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1 Introduction

In multidimensional time—frequency analysis, wave fronts are useful concepts when
analyzing where, how and why one distribution is singular, and when observing the
direction in which the singularity occurs. Also, wave fronts are one of the crucial
elements in the recent studies of the theory of distributions because of their ability to
control the product of distributions.

The motivation of this paper is coming from [2], where Grafakos and Sansing
developed a theory that merges the Radon transform and time—frequency theory, and
introduced the concept of directionally sensitive time—frequency analysis. Let g €
7 (R) be a nonzero window function, (u, x, &) € S"1 x R x R", where S"! is the
unit sphere and f € L'(R"). Then,

uxp(t) =W Vet —x), teR", (1)
called Gabor ridge functions, can be viewed as time—frequency analysis elements
in the Radon domain. By pairing the function f with g, . ¢, Grafakos and Sansing
provided an idea to localize information in time, frequency and direction defining a
directionally sensitive variant of the short-time Fourier transform (STFT). They have
shown that it is not possible to obtain an exact reconstruction of a signal using the
Gabor ridge functions [2, Thrm. 1], and therefore they have modified their class of
functions to the weighted Gabor ridge functions (see [2] for details). Their results
for directionally sensitive time—frequency decompositions in L?(R") based on Gabor
systems in L?(R) are generalized in [8], by showing similar results for discrete and
continuous frames.

Giv [1] introduced another transform which is also a directionally sensitive variant
of the STFT, letting

Sure () =gt u—x), teR"
Using these functions he defined the directional short-time Fourier transform (DSTFT)
and proved several orthogonality results and reconstruction formulas for it [1].

The aim of this paper is twofold. In the first part (Sect. 3), we study the DSTFT by
fixing the direction u. This new transform will be called short-time Fourier transform
in the direction of u, and the appropriate synthesis operator will be introduced. We
defined them on the exponential-type distributions, as an extension of the results of
two of us (cf. [10]) for tempered distributions to distributions of exponential-type
%ﬂ’ (R™). In this part we improve some results of [1,10] by observing that the original
function can be recovered from the STFT in any specified direction.

In the second part of the paper we give an extension, introducing the multidi-
mensional STFT in the direction of u* = (uy,...,ug), where u;,i = 1,...,k
are independent vectors of S"~! (Sect. 4). Moreover, by a simple transformation of
coordinates, we simplify our exposition considering directions of orthonormal basis
et, ..., e of RF in the framework of R”. In this way we present our main aim, namely
the analysis of the regularity properties of a signal f(¢),r € R", being a tempered
distribution, through the knowledge of the short-time Fourier transform in direction of
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Directional Time-Frequency Analysis and Directional Regularity 2077

selected coordinates. In other words, we introduce and analyze the directional wave
fronts which can be applied in the time—frequency analysis.

2 Preliminaries
2.1 Notation

The Fourier transform of a function f € LY(R") is defined as . ( HE) = f(é ) =
Jgn e "¢ f(x)dx, & € R". The translation and modulation operators are given
by T, f(-)= f(- —x)and M f(-) = e2miE £(.),x,E € R", respectively. The
operators Mg T, and T M¢ are called time—frequency shifts. The notation ( f, ¢) means
dual pairing, whereas ( f, @) stands for the L? inner product. The set of all nonnegative
integers is denoted by Nj.

2.2 Spaces

The Schwartz space of rapidly decreasing smooth functions and its dual, the space of
tempered distributions, are denoted by ./ (R") and .’ (R"), respectively, [12]. Recall
[5] that the space of exponentially rapidly decreasing smooth functions .#7 (R") is the
space that consists of ¢ € C°°(R") for which all the norms

pr() == sup @ @), ke Ny,

teR”, |a|<k

are finite. It is an FS-space and therefore Montel and reflexive. Moreover, the space
21 (R") is nuclear. The dual space .#]'(R") consists of all distributions of the expo-
nential form f = 3", (e’ £)©), where f, € L(R") [5]. Next, recall [5] that
% (C") is the space of entire functions such that ¢ € % (C") if and only if

k(@) := sup (1 + |z1H)*?|p(2)| < 0o, Vk € Ny,

zelly

where [T, is the tube IT; = R" + i[—k, k]". The dual space %’(C"), known as the
space of Silva tempered ultradistributions (see [6,7,11,14]), contains the space of
analytic functionals.

As it turns out, the Fourier transform is a topological isomorphism from %] (R")
onto 7 (C") and extends to a topological isomorphism (with respect to strong topolo-
gies) F : A/ (R") — %' (C") [5,14]. R

Next, we introduce the topological tensor product space % (R)®@% (C") derived
as the completion of the tensor product %1 (R) ® % (C") in the 7 - topology, the same
as the completion in the e-topology [13]. The topology of %1 (R)®% (C") is given
by the family of the norms

al
@)= sup 4 o)), kI e No.

(x,2)eRx Iy
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2078 S. Atanasova et al.

Its dual (4 (R)®% (C")) = ¢/ (R)®%'(C") will be used in our definition of
the DSTFT of exponential distributions as it contains the range of this transform (cf.
Sect. 3.2). If a measurable function F satisfies

|F (x,2)] < CePl(141z])*, (x,2) e R x C",

for some s, C > 0, then we shall identify F' with an element of %’(R)@OZ/ "(C™) via

(F, @) 1=ff F(x,§+in) @ (x,§ +in)dédx, @)
R JR2

z=E+in £, ne R, @ e H(R)®% (C). (2) holds due to the Cauchy integral
theorem.

2.3 The Short-Time Fourier Transform

Let f € L?(R"). Recall that the short-time Fourier transform (STFT) of f with respect
to a window function g € L?(R") is given by

Ve f (. 8) i = (f (1), MeTeg (D) = fR f0gle—x)e M dr, x £ €R". (3)
The adjoint of V,, over L2(R?"), is given by
VIF(t) = f/ F(x,&)g(t — x)e* 5 dxde.
RZn

Ifg # Oand ¢ € L?(R")isasynthesis window for g, thatis, one for which (g, ) # 0,
then any f € L2(R") can be recovered from its STFT via the inversion formula

1
= — V. VEYMET, dxdé. 4
1= //R o f (v, EYMe Ty (1)dxde @

Whenever the generalized inner product in (3) is well defined, the definition of Vy, f
can be viewed in a larger class than L2(R™). Itis easy to show that if g € . (R")\{0}
is a fixed window, then V, : S (R") — . (R%") and V; - (R — S (RM) are
continuous mappings. We refer to [3,4] for the basic STFT theory.

Moreover, in [9] the authors have shown that if ¢ € JZ1(R")\{0}, then V, :
R —> 4 RHRY (C") and Vg>|< s A (RHRY (C") — 1 (R") are contin-
uous mappings.

One can define the STFT of a distribution f € J#](R") (resp. .7’ (R")) with respect
to a window g € 71 (R") (resp. g € . (R")) as

Ve f(x,8) = (f, McTyg). )
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2.4 The Short-Time Fourier Transform in the Direction of u

The directional short-time Fourier transform (DSTFT) of an integrable function f €
L'(R") (or f € @’Ll (R™)) with respect to the window g € . (R) is given by

/Rn FOgu-t—x)e "5 dr = (f(1), 8y (0), » 6)

where (u, x, £) € "' x RxR”,[1]. Foragivenu € $"!, we will call this transform
STFT in the direction of u and denote by DS ,, f (x, &).

One can show, by the use of results of Grochenig [3] (we will demonstrate this in
the proof of Proposition 4 of Sect. 4), that for a nontrivial g € ./(R), with synthesis
window ¥ € Z(R) and f € L'(R"), the following reconstruction formula holds
pointwisely,

1
= — DS, f(x, E)pry x & (t)dxdE. 7
f@ @) /Rn[R g (X, E) W x g (1)dxdE @)

Reconstruction formula (7) allows us define an operator that maps functions on
R x R" to functions on R" as superposition of functions g, .. Given g € .7 (R), we
introduce the appropriate synthesis operator as

DS, @) = / / D(x, &) gur e ()dxds, 1 eR" (8)
R* JR

Thus, relation (7) takes the form (DS?;/’M oDS,.)f=@ ¥vf.

In [10] the authors have discussed the problem of extending the definition of DSTFT
to the space of tempered distributions. Here, we study the STFT in the direction of u
in the context of the space %] (R") of distributions of exponential type.

If f e Z1(R") and g € 271 (R), then we immediately get that DS , f (x, &) extends
to a holomorphic function in the second variable. This means that DS, , f (x, z) is
entire in z € C". We write in the sequel z = & + in with £, n € R". Note also that if
@ e M (R)®% (C") and g € #;(R), then, using the Cauchy theorem, we may write
DS , @ as

DS (1) = / /R D(x,E+ingu -1 —x)e?™EHM gy, 9)

for arbitrary n € R”. In the next section, we will show that if g € ] (R), then DS;M
maps continuously 7] (R)®% (C") — #1(R™). It will then be shown that DS;” can
be even extended to act on the distribution space %’(R)@@/ (ch.

As a simple consequence of Fubini’s theorem, if g € 1 (R), f € L' (R™) and
@ € # (R)® (C"), then one can easily prove

f f(t)DSj;’ud)(t)dt = / / DSz f(x, & +in®(x, & +indxds, (10)
i R JR
&,n € R", and this can be written as (f, DS;MCD> = (DSg,uf, CD) using (2). As in

[10], we use this dual relation when defining STFT in the direction of u of exponential
distributions.

@ Springer



2080 S. Atanasova et al.

3 The STFT in the Direction of u of Exponential Distributions
3.1 Continuity of the STFT in the Direction of u on .71 (R")

Let g € 21 (R) \ {0}. Then DS, , is injective and DS;M is surjective, due to recon-
struction formula (7).

Notice that we can extend the definition of the STFT in the direction of u as a
sesquilinear mapping DS : (¢, g) = DSg ¢, ¢ € JH(R"), g € 1 (R), whereas
the synthesis operator extends to the bilinear form DS* : (@, g) +— DS; £D, D€

A R)QU (C").
Theorem 1 The mapping DS : #1(R") x 1 (R) — £ (R)Q% (C") is continuous.

Proof We will show that for given k, [ € Ny, there exist v, 7 € Ng and C > 0 such
that

Pr(DSg.u@) < Cou(@)pe(g), ¢ € H(R"), g € A (R). (11)

Indeed, we have

al
k(1 + |z/H*/2 57 DSgus (x,2)

d' I
=M+ g+ / P(Ngu -1 —x)e 2T EHM g
Rn

dx!

< M+ EP A+ gD /R e8P (u -t —x)(=1)e ST gs

< Ce¥ (1 4 nk?)k/?

/ §0(t)m(—1)l(1 — A2 (e 2mitE 2 g,
R

gchu+n#ﬁﬂ/

(1= 202 (pgD 1 =) )| || ae

n

< CHI (14 k)2 3 ( k )f [0 0 (g TR w1 = )| 2 ar
otk N K2/ S

-G Z k klx—wt-+u-t] ‘(p(kl)(t)m‘ o2kl gy
ki, k2 ) Jgn
ki |+k2 | =k

~ k Klu-t—x]| k]|
=G 2 <k1,k2>/Rne ¢
[k1|+k2|=k

_F k klu-t—x| (14-270)k]1]
=G Z (kl,kz)/ne ¢

k1|+lka|=k

(p(kl)([)g(l+k2)(u - — x)‘ eznk‘tldt

(p(kl)(t)’ ‘m‘ dr.

We now analyze the synthesis operator. O
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Theorem 2 The bilinear mapping DS* : (/1 (R)®% (C")) x 1 (R) — 4 (R") is

continuous.

Proof Letg € 1 (R), ® € 4 (R)®Z% (C") and ¢ = DS;M(D. Let &, (z1, 2) denote

the Fourier transform of @ (x, z) with respect to the first variable and .7, ! (D)(x,1)
denote the inverse Fourier transform of @ (x, z) with respect to the second variable. We
remark that 51 (z1, z) is an entire functionin 71 = w +iu, w, u € R. An application
of the Cauchy theorem and the Parseval formula gives

/ D(x,2)gu -t —x)dx = / D\ (w+ip, 7)e” TH@HWUIT (G 4 i) de.
R R
Observe that

¢(1) =DS; (1) = f / P, & +imglu -1 — )X EHN g d
R JR"?

N / f (72 @HI By (0 + i, & +imE(+in)
R n

ezniﬁ(f-l—i?’])dgdw

:/e—Zni(w+iu)u‘Vg\(a)+iM)
R
(f Dr(w+ipm, &+ in)e2”i"($+i'7)d§> dw
Rn
:/e—2ni(w+i/t)u-t§(w+iu)ygl(él)(w+iﬂ’I)dw.
R

Hence,

P(z) = / 2P (21, 2) * e~ 2Tintdg
R
2/§(Zl)$l(Z1,Z)*5(Z1u+z)dw
R

=/ ®1(z1, z1u + 2)2(z1)dw, (12)
R

z=E+ineCz1=w+ineC.

We now prove the continuity of the bilinear synthesis mapping. Since the Fourier
transform g > g is a topological isomorphism from J#1 (R") onto % (C"), the family
of seminorms

ok(g) = k(). g€ H1(R"), ke No,

is a bases of seminorms for the topology of J#1 (R").
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2082 S. Atanasova et al.

. We also know that the Fourier transform with respect to the first variable, @ (x, 7) —
@1(z1, 2), is a topological isomorphism from 7] (R)®% (C") onto % (C)Q% (C™).
Therefore, the family of seminorms

Oa(@) = sup (1420 +[zH? \cfn(m, 2)|. LkeN,
(z1,2) €l x [Tk

1'111 =R+ i[—1, ], is a basis of seminorms for the topology of . (R)&% (C") .
We show that for a given N € Ny there is C > 0 such that

on (Ds;”@) < Cont2(8)00.n ().

Now, setting again ¢(x) := DS;M@(x) and using expression (12), we get

(14 1zp»

¢ =1+ zhY

/é’(zl)qsl(m,mu+z)dw
R
5/R@(Zl)”él(ZI,ZlM-FZ)Kl+|Z+Zlu|)N(1—|—|Z1|)Ndw

1
< 7, (e ——dw,
< on ()60 )/R<1+|ZI|)2 o

where 71 = w +ipn € C. O

3.2 The STFT in the Direction of u on 7] (R")
Letu € S*~!. The continuity results allow us to define the STFT in the direction of u of

f e ] (R") with respect to g € #1(R) as the element DS, , f € %’(R)@%’(C")
whose action on test functions is given by

(DSg.u f, @) == (f, Dsg’um, @ e (R)&% (C). (13)

Then, the synthesis operator DS;M : %’(R)@% "(C") — 2/ (R") can be defined
as

(DS, F, @) := (F,DSg.¢), F €A RQ%' (C"), p € H1(R"). (14)

We immediately obtain:

Proposition 1 Let g € J#1(R). The short-time Fourier transform in the direction
of u, DSg, + H/(R") — %’(R)@%/(C") and the synthesis operator DSy , :
H (RYQ%'(C"y — | (R") are continuous linear maps.

@ Springer
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3.3 Direct Definition of STFT in the Direction of u on .7’ (R")

In [10], DSTFT on .%’(R") is defined as transposed mapping. The same definition
holds for DS, ,, f. In this subsection we will consider a direct definition of DS, ,, f on
S (R") as follows. Let g € .Z(R), u € "', and x € R. Then

SR 3 f(1) > f()gt-u—x)e S (R, (15)
and
SR 3 f()gt-u—x) > F(f)gt-u—x))E) € 7' (R

defines DS, ,, f (x, §).

Proposition 2 The direct definition of the STFT in the direction of u and the one given
via the transposed mapping coincide.

Proof Let f € ' (R") and ( f;) be a sequence from ./ (R") which converges to f
in .’ (R"). Since both definitions agree on f, for every k, the assertion follows by
the continuity. O

4 Multidimensional STFT in the Direction of u*

We will extend our transform by introducing the STFT in the direction of uk 1 <k <
n. The case k = 1 is explained in the previous part of the paper.

Note that the k-th tensor product completed in 7- or e-topology J#] (R)® - - - &
21 (R) equals to 71 (R¥). The same holds for .7 (R¥). Below we will use notations
(AR = 1 (R) x -+ x 1 (R) and (L RN = L(R) x -+ x L (R).

Let1 < k < n. Let ufk = (ui,...,ux) where u;,i = 1, ...,k are independent
vectors of S"~!, and x* = (x1, ..., xx) € R*. Let the nontrivial functions g1, ..., g
belong to J# (R) (resp., .7 (R)), g¥ = g1...gr € (AR (resp., (Z(R))¥) and
& eR.

Let f € 4 (R") (resp., .7 (R™)). Then, we define the STFT in the direction of u*
by

DS i i f (xF, &) = /R F@Ogilur -t —x1) - gilug -1 — xp)e " E5de. (16)

Proposition 3 By (16) is defined a continuous linear mapping of J¢1(R") (resp.,
S (RM)) into (K R QX (C") (resp., (& R &% (C™)).
In particular, when k = n, (16) is the short-time Fourier transform.

Proof Let A = [u; ;] be a k x n matrix with rows u;,i = 1,...,k and I, ,—« be
the identity matrix. Let B be an n x n matrix determined by A and I, ,—k so that
Bt = s, where

Sy =uify+ -+ Uialn, oo, Sk = Uk 1+ F Ugopln,
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2084 S. Atanasova et al.

Sk+1 = k1, - .., Sp = 1. Clearly, it is regular. Put C = B land ek = (e, ..., e)
where ¢1 = (1,0,...,0),...,er = (0,...,1) are unit vectors of the coordinate
system of RK. Then, with the change of variables t = Cs, and n = C'& (C' is the
transposed matrix for C), one obtains, for f € J1(R"),

DS i f (x5, ) = (DS ok [CIF(CMN X, 1)

=A F($)gi(s1 — x1) - grlsk — xp)e 25 ds,  (17)

where |C| is the determinant of C. 3
Now, we immediately see the proof of the proposition since f(s) = |C|f(Cs), s €
R™ is an element of 7] (R"). O

Put
k (t)_ - - 2mit-& R”
8k yk ¢ (D) = g1(uy x1) - Gk (uk Xp)e ;1 e R

Let y; € 1 (R) (resp., ¥; € 7 (R)) be the synthesis window for g; € 7] (R) (resp.,
g€ LMR)),i=1,...,kandlet

(8" ") = (g1 D) -+ (gk i) #0.
We will prove the inversion formula.

Proposition4 Let f € 4R (resp., ZRY), g5 vk e (HR)K (resp.,
(Z(R)X). Then

1
fo)= EI5 e A; DSt FES OV 1 (dx dg (18)

pointwisely.

Proof The proof is the same as for the short-time Fourier transform (see [3], Theorem
3.2.1 and Corollary 3.2.3). We will use, after the change of variables representation
(17). Let fl () = |C| fi(C+),i =1, 2. Actually, by the Parseval identity we have that
for given f1, f € LA(R") and g*, y* € (A (R)),

(DSgk,uk F1G5 ), DS i (06, §)>L2(kaR")
- (Dsg",ek Ak, 6, Dswk.ekﬁ(xk’ 5))L2(kaw)
= (f1. J;Z)LZ(R”)(g_k’ W)LZ(R")' (1%

We obtain reconstruction formula (18) as a consequence of (19), as in the quoted
corollary of [3]. O
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Let f € JZ(R"). We have that (16) extends to a holomorphic function, i.e.,
DS ok f(x*, z)isentirein z € C". Asinthe case k = 1,if @ € (A R @ (C")

and gk e (% (R))X, for arbitrary € R” and by the Cauchy theorem, we can write
DS¥ (@ (1) = f / S & +in)
’ n JRk

Wy -t —x1) - gr(ug -t — xp)eX EFMIqekge e R (20)
g g

The STFT in the direction of «¥ on dual spaces 7| (R") and .’ (R") can be defined
as in the case k = 1 (cf. Sects. 3.2 and 3.3).

The next theorem connects STFTs in the direction of u* with respect to different
windows. It is crucial for the main theorem of Sect. 5.

Theorem 3 Ler uy,...,u; € S"! be independent. Let hy, ..., hi, g1, ..., &, V1,

.., Yk belong to ./ (R) where y; is synthesis window for g;,i = 1,...,k. Let f €
S (R™). Then

DSy FGE 1) = (DSge it 155, ©)) 3 (DSye i 65, ) G5 .

Proof By the use of the change of variables given in the proof of Proposition 3, it
follows that it is enough to prove the assertion for uf = k. Let F € .7/ (RF)&%'(C").
Then

DSyt ok (DS%; o F)(*, 1)

B / (./ /Rk FOE &)1 —x1) -yl - xk)ez”"f"dx"d5>

It — y1) - hie(te — yoe 27 7dr

=/ [ (/ A = O =5 -+ T = O —5)
n Rk Rn

CIGI R yk(me*z”""("*f)dr) F(x*, &)dx*de

2/ / (f yk(tk)hk(tk—(yk—xk))e—zﬂi"<"—5>dt> F(x*, £)dx*de
n ]Rk R~

- / /Rk F(*, DS oy  (0F — x5, — £)dx*de.

Now, we put ' = DS 4 .« f and obtain

DSk ot £ (0F, 1) = DSge i £ (55, 0)) % DSy v 5, oNO* ). @D

This completes the proof of the theorem. O
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5 Directional Wave Fronts

The STFT in the direction of u* can be used in the detection of singularities determined
by the hyperplanes orthogonal to vectors uy, ..., ug. For this purpose, we introduce
(multi)directional regular sets and wave front sets for tempered distributions using the
STFT in the direction of u*.

The proofs of Proposition 3 and Theorem 3 show that we can simplify our exposition
by the use of the linear transformation C of Proposition 3 and transfer the STFT in
u¥ to STFT in . Thus, in order to simplify our exposition of this section, we will

consider regularity properties in the framework of the direction 1% = ¢*.
If k = 1, we consider direction ¢! = e1, while for 1 < k < n, we consider
direction e¥ = (e, ..., ex). Letk = 1 and xg = x0,1 € R. Put It v e = Ty e 1=

{t e R"; |t] — xo| < €}. Itis a part of R" between two hyperplanes orthogonal to e,
that is,

Mye= |J P (x0=(x,0,...,0),

xe(xp—e,xo+¢)

and Py denotes the hyperplane orthogonal to e passing through x.
We keep the notation of Sect. 4. Put

I

ek xk e

=Tl xye N oo Vg xp o5 TIgk bk = Tey 5y N oo N g

The first set is a parallelepiped determined by 2k finite edges, while the other edges
are infinite. The set Ik ok equals R"* translated by vectors xj, . .., Xk. We will call
it n — k-dimensional element of R" and denote it as Py (« € RF. If k = n, then this
is just the point x"* = (xq, ..., x,).

Definition 1 Let f € '(R"). It is said that f is k-directionally regular at
(P k- 0) € R" x R\ {0} if there exists gk e (2R)*, gk(0) # 0, a product

of open balls L,(xlo‘) =L,(x01) X ---xX Ly(x0x) € R* and a cone I'g, such that for
every N € N there exists Cy > 0 such that

sup DS i f(x*, )]
xkeL, (x}). gely,

= sup |7 (f()gh(tk —xh)) (&) < v+ g N2 (22)
xkeL, (x}), gely,

Note that for k = n our definition implies classical Hormander’s regularity.

Remark 1 (a) If f is k-directionally regular at (P, e &o), then there exist an open
ball (with radius r and center xlo‘) Lr(xg) and an open cone I" C [I%, so that f is
k-directionally regular at (Pek, &> 0p) for any zlé €L, (x](; ) and 6y € I'. This implies
that the union of all k-directional regular points (P, & 6o), (z’(‘), 6p) € L,(xé) x I'1is
an open set of R” x R" \ {0}.
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(b) Denote by Pry the projection of R” onto R¥. Then, the k-directional regular
point (P ks &o), considered in R” x R” \ {0} with respect to the first k variables,

equals (Prk_1 X Ig’:)(Pek‘xg, &) (It is the identity matrix on R").

We define the k-directional wave front as the complement in R* x R™\ {0} of all k-
directional regular points (Pek,xg’ &). This setis denoted as W F« f. In R” x R" \ {0},

this is (Pr; ' x Ie)(WF i f).
Proposition 5 The set W F . (f) is closed in R x R™ \ {0} (and R" x R" \ {0}).

We will use notation B, (0%) to denote a closed ball in R¥ with center at zero 0¥ and
radius » > 0. Our main theorem relates directional regular sets for two STFTs in the
direction of u*.

Theorem 4 If (22) holds for some g € (Z(R))X, then it holds for every h* e
(ZR))¥, (h*(0) # 0) supported by a ball B, (0%), where p < po and po depends on
rin (22).

Proof Since g* and h* are compactly supported, the integration with respect to x¥,
which will be performed below, is finite. Moreover, we can assume that f is a continu-
ous polynomially bounded function. If not, let f = P(D)F, where F is polynomially
bounded and continuous, while P (D) is a differential operator with constant coeffi-
cients. In this case we can perform partial integration and transfer the differentiation
from f on other factors of the integrand which do not affect the proof. So the analysis
can be continued with f continuous and polynomially bounded.

We use Proposition 3, that is, form (21). Assume that (22) holds and that yk is
chosen so that supp y* C B, (0% and p; < r—rg.Leth* € (2(R))* and supp h* C
B, (0%). We will find pg such that (22) holds for DS .« f (v%, 1), with y* € By (x{),
nel| CC I, forp < pg (IN CC Iy, means that I'1 N S*lisa compact subset of
I';, N §”_1).

We need the next simple observations:

P1< o Y= xfl = roand 1pF = (0F =) - F = xh) 1=
= |x* = x5| < p + p1 + 0. (23)
So, we choose pg such that pg + p; < r — rg. Then
o+ p1+ro <r holds for p < pg. 24)

Let It CC Ig,. Then, with a suitable ¢ € (0, 1),

nel,Inl>1and |[n—&| <clyl =& € Iy; In—&l <clnpl =yl < (1—c) "]

(25)
Let y* € By, (xg), n € I7. Integrals which will appear below are considered as
oscillatory integrals. We have

IDSe o f (Y. )| = ‘ /R k /R DSgi i f (x5, E)DS i sy  (0F — x*. = £)dsdxt].
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Consider
Ji = / DS i f (x*, 7 — £)d& and J, = / DSy ey (5 — x*, £)dE.
R? R”

Then, by the use of partial integration, we have, in the oscillatory sense, (with the
assumption that # is odd),

AL ak(tk — xky (n+1)/2 ,—2mit-(n—§)
= /n/n(1+|2m|2)<n+1>/2g (tF = xF)(1 = Ag) T Ze TS dr dg

(for n even, we take n + 2 instead of n 4 1). This integral still diverges with respect
to &, while J, converges, since

(1 + 27&[3)s/2

k _ —
://B PRUSET 2V OR D = 0% = X0) omipi g
1

k(,k hk k _ (vk — vk ,
A :/ / v (pR (p (y x*)) (1— Ap)s/ze’z’”l"sdpdé
n Bl’l (Ok

(1 + [278|2)5/2

Rewrite
IDSj ot £ (E, )] =/ (/ +/ )(...)dg Ak = 1 + b,
RF [n—¢&l=cln| In—¢&|>clnl
Then,
ko kK k k
I 5/ sup DS gk ok f(x", 1 —§) IDSpk ey (" — x%, &)[dE ) dx”.
RF \ |n—¢§|=cn] In—§|=<clnl

Now, we use (23), (24) and (14 |n|)N/? < C (1 +|£1)N/2, for |€| = (1 —c)|n]|. This
implies

sup (1 [Ny s/ ) (sup IDS gk ot f (5, )11 + §)™2
yieBry (xf), neln Br(xp) \§€lk,

x / DS k¥  OF = xk, §)|d§> dxk
lE1=(1—<)ln]

Now by the finiteness of J,, we obtain that 7 satisfies the necessary estimate of (22).
Let us consider /.

125/
]Rk
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Let K = {& : |£| > c|n|}. Denote by k4, 0 < d < 1, the characteristic function of
Ky = UgeK L4(§), thatis, K4 is open d-neighborhood of K. Then, put

Ky = Kd * Qd,

where ¢ = d%,(p(- /d), ¢ € Z(R™) is nonnegative, supported by the ball B1(0) and
equals 1/2 on By,2(0). This construction implies that k,, equals one on K, is supported
by K»4. Moreover, all the derivatives of «; are bounded. Assume that n is odd and
that s is even and sufficiently large. Then,

sp = [ | [ e@DS ok - D8 arhok - ot e

ykeB.p(xf)., nen

AU TR =2t =) g, | (1 _ A\ @+1)/2
EC/Rk /Rg <./R;’ (1+|2m|2)(n+1)/2g (" —xP)e dr | (1 —Ag)

6 k(pk 2 —2ip-
((1+|2n5|2)s/2 /R VPR (PR = OF —x) — ap) e ’”Pfdp) d

dxk.

Then, for every yk € By, (xl(j) and n € I, choosing s > N + n (and being even) as
well as using the Petree inequality, we see that all the integrals on the right-hand side
of

2\N/2 |f @] ok(tk — k)
1+ 1) IzSC/Rk/g ( [ R =l

(14 gHN? (i 1))2 i<y (§)
(u T —gpr T4 ((1 + |2ns|2>s/2>

/R (1= 2, (Y* PORE(pF = GF = x) |dp> dg

are finite. This completes the proof of the theorem. O

Remark 2 1f supp gk C B, (Ok ), then we see that (22) shows the behavior of f(t),t €
Prk_1 (Batr (xlo‘)) in the direction of &.

Corollary 1 Let gk € (7 (R))X, supported by a ball B,(0%), have synthesis window
v supported by B, (0%), p1 < a. Assume that in (22) we have 2r instead of r, that is,

sup  IDSg i f (5 6] < O (1 + £V (26)

xkeLy (x), gely,
Moreover, assume thata < r. Then, for any h* € D(R))¥ with support B, 0%, p <a,

there exists ro and I CC I, such that (26) holds for DShk’ekf(yk, n) with the
supremum over y* € By, (xg) andn € I.
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Proof With the notation of Theorem 4, we have, similarly as in (23),
|xk—xl(§| <p4+pi+ro<pt+a—ro+ro=a+p <?2r.

This implies |x* — x§| < 2r, so that the supremum in the estimate of /; holds. In the
same way as in Theorem 4, we perform the proof. O

Theorem 5 If (P ., &) is a k-directional regular point of f € ' (R") for every
& e R"\ {0}, then f € &R").

Proof Assume that supp g¢ C B, (0. Let xlg € RK. For every &€ € S"! there

exist a ball Lf (xg) and a cone [t such that (22) holds. As in the classical theory, the
compactness of S"~! implies that there exists » > 0 such that for every N > 0 there
exists Cy > 0 such that

sup | Z(f (g1t —x1) - gkt — x))E)] < Cn(A + [EH N2 & e R

x"eLr(xé)

Thus, f(1)gk(tk — x*) € &R") for every x* € Lr(x(l)‘). Since |t* — xK| < p, we see
that ¢ must lie in some Pr; ! (Lryp (xg)). Thus, for every point of R” there exists an
open set around it where f is smooth. This completes the proof of the theorem. O
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