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Abstract Let σ = {σi |i ∈ I } be a partition of the set P of all primes and G a
finite group. A chief factor H/K of G is said to be σ -central (in G) if the semidirect
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called σ -eccentric.We say thatG is: σ -nilpotent if every chief factor ofG is σ -central;
σ -quasinilpotent if for every σ -eccentric chief factor H/K ofG, every automorphism
of H/K induced by an element of G is inner. In this paper, we study properties of
σ -nilpotent and σ -quasinilpotent subgroups of finite groups.
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1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, P is the set of all primes, π ⊆ P and π ′ = P \ π . If n is an integer, the
symbol π(n) denotes the set of all primes dividing n; as usual, π(G) = π(|G|), the
set of all primes dividing the order of G.

In what follows, σ = {σi |i ∈ I } is some partition of P, that is, P = ⋃
i∈I σi and

σi ∩ σ j = ∅ for all i �= j . We say that G is σ -primary [1] provided it is a σi -group
for some i . A chief factor H/K of G is said to be σ -central (in G) if the semidirect
product (H/K )� (G/CG(H/K )) is σ -primary; otherwise, it is called σ -eccentric. A
normal subgroup E of G is said to be σ -hypercentral (in G) if either E = 1 or every
chief factor of G below E is σ -central in G.

The group G is called: σ -soluble [1] if every chief factor of G is σ -primary; σ -
decomposable (Shemetkov [2]) or σ -nilpotent (Guo and Skiba [3]) if G = G1×· · ·×
Gn for some σ -primary groups G1, . . . ,Gn .

In fact, σ -nilpotent groups are exactly the groups whose chief factors are σ -central
[1], and such groups have proved to be very useful in the formation theory (see [4,5]
and the books [6, Ch. 6], [2, Ch. IV]). In the recent years, the σ -nilpotent groups have
found new and to some extent unexpected applications in the theories of permutable
and generalized subnormal subgroups (see, for example, the recent papers [1,3,7–10]
and the survey [11]).

In this paper, we consider the following generalization of σ -nilpotency.

Definition 1.1 We say that G is σ -quasinilpotent if for every σ -eccentric chief factor
H/K of G, every automorphism of H/K induced by an element of G is inner (cf.
[12, Ch.X, Definition 13.2]).

We say that G is σ -semisimple if either G = 1 or G = A1 × · · · × At is the direct
product of simple non-σ -primary groups A1, . . . , At .

Example 1.2 Let G = (A5 � A5) × (A7 × A11) and σ = {{2, 3, 5}, {2, 3, 5}′}. Then
G is σ -quasinilpotent but G is not σ -nilpotent. The group A7 × A11 is σ -semisimple.

Let Zσ (G) be the product of all normal σ -hypercentral subgroups of G. It is not
difficult to show (see Proposition 2.5(i) below) that Zσ (G) is also σ -hypercentral in
G. We call the subgroup Zσ (G) the σ -hypercenter of G.

The product of all normal σ -nilpotent (respectively σ -quasinilpotent) subgroups
of G is said to be the σ -Fitting subgroup [1] (respectively the generalized σ -Fitting
subgroup) of G and denoted by Fσ (G) (respectively by F∗

σ (G)).
Note that the classical case, when σ = {{2}, {3}, . . .}, a chief factor H/K of G is

central in G (that is, CG(H/K ) = G) if and only if it is σ -hypercentral in G. Thus in
this case the subgroups Zσ (G), Fσ (G) and F∗

σ (G) coincide with Z∞(G), F(G) and
F∗(G), respectively.

In this paper, we study the influence of the subgroups Zσ (G), Fσ (G) and F∗
σ (G)

the structure ofG. In particular, using such subgroups, we give some characterizations
of σ -nilpotent and σ -quasinilpotent groups.

A set H of subgroups of G is said to be a complete Hall σ -set of G [11] if every
member �= 1 ofH is a Hall σi -subgroup of G for some σi ∈ σ andH contains exactly
one Hall σi -subgroup of G for every i such that σi ∩ π(G) �= ∅.
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A subgroup H of G is said to be a maximal σ -nilpotent subgroup of G if H is
σ -nilpotent but every subgroup E of G such that H < E is not σ -nilpotent.

In Sect. 2, we study some properties of the subgroup Zσ (G). In particular, we prove
in the section the following

Theorem A (i) The subgroup Zσ (G) coincides with the intersection of all maximal
σ -nilpotent subgroups of G.

(ii) If G possesses a complete Hall σ -setH = {H1, . . . , Ht }, then

Zσ (G) =
⋂

x∈G
(NG(Hx

1 ) ∩ · · · ∩ NG(Hx
t )).

G is said to be π -decomposable if G = Oπ (G) × Oπ ′(G). In the case when
σ = {π, π ′}, we get from Theorem A the following result.

Corollary 1.3 Suppose that G possesses a Hall π -subgroup and a Hall π ′-subgroup.
Then the intersection of all maximal π -decomposable subgroups coincides with the
intersection of the normalizers of all Hall π -subgroups and all Hall π ′-subgroups of
G.

In the case when σ = {{2}, {3}, . . .} we get from Theorem A the following well-
know results.

Corollary 1.4 (Baer) The hypercenter Z∞(G) of G coincides with the intersection
of all maximal nilpotent subgroups of G.

Corollary 1.5 (Baer) The hypercenter Z∞(G) of G coincides with the intersection
of the normalizers of all Sylow subgroups of G.

In Sect. 3, we obtain the following characterization of σ -quasinilpotent groups.

Theorem B The following are equivalent:

(i) G is σ -quasinilpotent.
(ii) G/Zσ (G) is σ -semisimple.
(iii) G/Fσ (G) is σ -semisimple and G = Fσ (G)CG(Fσ (G)).

Corollary 1.6 G is quasinilpotent if and only if G/F(G) is semisimple and G =
F(G)CG(F(G)).

Corollary 1.7 (See Theorem 13.6 in [12, Ch.X]) G is quasinilpotent if and only if
G/Z∞(G) is semisimple.

A formation is a class F of groups which is closed under taking subdirect products
and homomorphic images. The formationF is said to be: hereditary if H ∈ Fwhenever
H ≤ G ∈ F, (solubly) saturated if G ∈ F whenever G/�(N ) ∈ F for some (soluble)
normal subgroup N of G; a Fitting formation if F is closed under taking normal
subgroups and products of normal subgroups.

As another application of Theorem B, we prove the following result.
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Theorem C The class N∗
σ , of all σ -quasinilpotent groups, is a solubly saturated

Fitting formation.

Corollary 1.8 (Shemetkov [13]) The classN∗, of all quasinilpotent groups, is a sol-
ubly saturated formation.

Corollary 1.9 (See Lemma 13.4 and Corollary 13.11 in [12, Ch.X]) The class N∗ is
a Fitting formation.

Remark 1.10 Let σ = {σ1, σ2, . . .} be any partition of P with |σ | > 1. We show
that the formationN∗

σ is not saturated. We can assume without loss of generality that
2 ∈ σ1. Let q be the largest prime in σ2, and let p be a prime such that p = q if q > 3
and p is any odd prime in σ1 in the case when q = 3. Finally, let Ap be the alternating
group of degree p. Then Ap is a simple non-σ -primary group.

Let G = V � Ap, where V is a projective envelope of a trivial Fp Ap-module. Let
C be the intersection of the centralizers in Ap of all chief factors of G below V . Then
�(G)∩V = Rad(V ) by LemmaB.3.14 in [14], andC = Op′,p(Ap) = 1 by Theorem
VII.14.6 in [15]. Hence, since V/Rad(V ) = V/�(G) ∩ V is a central chief factor of
G (that is, CG(V/Rad(V )) = G) by [14, B, 4.8], G has a Frattini chief factor K/L
(that is, K/L ≤ �(G/L)) such that CG(K/L) = V and for every chief factor M/N
of G between K and V we have CG(M/N ) = G. Then G/K is σ -quasinilpotent by
Theorem B. On the other hand, Theorem B implies that G/L is not σ -quasinilpotent.
Thus, the formationN∗

σ is not saturated.
Finally, being based on Theorems B and C, we prove also the following

Theorem D If G/E is σ -nilpotent and every cyclic subgroup of F∗
σ (E) of prime order

or order 4 is contained in Zσ (G), then G is σ -nilpotent.

Corollary 1.11 (Derr et al. [16]) If G/E is nilpotent and every cyclic subgroup of
E of prime order or order 4 is contained in the hypercenter Z∞(G) of G, then G is
nilpotent.

Corollary 1.12 (N. Ito) If every cyclic subgroup of G of prime order or order 4 is
contained in the center Z(G) of G, then G is nilpotent.

2 Proof of Theorem A

The following lemma is evident.

Lemma 2.1 If H/K and T/L are G-isomorphic chief factors of G, then

(H/K ) � (G/CG(H/K )) � (T/L) � (G/CG(T/L)).

Lemma 2.2 (see Proposition 2.3 in [1]) The following are equivalent:

(i) G is σ -nilpotent.
(ii) G has a complete Hall σ -setH = {H1, . . . , Ht } such that G = H1 × · · · × Ht .
(iii) Every chief factor of G is σ -central in G.
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Lemma 2.3 (See Corollary 2.4 and Lemma 2.5 in [1])The classNσ , of all σ -nilpotent
groups, is a hereditary saturated Fitting formation.

Lemma 2.4 Let N be a normal σi -subgroup of G. Then N ≤ Zσ (G) if and only if
Oσi (G) ≤ CG(N ).

Proof If Oσi (G) ≤ CG(N ), then for every chief factor H/K of G below N both
groups H/K and G/CG(H/K ) are σi -groups since G/Oσi (G) is a σi -group. Hence,
(H/K ) � (G/CG(H/K )) is σ -primary. Thus N ≤ Zσ (G).

Now assume that N ≤ Zσ (G). Let 1 = Z0 < Z1 < . . . < Zt = N be a chief
series of G below N and Ci = CG(Zi/Zi−1). Let C = C1 ∩ · · · ∩ Ct . Then G/C
is a σi -group. On the other hand, C/CG(N ) � A ≤ Aut(N ) stabilizes the series
1 = Z0 < Z1 < . . . < Zt = N , so C/CG(N ) is a π(N )-group by Theorem 0.1 in
[17]. Hence, G/CG(N ) is a σi -group and so Oσi (G) ≤ CG(N ).

The lemma is proved.

We write σ(G) = {σi |σi ∩ π(G) �= ∅}, and we say that G is a �-group provided
σ(G) ⊆ � ⊆ σ .

Proposition 2.5 Let Z = Zσ (G). Let A, B and N be subgroups of G, where N is
normal in G.

(i) Z is σ -hypercentral in G.
(ii) Zσ (A)N/N ≤ Zσ (AN/N ).
(iii) Zσ (B) ∩ A ≤ Zσ (B ∩ A).
(iv) If N ≤ Z and N is a �-group, then N is σ -nilpotent and G/CG(N ) is a

σ -nilpotent �-group.
(v) If G/Z is σ -nilpotent, then G is also σ -nilpotent.
(vi) If N ≤ Z, then Z/N = Zσ (G/N ).
(vii) If A is σ -nilpotent, then Z A is also σ -nilpotent. Hence, Z is contained in each

maximal σ -nilpotent subgroup of G. Moreover, if A is a Hall σi -subgroup of
G, for some i ∈ I , then Z ≤ NG(A).

(viii) If G = A × B, then Z = Zσ (A) × Zσ (B).

Proof (i) It is enough to consider the case when Z = A1A2, where A1 and A2 are
normal σ -hypercentral subgroups of G. Moreover, in view of the Jordan–Hölder
theorem, it is enough to show that if A1 ≤ K < H ≤ A1A2, then H/K is σ -
central. But in this case we have H = A1(H ∩ A2), where evidently H ∩ A2 � K ,
so we have the G-isomorphism (H ∩ A2)/(K ∩ A2) � (H ∩ A2)K/K = H/K ,
and hence H/K is σ -central in G by Lemma 2.1.

(ii) First assume that A = G, and let H/K be a chief factor ofG such that N ≤ K <

H ≤ N Z . Then H/K is G-isomorphic to the chief factor (H ∩ Z)/(K ∩ Z) of
G below Z . Therefore, H/K is σ -central in G by Assertion (i) and Lemma 2.1.
Consequently, ZN/N ≤ Zσ (G/N ).
Now let A be any subgroup ofG, and let f : A/A∩N → AN/N be the canonical
isomorphism from A/A∩N onto AN/N . Then f (Zσ (A/A∩N )) = Zσ (AN/N )

and

f (Zσ (A)(A ∩ N )/(A ∩ N )) = Zσ (A)N/N .
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Hence, in view of the preceding paragraph, we have

Zσ (A)(A ∩ N )/(A ∩ N ) ≤ Zσ (A/A ∩ N ).

Hence, Zσ (A)N/N ≤ Zσ (AN/N ).
(iii) First assume that B = G, and let 1 = Z0 < Z1 < . . . < Zt = Z be a chief

series of G below Z and Ci = CG(Zi/Zi−1). Now consider the series

1 = Z0 ∩ A ≤ Z1 ∩ A ≤ . . . ≤ Zt ∩ A = Z ∩ A.

We can assume without loss of generality that this series is a chief series of A
below Z ∩ A.
Let i ∈ {1, . . . , t}. Then, byAssertion (i), Zi/Zi−1 isσ -central inG, (Zi/Zi−1)�

(G/Ci ) is a σk-group say. Hence, (Zi ∩ A)/(Zi−1 ∩ A) is a σk-group. On the
other hand, A/A ∩ Ci � Ci A/Ci is a σk-group and

A ∩ Ci ≤ CA((Zi ∩ A)/(Zi−1 ∩ A)).

Thus (Zi ∩ A)/(Zi−1 ∩ A) is σ -central in A. Therefore, in view of the Jordan–
Hölder theorem for the chief series, we have Z ∩ A ≤ Zσ (A).
Now assume that B is any subgroup of G. Then, in view of the preceding para-
graph, we have

Zσ (B) ∩ A = Zσ (B) ∩ (B ∩ A) ≤ Zσ (B ∩ A).

(iv) By Assertion (iii) and Lemma 2.2, N is σ -nilpotent, and it has a complete Hall
σ -set {H1, . . . , Ht } such that N = H1 × · · · × Ht . Then

CG(N ) = CG(H1) ∩ · · · ∩ CG(Ht ).

It is clear that H1, . . . , Ht are normal in G. We can assume without loss of gen-
erality that Hi is a σi -group. Then , by Assertion (i) and Lemma 2.4, G/CG(Hi )

is a σi -group. Hence,

G/CG(N ) = G/(CG(H1) ∩ · · · ∩ CG(Ht ))

is a σ -nilpotent �-group.
(v), (vi) These assertions are corollaries of Assertion (i) and the Jordan–Hölder the-

orem.
(vii) Since A is σ -nilpotent, Z A/Z � A/A∩ Z is σ -nilpotent by Lemma 2.3. On

the other hand, Z ≤ Zσ (Z A) by Assertion (iii). Hence, Z A is σ -nilpotent
by Assertion (v).
Finally, let A be a Hall σi -subgroup of G. Then A is σ -nilpotent and so Z A
is also σ -nilpotent. Therefore, Z ≤ NG(A) by Lemma 2.2.
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(viii) Let Z1 = Zσ (A) and Z2 = Zσ (B). Since Z1 is characteristic in A, it is
normal in G.
First assume that Z1 �= 1 and let R be a minimal normal subgroup of G
contained in Z1. Then R is σ -primary, R is a σi -group say, by Assertion (iv).
Hence, A/CA(R) is a σi -group by Lemma 2.4. But CG(R) = B(CG(R) ∩
A) = BCA(R), so

G/CG(R) = AB/CA(R)B � A/(A ∩ CA(R)B) = A/CA(R)(A ∩ B) = A/CA(R)

is a σi -group, and hence R is σ -central in G. Then R ≤ Zσ (G), so
Zσ (G)/R = Zσ (G/R) by Assertion (vi). On the other hand, we have
Z1/R = Zσ (A/R) and Z2R/R = Zσ (BR/R), so by induction we have

Zσ (G/R) = Zσ ((A/R) × (BR/R)) = Zσ (A/R) × Zσ (BR/R)

= (Z1/R) × (Z2R/R) = Z1Z2/R = Z/R.

Hence Z = Z1 × Z2.
Finally, suppose that Z1 = 1 = Z2. Assume that Zσ (G) �= 1 and let R be a

minimal normal subgroup of G contained in Zσ (G). Then, in view of Assertions (i)
and (iii), R ∩ A = 1 = R ∩ B and hence G = A × B ≤ CG(R). Thus R ≤ Z(G) =
Z(A) × Z(B) = 1, a contradiction. Hence we have (viii).

The proposition is proved.

Temporarily, we write Iσ (A) to denote the intersection of all maximal σ -nilpotent
subgroups of a group A; if A possesses a complete Hall σ -set H = {H1, . . . , Ht },
then we use IH(A) to denote the intersection

⋂

x∈A

(NA(Hx
1 ) ∩ · · · ∩ NA(Hx

t )).

Proof of Theorem A Let Z = Zσ (G). (i) Suppose that this is false and let G be a
counterexample of minimal order. Let I = Iσ (G). Then Z < I by Proposition 2.5(vii)
and the choice of G, so I �= 1 and G is not σ -nilpotent. Let N be a minimal normal
subgroup of G and let L be a minimal normal subgroup of G contained in I . Then L
is a σi -group for some i ∈ I .

(1) I N/N ≤ Iσ (G/N ).
Let U/N be a maximal σ -nilpotent subgroup of G/N , and let V be a minimal

supplement to N in U . Then V ∩ N ≤ �(V ) and, by Lemma 2.3, V/V ∩ N �
V N/N = U/N is σ -nilpotent. Hence V is σ -nilpotent by Lemma 2.3. Let U0 be a
maximal σ -nilpotent subgroup ofG such that V ≤ U0. ThenU0N/N � U0/U0∩N is
σ -nilpotent and U/N ≤ U0N/N . But then U/N = U0N/N , so I N/N ≤ Iσ (G/N ).

(2) G/I is not σ − nilpotent .
Indeed, suppose that G/I is σ -nilpotent, and let V be a minimal supplement to I

in G. Then V is σ -nilpotent, so for a maximal σ -nilpotent subgroupU of G such that
V ≤ U we have G = IU = U , a contradiction.
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(3) I N/N ≤ Zσ (G/N ) = Iσ (G/N ).
Indeed, I N/N ≤ Iσ (G/N ) by Claim (1). On the other hand, by the choice of G,

Zσ (G/N ) = Iσ (G/N ).
(4) L � Z .
Suppose that L ≤ Z . Then Z/L = Zσ (G/L) by Proposition 2.5(vi), so I/L ≤

Iσ (G/L) = Zσ (G/L) = Z/L by Claim (3). Hence I ≤ Z and so I = Z , a contra-
diction.

(5) If L ≤ M < G, thenL ≤ Zσ (M).
Let V be any maximal σ -nilpotent subgroup of M , and let H be a maximal σ -

nilpotent subgroup of G such that V ≤ H . Then V ≤ H ∩ M , where H ∩ M is
σ -nilpotent by Lemma 2.3, which implies L ≤ V = H ∩ M . Hence L ≤ Iσ (M). But
|M | < |G|, so Iσ (M) = Zσ (M) by the choice of G. Hence L ≤ Zσ (M).

(6) L = N is a unique minimal normal subgroup of G.
Suppose that L �= N . FromClaim (3) we deduce that NL/N ≤ Zσ (G/N ), so from

the G-isomorphism NL/N � L and Lemma 2.1 we obtain L ≤ Z , which contradicts
to Claim (4).

(7) L � �(G).
Suppose that L ≤ �(G). Let C = CG(L) and M be any maximal subgroup of

G. Then L ≤ M , so L ≤ Zσ (M) by Claim (5). Hence M/M ∩ C is a σi -group by
Lemma 2.4. If C � M , then G/C = CM/C � M/M ∩ C is a σi -group, so L is
σ -central inG and hence L ≤ Z , contrary to Claim (4). HenceC ≤ M for all maximal
subgroups M of G, so C is nilpotent. Therefore, in view of Claim (6), C is a p-group
for some p ∈ σi since C is normal in G. Thus M is a σi -group. But then G is either
a σi -group or a group of prime order q for some q ∈ σ ′

i , so G is σ -nilpotent. This
contradiction shows that we have (7).

(8) L is not abelian.
Suppose that L is abelian. Then fromClaims (6) and (7) we deduce thatG = L�M

for some maximal subgroup M of G and, by [14, Ch.A, 15.6], C = CG(L) = L . Let
E be a maximal subgroup of M , V = LE . Then, by Claim (5), L ≤ Zσ (V ), so
E � V/L = V/CV (L) is a σi -group by Lemma 2.4. Hence M is either a σi -group or
a group of prime order, contrary to Claim (2). Hence we have (8).

(9) If L ≤ M < G, then M is a σi − group.
By Claim (5), L ≤ Zσ (M). On the other hand, by Claims (6) and (8), CG(L) = 1.

Hence M � M/1 = M/CM (L) is a σi -group by Lemma 2.4.
Final contradiction for (i). Let U be a minimal supplement to L in G. Let V be

any maximal subgroup of U . Then LV �= G, so LV is a σi -group by Claim (9).
Hence V is a σi -group. Therefore, every maximal subgroup of U is a σi -group. Then
U is either a σi -group or a group of prime order. Hence U is σ -nilpotent and so
G/L = UL/L � U/U ∩ L is σ -nilpotent. But then G/I � (G/L)/(I/L) is σ -
nilpotent by Lemma 2.3, contrary to Claim (2). Thus Assertion (i) is proved.

(ii) Assume that this is false and let G be a counterexample with minimal order.
Let I = IH(G).

First note that if A is a Hall σi -subgroup of G, then Z ≤ NG(A) by Proposi-
tion 2.5(vii) and so Z ≤ I . Thus the choice of G implies that I �= 1. Moreover, since
(NG(A))x = NG(Ax ), I is a normal σ -nilpotent subgroup of G. Let R be a minimal
normal subgroup of G contained in I . Then R is a σi -group for some i ∈ I . Therefore,
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for each j �= i we have R ≤ CG(Hj ) since R ≤ NG(Hj ), so G/CG(R) is a σi -group.
Hence R is σ -central in G.

It is clear that H0 = {H1R/R, . . . , Ht R/R} is a complete Hall σ -set of G/R.
Since

NG(Hx
i )R/R ≤ NG/R(Hx

i R/R) = NG/R((Hi R/R)x R),

RI/R ≤ IH0(G/R). The choice of G implies that RI/R ≤ IH0(G/R) = Zσ (G/R).
But since R is σ -central inG, R ≤ Z and so Z/R = Zσ (G/R) by Proposition 2.5(vi).
Thus RI/R ≤ Z/R, so I ≤ Z . Thus I = Z , as required.

The theorem is proved.

3 Proof of Theorem B

Lemma 3.1 (i) If G is a σ -quasinilpotent group and N is a normal subgroup of G,
then N and G/N are σ -quasinilpotent.

(ii) If G/N and G/L are σ -quasinilpotent, then G/(N ∩ L) is also σ -quasinilpotent.

Proof See the proof of Lemma 13.3 in [12, Ch.X].

Lemma 3.2 Let N be a minimal normal subgroup of the group G. Then every auto-
morphism of N induced by an element of G is inner if and only if G = NCG(N ).

Proof See the proof of Lemma 13.4 in [12, Ch.X].

Proof of Theorem B Let Z = Zσ (G).

(i) ⇒ (ii) Assume that this is false and let G be a counterexample of minimal
order. Then the hypothesis holds for G/Z by Lemma 3.1(i). On the other hand,
Zσ (G/Z) = 1 by Proposition 2.5(vi). Hence in the case when Z �= 1,G/Zσ (G)

is σ -semisimple by the choice of G.
Now assume that Z = 1 and let R be any minimal normal subgroup of G. Then
R/1 is a σ -eccentric chief factor of G, so G = RCG(R) by Lemma 3.2. There-
fore, since Z(G) ≤ Z = 1, CG(R) �= G and hence R is σ -semisimple. Thus
G = R × CG(R). Therefore, Zσ (R) × Zσ (CG(R)) = Zσ (G) = 1 by Proposi-
tion 2.5(viii). Moreover, the choice of G implies that CG(R) is σ -semisimple,
so G � G/Z = G/1 is σ -semisimple and hence Assertion (ii) is true, a contra-
diction.

(ii) ⇒ (iii) First note that Z ≤ Fσ (G) by Proposition 2.5(iv), so Z = Fσ (G) since
G/Z is σ -semisimple by hypothesis. But then G/CG(Fσ (G)) is σ -nilpotent by
Proposition 2.5(iv). Hence G = Fσ (G)CG(Fσ (G)) since G/Fσ (G) = G/Z is
σ -semisimple.

(iii) ⇒ (i) Let H/K be a chief factor of G. If Fσ (G) ≤ K , then every automorphism
of H/K induced by an element of G is inner by Lemma 3.2 since G/Fσ (G) is
σ -semisimple by hypothesis. Now suppose that H ≤ Fσ (G). Then

CG(H/K ) = CG(H/K ) ∩ Fσ (G)CG(Fσ (G)) = CG(Fσ (G))CFσ (G)(H/K ),
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so

G/CG(H/K ) = Fσ (G)CG(Fσ (G))/CG(Fσ (G))CFσ (G)(H/K )

� Fσ (G)/Fσ (G) ∩ CG(Fσ (G))CFσ (G)(H/K )

= Fσ (G)/CFσ (G)(H/K )Z(Fσ (G))

� (Fσ (G)/CFσ (G)(H/K ))/(CFσ (G)(H/K )Z

(Fσ (G))/CFσ (G)(H/K ))

is σ -primary by Lemma 2.4. Therefore, H/K is σ -central in G. Now applying
the Jordan–Hölder theorem, we get that for every σ -eccentric chief factor H/K
of G, every automorphism of H/K induced by an element of G is inner. Hence
G is σ -quasinilpotent.

The theorem is proved.

Corollary 3.3 If a σ -quasinilpotent group G �= 1 is σ -soluble, then G = Oσ1(G) ×
· · · × Oσt (G), where {σ1, . . . , σt } = σ(G).

Proof This directly follows from Theorem B and Lemma 2.2.

We say that G is σ -perfect if Oσi (G) = G for all i .

Corollary 3.4 Let G be σ -quasinilpotent.

(i) If G is σ -perfect, then Zσ (G) = Z(G).
(ii) If H is a normal σ -soluble subgroup of G, then H ≤ Zσ (G).

Proof (i) This assertion follows from Theorem B and Proposition 2.5(iv).
(ii) This directly follows from Theorem B.

4 Proof of Theorem C

For any function f of the form

f : P ∪ {0} → {group formations}, (*)

we put, following [18],

CF( f ) = {G is a group | G/CG(H/K ) ∈ f (0)

for each non-abelian chief factor H/K of G

and G/CG(H/K ) ∈ f (p) for any abelian p-chief factor H/K of G}.

In the paper [18], the following useful fact is proved.

Lemma 4.1 For any function f of the form (∗), the class CF( f ) is a solubly saturated
formation.
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Proof of Theorem C Let M = CF( f ), where f (p) = Gσi is the class of all σi -
groups for all p ∈ σi , and f (0) = N∗

σ . We show that M = N∗
σ . First assume that

M � N∗
σ and G be a group of minimal order in M \ N∗

σ with a minimal normal
subgroup R. Then G/R ∈ M by Lemma 4.1, so G/R is σ -quasinilpotent. Hence R
is a unique minimal normal subgroup of G by Lemma 3.1(ii). Therefore, in view of
Theorem B, R is not σ -central in G. Hence R is non-abelian. But then CG(R) = 1
and so G � G/CG(R) ∈ f (0) = N∗

σ , a contradiction. Thus M ⊆ N∗
σ .

Now, assume that N∗
σ � M and G be a group of minimal order in N∗

σ \ M with
a minimal normal subgroup R. Then G/R ∈ N∗

σ by Lemma 3.1(i), so G/R ∈ M.
Hence R is a unique minimal normal subgroup of G by Lemma 4.1. If R is non-
abelian, then G � G/1 = G/CG(R) ∈ f (0) = N∗

σ . Hence G ∈ M since G/R ∈ M,
a contradiction. Hence R is a p-group for some p ∈ σi , so R � (G/CG(R)) is a σi -
group by Theorem B. Therefore, G/CG(R) ∈ f (p) and so G ∈ M. Thus M = N∗

σ .
Therefore,N∗

σ is a solubly saturated formation by Lemma 4.1. Lemma 3.1(i) implies
that this formation is normally hereditary.

Therefore, in order to complete the proof of the theorem it is enough to show
that if G = AB, where A and B are normal σ -quasinilpotent subgroups of G, then
G is σ -quasinilpotent. Suppose that this is false and let G be a counterexample of
minimal order. Let R be a minimal normal subgroup of G and C = CG(R). By
Lemma 3.1(i), the hypothesis holds for G/R and so the choice of G implies that
G/R is σ -quasinilpotent. Therefore, in view of Lemma 3.1(ii), R is a unique minimal
normal subgroup of G.

Let Z1 = Zσ (A) and Z2 = Zσ (B). If A ∩ B = 1, then Zσ (G) = Z1 × Z2
by Proposition 2.5(viii). On the other hand, A/Z1 and B/Z2 are σ -semisimple by
Theorem B, so

G/Z = (A × B)/(Z1 × Z2) � (A/Z1) × (B/Z2)

is σ -semisimple. Hence G is σ -quasinilpotent by Theorem B. Therefore, A ∩ B �= 1,
so R ≤ A ∩ B. First assume that R is σ -primary, R is a σi -group say. Then by
Theorem B, R ≤ Z1 ∩ Z2 and so AC/C � A/A ∩ C and BC/C � B/B ∩ C are
σi -groups. Hence G/C = (AC/C)(BC/C) is a σi -group. Thus R is σ -central in G.
Therefore, R ≤ Zσ (G) and so Zσ (G/R) = Zσ (G)/R by Proposition 2.5(vi). Thus
G is σ -quasinilpotent by Theorem B.

Therefore, R is not σ -primary. Hence R is non-abelian, so C = 1. Then R =
R1×· · ·×Rt , where R1, . . . , Rt areminimal normal subgroups of A. LetCi = CA(Ri )

(i = 1, . . . , t). ThenC = 1 = C1∩· · ·∩Ct . Since A isσ -quasinilpotent by hypothesis,
A = RiCi for all i = 1, . . . , t by Lemma 3.2. Hence

R = RC = R1 . . . Rt (Ct ∩ · · · ∩ C1) = R1 . . . Rt−1(RtCt ∩ Ct−1 ∩ · · · ∩ C1)

= R1 . . . Rt−1(A ∩ Ct−1 ∩ · · · ∩ C1) = R1 . . . Rt−1(Ct−1 ∩ · · · ∩ C1)

= · · · = R1C1 = A.

Similarly one can get that B = R, so G = R is σ -semisimple. Hence G is σ −
quasinilpotent.

The theorem is proved. ��
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5 Proof of Theorem D

Recall that G is said to be a Schmidt group if G is not nilpotent but every proper
subgroup of G is nilpotent.

Lemma 5.1 (See Proposition 1.6 in [8]) Let G be σ -soluble. If G is not σ -nilpotent
but all proper subgroups of G are σ -nilpotent, then G is a Schmidt group.

Lemma 5.2 (See [19, Ch.III, 5.2] and [19, Ch.IV, 5.4]) If G is not p-nilpotent but
every proper subgroup of G is p-nilpotent, then G is a p-closed Schmidt group and
so G = P � Q, where P is a Sylow p-subgroup of G and Q is a Sylow q-subgroup
of G for some primes p �= q. Moreover, P is of exponent p or exponent 4 (if P is a
non-abelian 2-group).

Lemma 5.3 (see [19, Ch.IV, 5.12]) Let P be a p-group, a a p′-automorphism of P.

(1) If [a,�2(P)] = 1, then a = 1.
(2) If [a,�1(P)] = 1 and either p is odd or P is abelian, then a = 1.

Proof of Theorem D Let Z = Zσ (G) and F∗ = F∗
σ (E). Let F = Fσ (E) and C =

CG(F). It is enough to show that if every cyclic subgroup of F∗ of prime order or
order 4 is contained in Z , then G is σ -nilpotent. Assume that this is false and let G be
a counterexample with |G| + |E | minimal.

(1) F �= E .HenceE = G.

Assume that F = E . Then G is σ -soluble since G/E is σ -nilpotent by hypothesis.
Let M be any maximal subgroup of G. Then M/M ∩ E � EM/E is σ -nilpotent and
M ∩ E is a normal σ -nilpotent subgroup of M by Lemma 2.3. Hence F∗

σ (M ∩ E) =
Fσ (M ∩ E) by Corollary 3.3. If A is a cyclic subgroup of M ∩ E of prime order or
order 4, then A ≤ Z ∩ M ≤ Zσ (M) by Proposition 2.5(iii). Therefore, the hypothesis
holds for (M, M ∩ E), so the choice of G implies that M is σ -nilpotent. Hence G is
a Schmidt group by Lemma 5.1, and so by Lemma 5.2, G = P � Q, where P is a
Sylow p-subgroup of G and Q is a Sylow q-subgroup of G for some primes p �= q
dividing |G|. Moreover, P is of exponent p or exponent 4 (if P is a non-abelian 2-
group). Thus P ≤ Z , which implies that G is σ -nilpotent by Proposition 2.5(v). This
contradiction shows that F �= E . Therefore, since the hypothesis holds for (E, E) by
Proposition 2.5(iii), the choice of G and Theorem B imply that E = G.

(2) If N is a normal subgroup of G, then the hypothesis holds for (N , N ).
Indeed, F∗

σ (N ) ≤ F∗
σ (E) by Theorem C since F∗

σ (N ) is characteristic in N . Hence
the hypothesis holds for (N , N ) by Proposition 2.5(iii).

(3) F = F∗. Hence G/F is not σ -nilpotent.
Assume that F < F∗. Then F∗ is not σ -soluble by Theorem B. Moreover, the

hypothesis holds for (F∗, F∗) by Claim (2), so the choice of G implies that F∗ = G.
Then, by Theorem B,G = FC . Hence the choice ofG and Lemma 2.3 imply thatC is
not σ -nilpotent. But the hypothesis holds for (C,C) by Claim (2). Hence C = G, so
Z = F = Z(G). Since G = F∗ is not σ -soluble by Theorem B, G is not p-nilpotent
for some odd prime p and so G has a p-closed Schmidt subgroup H = P � Q, where
P is of exponent p by Lemma 5.2. Hence P ≤ Z(G) ∩ H and so H is nilpotent.
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This contradiction shows that F = F∗. Finally, note that if G/F is a σ -nilpotent,
the hypothesis holds for (G, F), so the choice of G and Claim (1) imply that G is
σ -nilpotent. This contradiction shows that we have (3).

(4) G/F is a simple non-σ -primary group.
Let F ≤ M < G, where M is a normal subgroup of G with simple quotient G/M .

Then the hypothesis holds for (M, M) by Claim (2). Therefore, M = F by the choice
of G.

(5) Z = Z(G). Hence F is nilpotent.
The hypothesis holds for (CG(Z),CG(Z)) by Claim (2). Assume thatCG(Z) < G.

Then the choice ofG implies thatCG(Z) is σ -nilpotent. ButG/C(Z) is σ -nilpotent by
Proposition 2.5(iv). HenceG is σ -soluble, contrary to Claim (4). Therefore,CG(Z) =
G. Arguing now as in the proof of Claim (1), one can show that F is nilpotent.

(6) F = Z(G).
In view of Claim (5), it is enough to show that for any prime p dividing |F | we

have P ≤ Z(G), where P is the Sylow p-subgroup of F . Let � = �1(P) if p > 2
and � = �2(P) if p = 2. Then �(P) ≤ Z(G) by Claims (1) and (5), so P ≤ Z(G)

by Lemma 5.3.
Final contradiction From Claims (4) and (6), it follows that G = F∗ is σ -

quasinilpotent by Theorem B, contrary to Claim (3).
The theorem is proved.
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