(η)�(γ )

∫ 1
0

∫ 1
0 (αβ)

p−1
p | logα|η−1| logβ|γ−1dα × dβ.

4.
∥∥�t (η, γ )

∥∥Lp
= p2ηγ

(pη−p+1)(pγ−p+1) , η >
p−1
p , γ >

p−1
p .

Putting η = γ = 1, the second part of the above corollary implies

∥∥Ct(1, 1)∥∥Lp
=

� (2) �2
(
1
p

)
� (2)

�
(
1 + 1

p

)
�

(
1 + 1

p

) = p2.
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Complementary Results on the Boundedness Problem of… 617

This says us that the second part of Corollary 4.2 is a generalization of Copson’s
inequality (see Corollary 3.2).

To the best of our knowledge the exact values of L p
(
Hμ×λ

)
and L p

(
Ht

μ×λ

)
for

1 < p < ∞ have not been found yet. Keeping in mind factorization (4.7) and the
results obtained by Chen and Wang in ([10], Theorem 2.2) for L p(Hμ) and L p(Ht

μ)

where p > 1 and Hμ is the classical (two-dimensional) Hausdorff matrix, we now
enable to fill up this gap by the use of Theorem 2.1.

Theorem 4.3 Let p be fixed, 1 < p < ∞ andHμ×λ be the four-dimensional Hausdorff
matrix associated with the measures dμ and dλ. Then,

L p
(
Hμ×λ

) = μ ({1}) × λ ({1}) ,

and

L p

(
Ht

μ×λ

)
= (

(μ ({0}))p + (μ ({1}))p) 1
p
(
(λ ({0}))p + (λ ({1}))p) 1

p .

We refer the readers to the paper [18] in which the operator norm and lower bound of
some non-factorizable matrices are founded.
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