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Abstract A proper edge coloring is called acyclic if no bichromatic cycles are pro-
duced. It was conjectured that every simple graph G with maximum degree A is
acyclically edge-(A 4 2)-colorable. In this paper, combining some known results, we
confirm the conjecture for graphs with A = 4.
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1 Introduction

Only simple graphs are considered in this paper. Let G be a graph with vertex set V (G)
and edge set E(G). A proper edge-k-coloring is amapping ¢ : E(G) — {1,2, ..., k}
such that any two adjacent edges receive different colors. The graph G is edge-k-
colorable if it has an edge-k-coloring. The chromatic index x'(G) of G is the smallest
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integer k such that G is edge-k-colorable. A proper edge-k-coloring of G is called
acyclic if there are no bichromatic cycles in G, that is, the union of any two color
classes induces a subgraph of G that is a forest. The acyclic chromatic index of G,
denoted a’(G), is the smallest integer k such that G is acyclically edge-k-colorable.

Let A = A(G) denote the maximum degree of a graph G. By Vizing’s theorem
[17], A < x'(G) < A + 1. So it holds automatically that a’(G) > x'(G) > A.
Fiam¢ik [9] and later Alon et al. [2] put forward the following conjecture:

Conjecture 1 For any graph G, a’ (G) < A + 2.

Using probabilistic method, Alon et al. [1] proved that a’(G) < 64A for any
graph G. This upper bound was gradually improved to that a’(G) 16A in [12],
that ¢’(G) < [9.62(A — 1)] in [13], that a’(G) < 4A in [8], and that a’(G) <
[3.74(A —1)7+ 1 in [10]. For the class of subcubic graphs, Conjecture 1 was affirmed
to be true, see [3,4]. Other results about this topic can be seen in [6,7,11,14,16].

In 2009, Basavaraju and Chandran [5] showed that if G is a graph with A = 4
and |E(G)| < 2|V(G)| — 1, then a¢’(G) < 6. Namely, every non-regular graph of
A = 4 satisfies Conjecture 1. More recently, Shu et al. [15] extended this result by
showing that every 4-regular graph G without 3-cycles is acyclically edge-6-colorable.
In this paper, we solve the case of 4-regular graphs having at least one 3-cycle. Hence,
combining the previously known results, Conjecture 1 is confirmed for all graphs with
A=4.

IA

2 Main Results

Assume that c is a partial acyclic edge-k-coloring of a graph G using the color set
C ={1,2,...,k}. For avertex v € V(G), we use C(v) to denote the set of colors
assigned to edges incident to v under c. If the edges of a cycle ux - - - vu are alternately
colored with colors i and j, then we call such cycle an (i, j),v)-cycle. If the edges of
a path ux - - - v are alternately colored with colors i and j, then we call such path an
(i, J)(u.v)-path. For simplicity, we use {e1, e2, ..., e,} — a to express that all edges
e1, e, ..., ey are colored or recolored with same color a. In particular, when m = 1,
we write simply e; — a. Moreover, we use (e1, €2, ..., en)e = (a1,az,...,any) to
denote that c(¢;) = a; fori = 1,2,...,m. Let (e1,e,...,e,) = (b1,ba, ..., by)
denote that ¢; is colored or recolored with color b; fori = 1,2, ..., n. Note that b;
and b; may be same for some i # j.

For a graph G, let X = {v1,v2,...,v;} C V(G) and S = {ey, ez, ..., e;} be an
edge subset. We use (G — X)U S or G —{vy, v2,...,vj}+{e1, ez, ..., e} todenote
the graph obtained by deleting from G the vertices in X together with all the edges
incident with some vertex in X and adding the edges in S together with all the new
vertices incident with some edge in S. We write G — vy + {e1, €2, ..., ex}if j = L or
G —{v,v2,...,vj}+erifk =1

Several lemmas below will be frequently used in the proof of the main result.

Lemma 1 ([15]) Suppose that a graph G has an edge-6-coloring c. Let P = uvivy - - -
VkVk+1 be a maximal (a, b) v p)-path in G with c(uvy) = a and b ¢ C(u). If
w ¢ V(P), then there is no (a, b) u,w)-path in G under c.
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Lemma 2 ([3,4]) If G is a graph with A < 3, then a’'(G) < 5, and a’(G) = 5 if and
only if G € {K4, K33}.

Lemma 3 ([5)) If G is a graph with A = 4 that is not 4-regular, then a’'(G) < 6.
Lemma 4 ([15]) If G is a 4-regular graph without 3-cycles, then a’'(G) < 6.
Theorem 1 If G is a 4-regular graph, then a’'(G) < 6.

Proof The proof is proceeded by induction on the number o (G) = |V(G)|+ |E(G)].
If 0(G) = 15, that is, [V(G)| = 5, then G is the complete graph Ks, and it is
easy to show that a’(G) < 6. Let G be a 4-regular graph with o(G) > 16, so
[V(G)| = 6. Obviously, we may assume that G is 2-connected by Lemma 3. If G
contains no 3-cycles, then a’(G) < 6 by Lemma 4. So assume that G contains at least
one 3-cycle. For any graph H with A(H) < 4 and o0 (H) < o(G), by the induction
hypothesis or Lemmas 3 and 4, H admits an acyclic edge-6-coloring ¢ using the color
set C = {1, 2, ..., 6}. Before constructing an acyclic edge-6-coloring of G, we first
prove the following lemma. O

Lemma5 Let § # X C V(G) and put S = [X, X] where X = V(G) \ X. If
S = {x1y1, X2y2, x3¥3, xaya} withx; € X, y; € X, i= 1,2, 3,4, where x1, x2, x3, X4
are pairwise distinct, but some of y;’s may be identical. Then (G — X) U S has an
acyclic edge-6-coloring c using the color set C = {1, 2, ..., 6} such that c(x;y;) =i
foreachi € {1,2,3,4}.

Proof Note that for any graph H with A(H) < 4ando (H) < 0(G), H has an acyclic
edge-6-coloring c using C = {1, 2, ..., 6} by the foregoing discussion. By symmetry,
we have to consider the following cases. Let u ¢ V(G) be a new vertex.

e If y1, y2, y3, y4 are identical to a vertex, say v, then we define H = G — X + uv
and can assume c(uv) = 1 with 2, 3,4 ¢ C(v).

e If y1, y2, y3 are identical to a vertex v and y4 # v, then we define H = G — X +
{uv, uys} and assume that (uv, uys). = (1, 4) with 2,3 ¢ C(v).

e If yi, yo are identical to a vertex vy, and y3, y4 are identical to a vertex vy, let
H = G — X + {uvy, uvg} and we can assume that (uvy, uvg). = (1,4) with
2e C\(C(v)U{l1,4}),3 € C\(C(vg) U{1,4,2}).

e If yi, yp are identical to a vertex v, and y3 # ys1 # v, let H = G — X +
{uv, uys, uys} and assume that (uv, uys, uys). = (1,3,4) with 2 € C\(C(v) U
{3,4).

e If y1, y2, ¥3, ys4 are all distinct, let H = G — X + {uyy, uyz, uy3, uys} and assume
that (uyy, uy2, uys, uys)e = (1,2,3,4).

Now we only need to let x; y; — i fori = 1,2, 3, 4 for all cases above to complete

the proof. O

Let v € V(G) be a vertex adjacent to vy, v1, v2, v3. By Lemma 4, we may assume
that v lies in a 3-cycle. To obtain an acyclic edge-6-coloring of G, the proof is divided
into the following five cases by symmetry.
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Case 1 vgvq, viv2, 12V3, V3V9 € E(G).

Fori € {0, 1, 2, 3}, let vlf be the neighbor of v; different from v, v;_1, vi4+1, where
all indices are taken modulo 4. Since |V (G)| > 6, G # K5. We only need to consider
the following subcases by symmetry:

Case 1.1 vjvz € E(G) and vavy ¢ E(G).

Take X = {v, vy, v2, v3}and S = {vovy, vzvé, vov3, vUg},andlet H = (G—X)US.
By Lemma 5, H has an acyclic edge-6-coloring ¢ with (vov1, v2v}, vou3, VVg)e =
(1, 2, 3, 4). To extend c to the whole graph G, we let (vjv3, vv2, V1V2, VY3, VY], V2V3)
— (2,3,4,5,6,06).

Case 1.2 vjv3, v ¢ E(G).

Take X = {v, vo, v1, v2, v3} and S = {v1v], V205, V3V5, vovy}, and let H = (G —
X)US. By Lemma 5, H has an acyclic edge-6-coloring ¢ with (v v}, v2v5, V35, vovy)e
= (1, 2, 3, 4). Toextend c to the whole graph G, we let (vov3, vv3, V1 V2, VU, VV2, VU,
v, 1v3) — (1,2,3,4,5,5,6,6).

Case 2 vovy, viv2, 1203 € E(G) and vouvs ¢ E(G).

If vivs, vovy € E(G), then since vgvy, vgvy, V203, Vivs € E(G), vy lies in four
3-cycles and the proof can be reduced to Case 1. Thus, without loss of generality,
assume that vovy ¢ E(G). Let vé be the neighbor of v, other than v, vy, vs.

Case 2.1 vjv3 € E(G).

Let vé be the neighbor of v3 other than v, vy, v2. Take X = {v, vy, v2, v3} and
S = {vovr, v2v5, v3v5, v}, and let H = (G — X) U S. By Lemma 5, H has an
acyclic edge-6-coloring ¢ with (vovy, v2v5, V305, vvg)e = (1,2, 3, 4). It suffices to
define (vov3, VU3, V1V2, VIV3, VY2, VY1) — (1,2,3,4,5,6).

Case 2.2 viv3 ¢ E(G)

Let vs be the neighbor of vy other than v, vy, v2. There are two possibilities as
follows.

Case 2.2.1 v = vs.

By Case 1, we may assume that vgvs, v3vs ¢ E(G). Let H = G — {v, v1, va} +
{vovs, v3vs} and assume that (vgvs, v3vs). = (1,2). First, let {vjvs, vvg} — 1
and {vpvs, vv3} — 2. Next, if C(vg) = {3,4} and C(v3) = {5, 6}, then let
(viv2, vav3, VU1, VUL, VV2) — (3,4,5, 6, 6). Otherwise, w.l.o.g., assume that 3 ¢
C(v3) U C(vp) and 4 ¢ C(vo). Let (vovy, vo2v3, v1V2, VU1, VV2) — (3,3,4,5,6).
Obviously, there is neither a (1, 5)(y,y;)-cycle nor a (2, 6)(y,,)-cycle in G.

Case 2.2.2 v, # vs.

Let H=G — {v, v, vo} + {uvs, uvé, uvs, uvg, vovs} and assume that (1zvg, uvs,
vov3)e = (1, 2, 3), where u is a new vertex. First, let vov3 — 2 and (vjvs, vzvé) —
(c(uvs), c(uv))).

e Assume that (uvs, uvh). = (3, 4).
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Let (vovy, vvy, vvg, viv2) — (1,2, 3,6). If {5, 6}\C(v3) # @, say 5 ¢ C(v3), let
(vva, vv3) — (1, 5); otherwise, C(v3) = {5, 6}, we let (vvy, vv3) — (5, 1).

e Assume that (uvs, uv). = (4,5).

If4 ¢ C(vp), then let (vvg, viva, Vov1, VU3, VY2, VV]) — (1,1,3,3,4,6). Oth-
erwise, 4 € C(vg). Then first let (vovy, vvy, vvg) — (1,2, 3). Next, if 4 ¢ C(v3),
then let (vvs, vv2, viv2) — (4,1,6). Or else, 4 € C(v3), and similarly assume
5 € C(v3) N C(vo). It is enough to let (vvs, vivz, vv2) — (1,3, 6).

Case 3 viv2, nov3 € E(G) and vivg, vavg ¢ E(G).

If viv3, vova € E(G), then the proof is reduced to Case 2. Thus, assume that
vivz ¢ E(G), orvovz ¢ E(G).

Case 3.1 vjv3 € E(G) and vov> ¢ E(G).

Let vs, vg, v7 be the forth neighbor of vy, vy, v3 other than v, v, vi, v2, v3,
respectively. Take X = {v, v, vz, v3} and § = {vjvs, vavg, vV3V7, VVg}, and let
H = (G — X) US. By Lemma 5, H has an acyclic edge-6-coloring ¢ with
(vivs, vVavg, V3V7, VYY) = (1,2, 3,4). To extend ¢ to G, we let (vpv3, VU3, VY], VL7,
vivz, viv) — (1,2,3,5,5,6).

Case 3.2 viv3 ¢ E(G) and vovr € E(G).

Let H =G — {v, vz} + {vgv1, vov3, viv3} and assume that (vovy, VU3, V1V3)e =
(1,2,3)with4 € C\(C(v1)U{l, 2, 3}). First, let (vvg, vv3, v1v3, V1) — (1,3,3,4).
If {5,6}\C(v3) # @, say 5 ¢ C(v3), let (vova, V2v3, VV2) — (2,5, 6); otherwise,
C(v3) = {5,6}, we let vpu3 — 1. Then if {5, 6}\C(vg) # @, say 5 ¢ C(vp), let
(vov2, vv2) — (2, 5); orelse, C(vy) = {5, 6}, let (vvy, vov2) — (2,4).

Case 3.3 vjv3, vov2 ¢ E(G).

Let vs ¢ {v, vy, v3, vo} be the forth neighbor of vy, and vg, v7 ¢ {v, v2, Vo, v3}
be the other two neighbors of vy. Note that vs, ve, v7 are pairwise distinct by Case
2.Let H =G — {v, v2} + {vov1, v1v5} and suppose that (vvs, vov1, V1V6, V1V7)e =
(1,2, 3,4). Let (vavs, vvg) — (1,2).

Case 3.3.1 C(v3) N {1,2} # 0, say 1 € C(v3).

e Assume that 2 ¢ C(v3).

Since {3,4}]\C(v3) # @ and {5,6}\C(v3) #* @, we may assume that 4,6
¢ C(v3). If 6 ¢ C(vs), then let (viva, vvs, vva, VU1, 2V3) — (2,4,5,6,6).
If 4 ¢ C(vs), then let (vvy, viva, V23, VY2, VV3) — (1,2,4,5,6). Otherwise,
4,6 € C(vs) and {3,5}]\C(v3) € C(vs). It follows that 2 ¢ C(vs), and hence,
let (vvy, vavs, VU3, VIV, VYT, V2V3) — (1,2,4,5,6,06).

e Assume that C(v3) = {1, 2}.

Assume that 6 ¢ C(vs). Let (vivp, v, v2v3) — (2,4,6). If 5 ¢ C(vo), then
let (vvy, vv3) — (1,5). If 3 ¢ C(vp), let (vvr, vvz) — (5, 3). Otherwise, we may
assume that C(vg) = {2, 3, 4, 5}, and hence, let (vvy, vvs, vvg) — (1,5, 6).
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Assume that {5, 6} € C(vs), and {5, 6} € C(vp) similarly. If 3,4 ¢ C(vo)UC (vs),
then let (viv2, vavs, VU3, VYT, VU3, VV2) — (1, 3,4,5,5, 6). Otherwise, we suppose
that C(vg) = {2, 4,5, 6}. Let (vvy, vvy, vV, VU3, V1v2) — (1,2,3,5,6) and color
vpv3 with a color in {3, 4}\C (vs).

Case 3.3.2 1,2 ¢ C(v3).

If {5, 6}]\C(v3) # ¥, say 6 ¢ C(v3), then let (vv3, viv2, VU], V2V3) — (1,2,6,6),
and color vvy withacolorin {3, 4, 5}\C (v3). Otherwise, C (v3) = {5, 6}, and it suffices
to let (vvy, vov3, VY3, VU2, VIV2) — (1,2,3,4,5).

Case 4 vgv3, viv2 € E(G) and vovy, 203, V103, Vo2 ¢ E(G).

Let V; = {vi1, vi2} be the set of other neighbors of v; for i € {0, 1,2, 3}.
By Cases 1-3, we assume that Vi NV, = P and Vy N V3 = . Let H =
G — {v, vg, vy, v2, V3} + {uvyy, Uvi2, UV, UV, WV3L, WV32, WV, WVQ2}, Where u
and w are new vertices added. Assume that (uvy, uvia, uvay, uvy). = (1, 2, 3, 4),
{c(wvor), c(wvez), c(wvzr), c(wvz)} = {a, b, c, d}. Let (viv11, v1V12, V2V21, V2V22,
VoVo1, Vo2, V3V31, v3V32) — (1,2,3,4,a, b, c,d).Since|{l, 2, 3,4}{a, b, c, d}| >
2, we may assume that 1 € {a, b}. By symmetry, let us handle the following subcases.

Case 4.1 {a, b} = {1,2} and {c, d} € {{3, 4}, {3, 5}, {5, 6}).

If {c, d} € {{3, 5}, {5, 6}}, then let (vvy, vV, VU3, VYo, VIV2) — (1,3,4,5,6) and
color vgv3z with a color in {3, 6}\{c, d}. Otherwise, {c,d} = {3,4}. If 1 ¢ C(v21),
let (vvy, vvg, ViV2, VY3, VYL, VoV3) — (1,3,5,5,6,6). Or else, 1 € C(vy1), and
furthermore assume that 1,2 € C(vz1) N C(va2). Hence, {5, 6}\C(v21) # @, say
5 ¢ C(va1). Let (vvg, vvy, vva, vou3, V1V2, VV3) — (3,4,5,5,6,6). If 6 ¢ C(v22),
we are done. Or else, C(v22) = {4, 1, 2, 6}, we recolor {vvy, vov2} with 5, and vv,
with 4.

Case 4.2 {a, b} = {1, 3} and {c, d} € {{2, 4}, {2, 5}, {4, 5}, {5, 6}}.

Note that G contains no (2, 3) y,v5)-path. We firstlet (vv2, vvg, vv3, viva, VV]) —
(1,2,3,5,6), then let vgus — S if {c,d} = {2, 4}; vov3 — 6if {c,d} = {4, 5}; and
vovs — 4if {c,d} = {2, 5} or {5, 6}.

Case 4.3 {a, b} = {1, 5} and {c, d} € {{2, 6}, {3, 6}}.
In this case, it suffices to let (vvo, vvg, VoV3, ViV2, VY3, VY1) — (1,2,4,5,5,6).
Case S vivy € E(G) and vpv3, vous, vov1, V1V3, Vo2 & E(G).

Let Vi, V, be defined similarly as in Case 4. By Cases 1-4, ViNV, =@. Let H =
G —{v, vy, v} +{uviy, uviz, uvyy, uvry, vovsz} and assume (1, UV, UV2], UV,
= (1,2, 3,4), where u is anew vertex. Let (vivi1, vivi2, V2V21, 2U22) — (1,2,3,4).
Without loss of generality, we assume that c(vov3) € {1, 5}.

Case 5.1 c(vgv3) = 1.
e Assume that 2 ¢ C(v3).
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If G contains neither a (2, 3)(y;,v;)-path nor a (1, 3) ;1) -path, let (vvg, vvs, vuy,
viva,vv2) —  (1,2,3,5,6). Otherwise, G contains a (2, 3)(y, vy)-path or a
(1, 3)wy,vp)-path. If 3 € C(v3)\C(vp), then let (vvz, vvz, vvg) — (1,2,3) and
vv; = a € {4,5,6}\C(v3), vivo — b € {5,6}\{a}. If 3 € C(vg)\C (v3), then let
(vvg, vvo, vv3) — (1,2,3) and vv; — ¢ € {4, 5, 6}\C(vp), viva — d € {5, 6}\{c}.
Otherwise, 3 € C(v3)NC(vg) and4 € C(v3)NC (vo) similarly. Hence, {5, 6}\C (v3) #
@, say 5 ¢ C(v3). Let (vvg, vva, viv2, VU3, VV) — (1,2,5,5,6). If there is no
(1, 6)(v;,v9)-Path in G, we are done. Otherwise, G contains a (1, 6)(y;,v,)-path, which
cannot pass through vz and C(vg) = {3, 4, 6}. It suffices to let (vv3, vvg) — (1,5).

e Assume that 2 € C(v3) N C(vp) and 3 ¢ C (v3).

If 5 ¢ C(vg), let (vvz, vva, VU1, VYY, VIV2) — (1,2,3,5,6). Otherwise, 5 €
C(vg) and 6 € C(vg). Let (vvg, vvs, vvy, vy, V1v2) — (1,3,4,5,6). If there is no
(3, 5) (13,v3)-Path in G, we are done. Otherwise, it suffices to let (vvg, vv3) — (3, 1).

e Assume that C(v3) = C(vo) = {2, 3, 4}.

Let (vv3, vva, viv, vUg, VY1) — (1,2,5,5,6).If G contains no (2, 5) (y;,v,)-path,
we are done. Otherwise, it suffices to let (vvg, vvz) — (1, 5).

Case 5.2 c(vgv3) = 5.

Note that {1,2,3,4]\C(v3) # 0, say 1 ¢ C(v3), by symmetry. If G con-
tains no (1, i)y, ,vy)-path for some i € (3,4}, let (vv3, vv2, vV, VYV, VIV2) —
(1,2,i,5,6). Otherwise, for any i € {3,4}, G contains a (1, i)y, v5)-path, imply-
ing that 3,4 € C(vy1) N C(v3) and G contains no (1, i)y, vy)-path. If 1 ¢ C(vo),
let (vvg, vvo, VU, VY3, VIV2) — (1,2,3,5,6). Otherwise, 1 € C(vg). If G contains
neither a (2, 5)(y;,vp)-Path nor a (1, 6)(y, vy)-path, let (vvz, vv2, vV, VIV2, VVI) —
(1,2,5,5,6).

Assume that G contains a (1, 6),,v;)-path. Thus, 6 € C(vi1) N C(v3), and
C(v11) = {1,3,4,6} and C(v3) = {3,4,6}. Let (vv3, viv, VU2, VIV, VVY) —>
(1,1,2,5,5), and color vv; with a color in {3, 4, 6}\C (vg).

Assume that G contains a (2, 5)(y,,v)-path. Then 2 € C(vp), and (3, 4}\C(v) #
@, say 3 ¢ C(vg). If 5 ¢ C(vq1), then let (vvs, vva, VU, VVY, VIVI], VIV2) —>
(1,2,3,5,5, 6).Otherwise, C(vy1) = {1, 3, 4, 5}, itsufficestolet (vj vy, vv3, VVY, VU1,
v, vivgy) — (1,1,3,4,5,6). 0
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