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1 Introduction

In multidimensional time–frequency analysis, wave fronts are useful concepts when
analyzing where, how and why one distribution is singular, and when observing the
direction in which the singularity occurs. Also, wave fronts are one of the crucial
elements in the recent studies of the theory of distributions because of their ability to
control the product of distributions.

The motivation of this paper is coming from [2], where Grafakos and Sansing
developed a theory that merges the Radon transform and time–frequency theory, and
introduced the concept of directionally sensitive time–frequency analysis. Let g ∈
S (R) be a nonzero window function, (u, x, ξ) ∈ S

n−1 × R × R
n , where S

n−1 is the
unit sphere and f ∈ L1(Rn). Then,

gu,x,ξ (t) = e2π iξ(u·t−x)g(u · t − x), t ∈ R
n, (1)

called Gabor ridge functions, can be viewed as time–frequency analysis elements
in the Radon domain. By pairing the function f with gu,x,ξ , Grafakos and Sansing
provided an idea to localize information in time, frequency and direction defining a
directionally sensitive variant of the short-time Fourier transform (STFT). They have
shown that it is not possible to obtain an exact reconstruction of a signal using the
Gabor ridge functions [2, Thrm. 1], and therefore they have modified their class of
functions to the weighted Gabor ridge functions (see [2] for details). Their results
for directionally sensitive time–frequency decompositions in L2(Rn) based on Gabor
systems in L2(R) are generalized in [8], by showing similar results for discrete and
continuous frames.

Giv [1] introduced another transform which is also a directionally sensitive variant
of the STFT, letting

gu,x,ξ (t) = e2π i t ·ξ g (t · u − x) , t ∈ R
n .

Using these functions he defined the directional short-time Fourier transform (DSTFT)
and proved several orthogonality results and reconstruction formulas for it [1].

The aim of this paper is twofold. In the first part (Sect. 3), we study the DSTFT by
fixing the direction u. This new transform will be called short-time Fourier transform
in the direction of u, and the appropriate synthesis operator will be introduced. We
defined them on the exponential-type distributions, as an extension of the results of
two of us (cf. [10]) for tempered distributions to distributions of exponential-type
K ′

1 (Rn). In this part we improve some results of [1,10] by observing that the original
function can be recovered from the STFT in any specified direction.

In the second part of the paper we give an extension, introducing the multidi-
mensional STFT in the direction of uk = (u1, . . . , uk), where ui , i = 1, . . . , k
are independent vectors of S

n−1 (Sect. 4). Moreover, by a simple transformation of
coordinates, we simplify our exposition considering directions of orthonormal basis
e1, . . . , ek ofR

k in the framework ofR
n . In this way we present our main aim, namely

the analysis of the regularity properties of a signal f (t), t ∈ R
n , being a tempered

distribution, through the knowledge of the short-time Fourier transform in direction of
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Directional Time–Frequency Analysis and Directional Regularity 2077

selected coordinates. In other words, we introduce and analyze the directional wave
fronts which can be applied in the time–frequency analysis.

2 Preliminaries

2.1 Notation

The Fourier transform of a function f ∈ L1(Rn) is defined as F ( f )(ξ) = ̂f (ξ) =
∫

Rn e−2π i x ·ξ f (x)dx, ξ ∈ R
n . The translation and modulation operators are given

by Tx f ( · ) = f ( · − x) and Mξ f ( · ) = e2π iξ · f ( · ), x, ξ ∈ R
n , respectively. The

operatorsMξTx and TxMξ are called time–frequency shifts. The notation 〈 f, ϕ〉means
dual pairing, whereas ( f, ϕ) stands for the L2 inner product. The set of all nonnegative
integers is denoted by N0.

2.2 Spaces

The Schwartz space of rapidly decreasing smooth functions and its dual, the space of
tempered distributions, are denoted byS (Rn) andS ′(Rn), respectively, [12]. Recall
[5] that the space of exponentially rapidly decreasing smooth functionsK1(R

n) is the
space that consists of ϕ ∈ C∞(Rn) for which all the norms

ρk(ϕ) := sup
t∈Rn , |α|≤k

ek|t ||ϕ(α)(t)|, k ∈ N0,

are finite. It is an FS-space and therefore Montel and reflexive. Moreover, the space
K1(R

n) is nuclear. The dual space K ′
1 (Rn) consists of all distributions of the expo-

nential form f = ∑

|α|≤l(e
s| · | fα)(α), where fα ∈ L∞(Rn) [5]. Next, recall [5] that

U (Cn) is the space of entire functions such that ϕ ∈ U (Cn) if and only if

θk(ϕ) := sup
z∈Πk

(1 + |z|2)k/2|ϕ(z)| < ∞, ∀k ∈ N0,

where Πk is the tube Πk = R
n + i[−k, k]n . The dual space U ′(Cn), known as the

space of Silva tempered ultradistributions (see [6,7,11,14]), contains the space of
analytic functionals.

As it turns out, the Fourier transform is a topological isomorphism from K1(R
n)

ontoU (Cn) and extends to a topological isomorphism (with respect to strong topolo-
gies)F : K ′

1 (Rn) → U ′(Cn) [5,14].
Next, we introduce the topological tensor product space K1(R)̂⊗U (Cn) derived

as the completion of the tensor productK1(R)⊗U (Cn) in the π - topology, the same
as the completion in the ε-topology [13]. The topology of K1(R)̂⊗U (Cn) is given
by the family of the norms

ρl
k(Φ) := sup

(x,z)∈R×Πk

ek|x |(1 + |z|2)k/2
∣

∣

∣

∣

∂ l

∂xl
Φ(x, z)

∣

∣

∣

∣

, k, l ∈ N0.
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Its dual (K1(R)̂⊗U (Cn))′ = K ′
1 (R)̂⊗U ′(Cn) will be used in our definition of

the DSTFT of exponential distributions as it contains the range of this transform (cf.
Sect. 3.2). If a measurable function F satisfies

|F (x, z)| ≤ Ces|x |(1+ |z| )s, (x, z) ∈ R × C
n,

for some s, C > 0, then we shall identify F with an element ofK ′
1 (R)̂⊗U ′(Cn) via

〈F, Φ〉 :=
∫

R

∫

Rn
F (x, ξ + iη) Φ (x, ξ + iη) dξdx, (2)

z = ξ + iη, ξ, η ∈ R
n, Φ ∈ K1(R)̂⊗U (Cn). (2) holds due to the Cauchy integral

theorem.

2.3 The Short-Time Fourier Transform

Let f ∈ L2(Rn). Recall that the short-time Fourier transform (STFT) of f with respect
to a window function g ∈ L2(Rn) is given by

Vg f (x, ξ) : = 〈 f (t), MξTxg(t)〉t =
∫

Rn
f (t)g(t − x)e−2π iξ ·tdt, x, ξ ∈ R

n . (3)

The adjoint of Vg , over L2(R2n), is given by

V ∗
g F(t) =

∫∫

R2n
F(x, ξ)g(t − x)e2π iξ ·tdxdξ.

If g �= 0 andψ ∈ L2(Rn) is a synthesiswindow for g, that is, one forwhich (g, ψ) �= 0,
then any f ∈ L2(Rn) can be recovered from its STFT via the inversion formula

f (t) = 1

(g, ψ)

∫∫

R2n
Vg f (x, ξ)MξTxψ(t)dxdξ. (4)

Whenever the generalized inner product in (3) is well defined, the definition of Vg f
can be viewed in a larger class than L2(Rn). It is easy to show that if g ∈ S (Rn)\{0}
is a fixed window, then Vg : S (Rn) → S (R2n) and V ∗

g : S (R2n) → S (Rn) are
continuous mappings. We refer to [3,4] for the basic STFT theory.

Moreover, in [9] the authors have shown that if g ∈ K1(R
n)\{0}, then Vg :

K1(R
n) → K1(R

n)̂⊗U (Cn) and V ∗
g : K1(R

n)̂⊗U (Cn) → K1(R
n) are contin-

uous mappings.
One can define the STFT of a distribution f ∈ K ′

1 (Rn) (resp.S ′(Rn)) with respect
to a window g ∈ K1(R

n) (resp. g ∈ S (Rn)) as

Vg f (x, ξ) = 〈 f, MξTxg〉. (5)
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2.4 The Short-Time Fourier Transform in the Direction of u

The directional short-time Fourier transform (DSTFT) of an integrable function f ∈
L1(Rn) (or f ∈ D ′

L1(R
n)) with respect to the window g ∈ S (R) is given by

∫

Rn
f (t)g(u · t − x)e−2π i t ·ξdt = 〈

f (t), gu,x,ξ (t)
〉

t
, (6)

where (u, x, ξ) ∈ S
n−1×R×R

n , [1]. For a given u ∈ S
n−1, wewill call this transform

STFT in the direction of u and denote by DSg,u f (x, ξ).
One can show, by the use of results of Gröchenig [3] (we will demonstrate this in

the proof of Proposition 4 of Sect. 4), that for a nontrivial g ∈ S (R), with synthesis
window ψ ∈ S (R) and f ∈ L1(Rn), the following reconstruction formula holds
pointwisely,

f (t) = 1

(g, ψ)

∫

Rn

∫

R

DSg,u f (x, ξ)ψu,x,ξ (t)dxdξ . (7)

Reconstruction formula (7) allows us define an operator that maps functions on
R × R

n to functions on R
n as superposition of functions gu,x,ξ . Given g ∈ S (R), we

introduce the appropriate synthesis operator as

DS∗
g,uΦ(t) :=

∫

Rn

∫

R

Φ(x, ξ)gu,x,ξ (t)dxdξ, t ∈ R
n . (8)

Thus, relation (7) takes the form (DS∗
ψ,u ◦ DSg,u) f = (g, ψ) f .

In [10] the authors have discussed the problemof extending the definition ofDSTFT
to the space of tempered distributions. Here, we study the STFT in the direction of u
in the context of the space K ′

1 (Rn) of distributions of exponential type.
If f ∈ K1(R

n) and g ∈ K1(R), thenwe immediately get thatDSg,u f (x, ξ) extends
to a holomorphic function in the second variable. This means that DSg,u f (x, z) is
entire in z ∈ C

n . We write in the sequel z = ξ + iη with ξ, η ∈ R
n . Note also that if

Φ ∈ K1(R)̂⊗U (Cn) and g ∈ K1(R), then, using the Cauchy theorem, we may write
DS∗

g,uΦ as

DS∗
g,uΦ(t) =

∫

Rn

∫

R

Φ(x, ξ + iη)g(u · t − x)e2π i(ξ+iη)·tdxdξ, (9)

for arbitrary η ∈ R
n . In the next section, we will show that if g ∈ K1(R), then DS∗

g,u
maps continuouslyK1(R)̂⊗U (Cn) → K1(R

n). It will then be shown that DS∗
g,u can

be even extended to act on the distribution space K ′
1 (R)̂⊗U ′(Cn).

As a simple consequence of Fubini’s theorem, if g ∈ K1(R), f ∈ L1(Rn) and
Φ ∈ K1(R)̂⊗U (Cn), then one can easily prove

∫

Rn
f (t)DS∗

g,uΦ(t)dt =
∫

Rn

∫

R

DSg,u f (x, ξ + iη)Φ(x, ξ + iη)dxdξ, (10)

ξ, η ∈ R
n , and this can be written as

〈

f,DS∗̄
g,uΦ

〉

= 〈

DSg,u f, Φ
〉

using (2). As in

[10], we use this dual relation when defining STFT in the direction of u of exponential
distributions.
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3 The STFT in the Direction of u of Exponential Distributions

3.1 Continuity of the STFT in the Direction of u on K1(R
n)

Let g ∈ K1(R) \ {0}. Then DSg,u is injective and DS∗
g,u is surjective, due to recon-

struction formula (7).
Notice that we can extend the definition of the STFT in the direction of u as a

sesquilinear mapping DS : (ϕ, g) �→ DSg,uϕ, ϕ ∈ K1(R
n), g ∈ K1(R), whereas

the synthesis operator extends to the bilinear form DS∗ : (Φ, g) �→ DS∗
g,uΦ, Φ ∈

K1(R)⊗̂U (Cn).

Theorem 1 The mapping DS : K1(R
n) ×K1(R) → K1(R)⊗̂U (Cn) is continuous.

Proof We will show that for given k, l ∈ N0, there exist ν, τ ∈ N0 and C > 0 such
that

ρl
k(DSg,uϕ) ≤ Cρν(ϕ)ρτ (g), ϕ ∈ K1(R

n), g ∈ K1(R). (11)

Indeed, we have

ek|x |(1 + |z|2)k/2
∣

∣

∣

∣

∂ l

∂xl
DSg,uϕ (x, z)

∣

∣

∣

∣

= ek|x |(1 + |ξ + iη|2)k/2
∣

∣

∣

∣

∂ l

∂xl

∫

Rn
ϕ(t)g(u · t − x)e−2π i t ·(ξ+iη)dt

∣

∣

∣

∣

≤ ek|x |(1 + |ξ |2)k/2(1 + |η|2)k/2
∣

∣

∣

∣

∫

Rn
ϕ(t)g(l)(u · t − x)(−1)le−2π i t ·ξ e2π t ·ηdt

∣

∣

∣

∣

≤ Cek|x |(1 + nk2)k/2
∣

∣

∣

∣

∫

Rn
ϕ(t)g(l)(u · t − x)(−1)l(1 − �t )

k/2(e−2π i t ·ξ )e2π t ·ηdt
∣

∣

∣

∣

≤ Cek|x |(1 + nk2)k/2
∫

Rn

∣

∣

∣(1 − �t )
k/2

(

ϕ(t)g(l)(u · t − x)
)∣

∣

∣

∣

∣

∣e2π t ·η
∣

∣

∣ dt

≤ Cek|x |(1 + nk2)k/2
∑

|k1|+|k2|=k

(

k
k1, k2

) ∫

Rn

∣

∣

∣ϕ
(k1)(t)g(l+k2)(u · t − x)

∣

∣

∣ e2πk|t |dt

≤ ˜Ck

∑

|k1|+|k2|=k

(

k
k1, k2

) ∫

Rn
ek|x−u·t+u·t |

∣

∣

∣ϕ
(k1)(t)g(l+k2)(u · t − x)

∣

∣

∣ e2πk|t |dt

≤ ˜Ck

∑

|k1|+|k2|=k

(

k
k1, k2

) ∫

Rn
ek|u·t−x |ek|t |

∣

∣

∣ϕ
(k1)(t)g(l+k2)(u · t − x)

∣

∣

∣ e2πk|t |dt

= ˜Ck

∑

|k1|+|k2|=k

(

k
k1, k2

)∫

Rn
ek|u·t−x |e(1+2π)k|t |

∣

∣

∣ϕ
(k1)(t)

∣

∣

∣

∣

∣

∣g(l+k2)(u · t − x)
∣

∣

∣ dt.

We now analyze the synthesis operator. ��
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Theorem 2 The bilinear mapping DS∗ : (K1(R)⊗̂U (Cn)) × K1(R) → K1(R
n) is

continuous.

Proof Let g ∈ K1(R),Φ ∈ K1(R)⊗̂U (Cn) and ϕ = DS∗
g,uΦ. Let ̂Φ1(z1, z) denote

the Fourier transform of Φ(x, z) with respect to the first variable and F−1
2 (Φ)(x, t)

denote the inverse Fourier transform ofΦ(x, z)with respect to the second variable.We
remark that ̂Φ1(z1, z) is an entire function in z1 = ω + iμ,ω, μ ∈ R. An application
of the Cauchy theorem and the Parseval formula gives

∫

R

Φ(x, z)g(u · t − x)dx =
∫

R

̂Φ1(ω + iμ, z)e−2π i(ω+iμ)u·t ĝ(ω + iμ)dω.

Observe that

ϕ(t) = DS∗
g,uΦ(t) =

∫

R

∫

Rn
Φ(x, ξ + iη)g(u · t − x)e2π i(ξ+iη)·tdξdx

=
∫

R

∫

Rn

(

e−2π i(ω+iμ)u·t
̂Φ1(ω + iμ, ξ + iη)ĝ(ω + iμ)

)

e2π i t ·(ξ+iη)dξdω

=
∫

R

e−2π i(ω+iμ)u·t ĝ(ω + iμ)

(∫

Rn

̂Φ1(ω + iμ, ξ + iη)e2π i t ·(ξ+iη)dξ

)

dω

=
∫

R

e−2π i(ω+iμ)u·t ĝ(ω + iμ)F−1
2 (Φ̂1)(ω + iμ, t)dω.

Hence,

ϕ̂(z) =
∫

R

ĝ(z1)̂Φ1(z1, z) ∗ ̂e−2π i z1u·tdω

=
∫

R

ĝ(z1)̂Φ1(z1, z) ∗ δ(z1u + z)dω

=
∫

R

̂Φ1(z1, z1u + z)ĝ(z1)dω, (12)

z = ξ + iη ∈ C
n, z1 = ω + iμ ∈ C.

We now prove the continuity of the bilinear synthesis mapping. Since the Fourier
transform g �→ ĝ is a topological isomorphism fromK1(R

n) ontoU (Cn), the family
of seminorms

σk(g) = θk(ĝ), g ∈ K1(R
n), k ∈ N0,

is a bases of seminorms for the topology of K1(R
n).
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We also know that the Fourier transformwith respect to the first variable,Φ(x, z) →
Φ̂1(z1, z), is a topological isomorphism from K1(R)⊗̂U (Cn) onto U (C)⊗̂U (Cn).
Therefore, the family of seminorms

θl,k(Φ) = sup
(z1,z)∈Π1

l ×Πk

(1 + |z1|2)l/2(1 + |z|2)k/2
∣

∣

∣Φ̂1(z1, z)
∣

∣

∣ , l, k ∈ N0,

Π1
l = R + i[−l, l], is a basis of seminorms for the topology of K1(R)⊗̂U (Cn) .
We show that for a given N ∈ N0 there is C > 0 such that

σN

(

DS∗
g,uΦ

)

≤ CσN+2(g)θ0,N (Φ).

Now, setting again ϕ(x) := DS∗
g,uΦ(x) and using expression (12), we get

(1 + |z|)N ∣

∣ϕ̂(z)
∣

∣ = (1 + |z|)N
∣

∣

∣

∣

∫

R

ĝ(z1)Φ̂1(z1, z1u + z)dω

∣

∣

∣

∣

≤
∫

R

|ĝ(z1)||Φ̂1(z1, z1u + z)|(1 + |z + z1u|)N (1 + |z1|)Ndω

≤ σN+2(g)θ0,N (Φ)

∫

R

1

(1 + |z1|)2 dω,

where z1 = ω + iμ ∈ C. ��

3.2 The STFT in the Direction of u on K ′
1 (R

n)

Let u ∈ S
n−1. The continuity results allow us to define the STFT in the direction of u of

f ∈ K ′
1 (Rn) with respect to g ∈ K1(R) as the element DSg,u f ∈ K ′

1 (R)⊗̂U ′(Cn)

whose action on test functions is given by

〈DSg,u f, Φ〉 := 〈 f,DS∗
g,uΦ〉, Φ ∈ K1(R)⊗̂U (Cn). (13)

Then, the synthesis operator DS∗
g,u : K ′

1 (R)⊗̂U ′(Cn) → K ′
1 (Rn) can be defined

as

〈DS∗
g,u F, ϕ〉 := 〈F,DSg,uϕ〉, F ∈ K ′

1 (R)⊗̂U ′(Cn), ϕ ∈ K1(R
n). (14)

We immediately obtain:

Proposition 1 Let g ∈ K1(R). The short-time Fourier transform in the direction
of u, DSg,u : K ′

1 (Rn) → K ′
1 (R)⊗̂U ′(Cn) and the synthesis operator DS∗

g,u :
K ′

1 (R)⊗̂U ′(Cn) → K ′
1 (Rn) are continuous linear maps.
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3.3 Direct Definition of STFT in the Direction of u on S ′(Rn)

In [10], DSTFT on S ′(Rn) is defined as transposed mapping. The same definition
holds for DSg,u f . In this subsection we will consider a direct definition of DSg,u f on
S ′(Rn) as follows. Let g ∈ S (R), u ∈ S

n−1, and x ∈ R. Then

S ′(Rn) � f (t) �→ f (t)g(t · u − x) ∈ S ′(Rn), (15)

and

S ′(Rn) � f (t)g(t · u − x) �→ F ( f (t)g(t · u − x) )(ξ) ∈ S ′(Rn)

defines DSg,u f (x, ξ).

Proposition 2 The direct definition of the STFT in the direction of u and the one given
via the transposed mapping coincide.

Proof Let f ∈ S ′(Rn) and ( fk) be a sequence from S ′(Rn) which converges to f
in S ′(Rn). Since both definitions agree on fk , for every k, the assertion follows by
the continuity. ��

4 Multidimensional STFT in the Direction of uk

Wewill extend our transform by introducing the STFT in the direction of uk, 1 ≤ k ≤
n. The case k = 1 is explained in the previous part of the paper.

Note that the k-th tensor product completed in π - or ε-topology K1(R)⊗̂ · · · ⊗̂
K1(R) equals to K1(R

k). The same holds for S (Rk). Below we will use notations
(K1(R))k = K1(R) × · · · × K1(R) and (S (R))k = S (R) × · · · × S (R).

Let 1 ≤ k ≤ n. Let uk = (u1, . . . , uk) where ui , i = 1, . . . , k are independent
vectors of S

n−1, and xk = (x1, . . . , xk) ∈ R
k . Let the nontrivial functions g1, . . . , gk

belong to K1(R) (resp., S (R)), gk = g1 . . . gk ∈ (K1(R))k (resp., (S (R))k) and
ξ ∈ R

n .
Let f ∈ K1(R

n) (resp., S (Rn)). Then, we define the STFT in the direction of uk

by

DSgk ,uk f (x
k, ξ) :=

∫

Rn
f (t)g1(u1 · t − x1) · · · gk(uk · t − xk)e

−2π i t ·ξdt. (16)

Proposition 3 By (16) is defined a continuous linear mapping of K1(R
n) (resp.,

S (Rn)) into (K1(R))k⊗̂U (Cn) (resp., (S (R))k⊗̂U (Cn)).
In particular, when k = n, (16) is the short-time Fourier transform.

Proof Let A = [ui, j ] be a k × n matrix with rows ui , i = 1, . . . , k and In−k,n−k be
the identity matrix. Let B be an n × n matrix determined by A and In−k,n−k so that
Bt = s, where

s1 = u1,1t1 + · · · + u1,ntn, . . . , sk = uk,1t1 + · · · + uk,ntn,
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sk+1 = tk+1, . . . , sn = tn . Clearly, it is regular. Put C = B−1 and ek = (e1, . . . , ek)
where e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 1) are unit vectors of the coordinate
system of R

k . Then, with the change of variables t = Cs, and η = Ctξ (Ct is the
transposed matrix for C), one obtains, for f ∈ K1(R

n),

DSgk ,uk f (x
k, ξ) = (DSgk ,ek |C | f (C ·)))(xk, η)

=
∫

Rn
f (s)g1(s1 − x1) · · · gk(sk − xk)e

−2π is·ηds, (17)

where |C | is the determinant of C .
Now, we immediately see the proof of the proposition since f̃ (s) = |C | f (Cs), s ∈

R
n is an element of K1(R

n). ��
Put

gkuk , xk , ξ (t) = g1(u1 · t − x1) · · · gk(uk · t − xk)e
2π i t ·ξ , t ∈ R

n .

Let ψi ∈ K1(R) (resp., ψi ∈ S (R)) be the synthesis window for gi ∈ K1(R) (resp.,
gi ∈ S (R)), i = 1, . . . , k and let

(gk, ψk) = (g1, ψ1) · · · (gk, ψk) �= 0.

We will prove the inversion formula.

Proposition 4 Let f ∈ K1(R
n) (resp., S (Rn)), gk, ψk ∈ (K1(R))k (resp.,

(S (R))k). Then

f (t) = 1

(gk, ψk)

∫

Rn

∫

Rk
DSgk ,uk f (x

k, ξ)ψk
uk ,xk ,ξ (t)dx

kdξ (18)

pointwisely.

Proof The proof is the same as for the short-time Fourier transform (see [3], Theorem
3.2.1 and Corollary 3.2.3). We will use, after the change of variables representation
(17). Let f̃i (·) = |C | fi (C ·), i = 1, 2. Actually, by the Parseval identity we have that
for given f1, f2 ∈ L2(Rn) and gk, ψk ∈ (K1(R))k ,

(

DSgk ,uk f1(x
k, ξ),DSψk ,uk f2(x

k, ξ)
)

L2(Rk×Rn)

=
(

DSgk ,ek f̃1(x
k, ξ),DSψk ,ek f̃2(x

k, ξ)
)

L2(Rk×Rn)

= ( f̃1, f̃2)L2(Rn)(gk, ψk)L2(Rk ). (19)

We obtain reconstruction formula (18) as a consequence of (19), as in the quoted
corollary of [3]. ��
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Let f ∈ K1(R
n). We have that (16) extends to a holomorphic function, i.e.,

DSgk ,uk f (x
k, z) is entire in z ∈ C

n . As in the case k = 1, if Φ ∈ (K1(R))k̂⊗U (Cn)

and gk ∈ (K1(R))k , for arbitrary η ∈ R
n and by the Cauchy theorem, we can write

DS∗
gk ,ukΦ(t) =

∫

Rn

∫

Rk
Φ(xk, ξ + iη)

g1(u1 · t − x1) · · · gk(uk · t − xk)e
2π i(ξ+iη)·tdxkdξ, t ∈ R

n . (20)

The STFT in the direction of uk on dual spacesK ′
1 (Rn) andS ′(Rn) can be defined

as in the case k = 1 (cf. Sects. 3.2 and 3.3).
The next theorem connects STFTs in the direction of uk with respect to different

windows. It is crucial for the main theorem of Sect. 5.

Theorem 3 Let u1, . . . , uk ∈ S
n−1 be independent. Let h1, . . . , hk, g1, . . . , gk, γ1,

. . . , γk belong to S (R) where γi is synthesis window for gi , i = 1, . . . , k. Let f ∈
S ′(Rn). Then

DShk ,uk f (y
k, η) =

(

DSgk ,uk f (s
k, ζ )

)

∗
(

DShk ,ukγ
k(sk, ζ )

)

(yk, η).

Proof By the use of the change of variables given in the proof of Proposition 3, it
follows that it is enough to prove the assertion for uk = ek . Let F ∈ S ′(Rk)⊗̂U ′(Cn).
Then

DShk ,ek (DS
∗
γ k ,ek F)(yk, η)

=
∫

Rn

(∫

Rn

∫

Rk
F(xk, ξ)γ1(t1 − x1) · · · γk(tk − xk)e

2π iξ ·tdxkdξ
)

h1(t1 − y1) · · · hk(tk − yk)e
−2π i t ·ηdt

=
∫

Rn

∫

Rk

(∫

Rn
h1(t1 − (y1 − x1)) · · · hk(tk − (yk − xk))

γ1(t1) · · · γk(tk)e−2π i t ·(η−ξ)dt
)

F(xk, ξ)dxkdξ

=
∫

Rn

∫

Rk

(∫

Rn
γ k(tk)hk(tk − (yk − xk))e−2π i t ·(η−ξ)dt

)

F(xk, ξ)dxkdξ

=
∫

Rn

∫

Rk
F(xk, ξ)DShk ,ekγ

k(yk − xk, η − ξ)dxkdξ.

Now, we put F = DSgk ,ek f and obtain

DShk ,ek f (y
k, η) = (DSgk ,ek f (s

k, ζ )) ∗ (DShk ,ekγ
k(sk, ζ ))(yk, η). (21)

This completes the proof of the theorem. ��
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5 Directional Wave Fronts

The STFT in the direction of uk can be used in the detection of singularities determined
by the hyperplanes orthogonal to vectors u1, . . . , uk . For this purpose, we introduce
(multi)directional regular sets and wave front sets for tempered distributions using the
STFT in the direction of uk .

The proofs of Proposition 3 andTheorem3 show thatwe can simplify our exposition
by the use of the linear transformation C of Proposition 3 and transfer the STFT in
uk to STFT in ek . Thus, in order to simplify our exposition of this section, we will
consider regularity properties in the framework of the direction uk = ek .

If k = 1, we consider direction e1 = e1, while for 1 < k ≤ n, we consider
direction ek = (e1, . . . , ek). Let k = 1 and x0 = x0,1 ∈ R. Put Πe1,x0,ε = Πx0,ε :=
{t ∈ R

n; |t1 − x0| < ε}. It is a part of R
n between two hyperplanes orthogonal to e1,

that is,

Πx0,ε =
⋃

x∈(x0−ε,x0+ε)

Px , (x0 = (x0, 0, . . . , 0)),

and Px denotes the hyperplane orthogonal to e1 passing through x .
We keep the notation of Sect. 4. Put

Πek ,xk ,ε = Πe1,x1,ε ∩ . . . ∩ Πek ,xk ,ε, Πek ,xk = Πe1,x1 ∩ . . . ∩ Πek ,xk .

The first set is a parallelepiped determined by 2k finite edges, while the other edges
are infinite. The set Πek ,xk equals R

n−k translated by vectors x1, . . . , xk. We will call
it n − k-dimensional element of R

n and denote it as Pek ,xk ∈ R
k . If k = n, then this

is just the point xn = (x1, . . . , xn).

Definition 1 Let f ∈ S ′(Rn). It is said that f is k-directionally regular at
(Pek ,xk0

, ξ0) ∈ R
n × R

n \ {0} if there exists gk ∈ (D(R))k, gk(0) �= 0, a product

of open balls Lr (xk0 ) = Lr (x0,1) × · · · × Lr (x0,k) ∈ R
k and a cone Γξ0 such that for

every N ∈ N there exists CN > 0 such that

sup
xk∈Lr (xk0 ), ξ∈Γξ0

|DSgk ,ek f (xk, ξ)|

= sup
xk∈Lr (xk0 ), ξ∈Γξ0

|F ( f (t)gk(tk − xk))(ξ)| ≤ CN (1 + |ξ |2)−N/2. (22)

Note that for k = n our definition implies classical Hörmander’s regularity.

Remark 1 (a) If f is k-directionally regular at (Pek ,xk0
, ξ0), then there exist an open

ball (with radius r and center xk0 ) Lr (xk0 ) and an open cone Γ ⊂ Γξ0 so that f is
k-directionally regular at (Pek ,zk0

, θ0) for any zk0 ∈ Lr (xk0 ) and θ0 ∈ Γ . This implies

that the union of all k-directional regular points (Pek ,zk0
, θ0), (zk0, θ0) ∈ Lr (xk0 ) × Γ is

an open set of R
n × R

n \ {0}.
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(b) Denote by Prk the projection of R
n onto R

k . Then, the k-directional regular
point (Pek ,xk0

, ξ0), considered in R
n × R

n \ {0} with respect to the first k variables,

equals (Pr−1
k × Iξ )(Pek ,xk0

, ξ0) (Iξ is the identity matrix on R
n).

We define the k-directional wave front as the complement in R
k ×R

n \ {0} of all k-
directional regular points (Pek ,xk0

, ξ0). This set is denoted asWFek f . In R
n ×R

n \{0},
this is (Pr−1

k × Iξ )(WFek f ).

Proposition 5 The set W Fek ( f ) is closed in R
k × R

n \ {0} (and R
n × R

n \ {0}).
Wewill use notation Br (0k) to denote a closed ball in R

k with center at zero 0k and
radius r > 0. Our main theorem relates directional regular sets for two STFTs in the
direction of uk .

Theorem 4 If (22) holds for some gk ∈ (D(R))k , then it holds for every hk ∈
(D(R))k, (hk(0) �= 0) supported by a ball Bρ(0k), where ρ ≤ ρ0 and ρ0 depends on
r in (22).

Proof Since gk and hk are compactly supported, the integration with respect to xk ,
which will be performed below, is finite. Moreover, we can assume that f is a continu-
ous polynomially bounded function. If not, let f = P(D)F , where F is polynomially
bounded and continuous, while P(D) is a differential operator with constant coeffi-
cients. In this case we can perform partial integration and transfer the differentiation
from f on other factors of the integrand which do not affect the proof. So the analysis
can be continued with f continuous and polynomially bounded.

We use Proposition 3, that is, form (21). Assume that (22) holds and that γ k is
chosen so that supp γ k ⊂ Bρ1(0

k) and ρ1 < r−r0. Let hk ∈ (D(R))k and supp hk ⊂
Bρ(0k). We will find ρ0 such that (22) holds for DShk ,ek f (y

k, η), with yk ∈ Br0(x
k
0 ),

η ∈ Γ1 ⊂⊂ Γξ0 , for ρ ≤ ρ0 (Γ1 ⊂⊂ Γξ0 means that Γ1 ∩ S
n−1 is a compact subset of

Γξ0 ∩ S
n−1).

We need the next simple observations:

|pk | ≤ ρ1, |yk − xk0 | ≤ r0 and |pk −
(

(yk − xk0 ) − (xk − xk0 )
)

| ≤ ρ

⇒ |xk − xk0 | ≤ ρ + ρ1 + r0. (23)

So, we choose ρ0 such that ρ0 + ρ1 < r − r0. Then

ρ + ρ1 + r0 < r holds for ρ ≤ ρ0. (24)

Let Γ1 ⊂⊂ Γξ0 . Then, with a suitable c ∈ (0, 1),

η ∈ Γ1, |η| > 1 and |η−ξ | ≤ c|η| ⇒ ξ ∈ Γξ0; |η−ξ | ≤ c|η| ⇒ |η| ≤ (1−c)−1|ξ |.
(25)

Let yk ∈ Br0(x
k
0 ), η ∈ Γ1. Integrals which will appear below are considered as

oscillatory integrals. We have

|DShk ,ek f (yk, η)| =
∣

∣

∣

∣

∫

Rk

∫

Rn
DSgk ,ek f (x

k, ξ)DShk ,ekγ
k(yk − xk, η − ξ)dξdxk

∣

∣

∣

∣

.
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Consider

J1 =
∫

Rn
DSgk ,ek f (x

k, η − ξ)dξ and J2 =
∫

Rn
DShk ,ekγ

k(yk − xk, ξ)dξ.

Then, by the use of partial integration, we have, in the oscillatory sense, (with the
assumption that n is odd),

J1 =
∫

Rn

∫

Rn

f (t)

(1 + |2π t |2)(n+1)/2
gk(tk − xk)(1 − Δξ)

(n+1)/2e−2π i t ·(η−ξ)dtdξ

(for n even, we take n + 2 instead of n + 1). This integral still diverges with respect
to ξ , while J2 converges, since

J2 =
∫

Rn

∫

Bρ1 (0k)

γ k(pk)hk(pk − (yk − xk))

(1 + |2πξ |2)s/2 (1 − Δp)
s/2e−2π i p·ξdpdξ

=
∫

Rn

∫

Bρ1 (0k)
(1 − Δp)

s/2 γ k(pk)hk(pk − (yk − xk))

(1 + |2πξ |2)s/2 e−2π i p·ξdpdξ.

Rewrite

|DShk ,ek f (yk, η)| =
∫

Rk

∣

∣

∣

∣

(∫

|η−ξ |≤c|η|
+

∫

|η−ξ |≥c|η|

)

(. . .)dξ

∣

∣

∣

∣

dxk = I1 + I2.

Then,

I1 ≤
∫

Rk

(

sup
|η−ξ |≤c|η|

|DSgk ,ek f (xk, η − ξ)

∫

|η−ξ |≤c|η|
|DShk ,ekγ (yk − xk, ξ)|dξ

)

dxk .

Now, we use (23), (24) and (1+|η|2)N/2 ≤ C(1+|ξ |2)N/2, for |ξ | ≥ (1− c)|η|. This
implies

sup
yk∈Br0 (xk0 ), η∈Γ1

(1 + |η|2)N/2 I1 ≤
∫

Br (xk0 )

(

sup
ξ∈Γξ0

|DSgk ,ek f (xk, ξ)|(1 + |ξ |2)N/2

×
∫

|ξ |≥(1−c)|η|
|DShk ,ekγ k(yk − xk, ξ)|dξ

)

dxk .

Now by the finiteness of J2, we obtain that I1 satisfies the necessary estimate of (22).
Let us consider I2.

I2 ≤
∫

Rk

∣

∣

∣

∣

∫

|ξ |≥c|η|
DSgk ,ek f (x

k, η − ξ)DShk ,ekγ
k(yk − xk, ξ)dξ

∣

∣

∣

∣

dxk .
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Let K = {ξ : |ξ | ≥ c|η|}. Denote by κ̃d , 0 < d < 1, the characteristic function of
Kd = ⋃

ξ∈K Ld(ξ), that is, Kd is open d-neighborhood of K . Then, put

κη = κ̃d ∗ ϕd ,

where ϕd = 1
dn ϕ(·/d), ϕ ∈ D(Rn) is nonnegative, supported by the ball B1(0) and

equals 1/2 on B1/2(0). This construction implies that κη equals one on K , is supported
by K2d . Moreover, all the derivatives of κη are bounded. Assume that n is odd and
that s is even and sufficiently large. Then,

sup
yk∈Br/2(xk0 ), η∈Γ1

I2 ≤ C
∫

Rk

∣

∣

∣

∣

∫

Rn
κη(ξ)DSgk ,ek f (x

k , η − ξ)DShk ,ek γ
k(yk − xk , ξ)dξ

∣

∣

∣

∣

dxk

≤ C
∫

Rk

∣

∣

∣

∣

∣

∫

R
n
ξ

(

∫

R
n
t

f (t)

(1 + |2π t |2)(n+1)/2
gk(tk − xk)e−2π i t ·(η−ξ)dt

)

(1 − Δξ )(n+1)/2

(

κη(ξ)

(1 + |2πξ |2)s/2
∫

Rn
p

γ k(pk)hk(pk − (yk − xk))(1 − Δp)
s/2e−2π i p·ξdp

)

dξ

∣

∣

∣

∣

∣

dxk .

Then, for every yk ∈ Br0(x
k
0 ) and η ∈ Γ1, choosing s > N + n (and being even) as

well as using the Petree inequality, we see that all the integrals on the right-hand side
of

(1 + |η|2)N/2 I2 ≤ C
∫

Rk

∫

R
n
ξ

(

∫

R
n
t

| f (t)|
(1 + |2π t |2)(n+1)/2

|gk(tk − xk)|dt
(

(1 + |ξ |2)N/2

(1 + |η − ξ |2)N/2 (1 − Δξ)
(n+1)/2

(

κη(ξ)

(1 + |2πξ |2)s/2
)

∫

Rn
p

|(1 − Δp)
s/2

(

γ k(pk)hk(pk − (yk − xk))
)

|dp
)

dξdxk

are finite. This completes the proof of the theorem. ��
Remark 2 If supp gk ⊂ Ba(0k), then we see that (22) shows the behavior of f (t), t ∈
Pr−1

k (Ba+r (xk0 )) in the direction of ξ0.

Corollary 1 Let gk ∈ (S (R))k , supported by a ball Ba(0k), have synthesis window
γ k supported by Bρ1(0

k), ρ1 ≤ a. Assume that in (22) we have 2r instead of r , that is,

sup
xk∈L2r (xk0 ), ξ∈Γξ0

|DSgk ,ek f (xk, ξ)| ≤ CN (1 + |ξ |2)−N/2. (26)

Moreover, assume that a < r . Then, for any hk ∈ D(R))k with support Bρ(0k), ρ < a,
there exists r0 and Γ1 ⊂⊂ Γξ0 such that (26) holds for DShk ,ek f (y

k, η) with the
supremum over yk ∈ Br0(x

k
0 ) and η ∈ Γ1.
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Proof With the notation of Theorem 4, we have, similarly as in (23),

|xk − xk0 | ≤ ρ + ρ1 + r0 < ρ + a − r0 + r0 = a + ρ < 2r.

This implies |xk − xk0 | < 2r , so that the supremum in the estimate of I1 holds. In the
same way as in Theorem 4, we perform the proof. ��
Theorem 5 If (Pek ,xk , ξ) is a k-directional regular point of f ∈ S ′(Rn) for every
ξ ∈ R

n \ {0}, then f ∈ E (Rn).

Proof Assume that supp gk ⊂ Bρ(0k). Let xk0 ∈ R
k . For every ξ ∈ S

n−1 there

exist a ball Lξ
r (xk0 ) and a cone Γξ such that (22) holds. As in the classical theory, the

compactness of S
n−1 implies that there exists r > 0 such that for every N > 0 there

exists CN > 0 such that

sup
xk∈Lr (xk0 )

|F ( f (t)g1(t1 − x1) · · · gk(tk − xk))(ξ)| ≤ CN (1 + |ξ |2)−N/2, ξ ∈ R
n .

Thus, f (t)gk(tk − xk) ∈ E (Rn) for every xk ∈ Lr (xk0 ). Since |tk − xk | < ρ, we see
that t must lie in some Pr−1

k (Lr+ρ(xk0 )). Thus, for every point of R
n there exists an

open set around it where f is smooth. This completes the proof of the theorem. ��
Acknowledgements S. Atanasova and K. Saneva gratefully acknowledge support by the Grant 10-1491/2.
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