

Acyclic Edge Coloring of 4-Regular Graphs (II)

Weifan Wang¹ · Yulai Ma1 · Qiaojun Shu² · Yiqiao Wang³

Received: 23 April 2017 / Revised: 2 December 2017 / Published online: 16 December 2017 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract A proper edge coloring is called acyclic if no bichromatic cycles are produced. It was conjectured that every simple graph G with maximum degree Δ is acyclically edge- $(\Delta + 2)$ -colorable. In this paper, combining some known results, we confirm the conjecture for graphs with $\Delta = 4$.

Keywords Acyclic edge coloring · 4-Regular graph · Maximum degree

AMS Subject Classification 05C15

1 Introduction

Only simple graphs are considered in this paper. Let *G* be a graph with vertex set $V(G)$ and edge set $E(G)$. A *proper edge-k-coloring* is a mapping $c : E(G) \rightarrow \{1, 2, ..., k\}$ such that any two adjacent edges receive different colors. The graph *G* is *edge-kcolorable* if it has an edge-*k*-coloring. The *chromatic index* χ (*G*) of *G* is the smallest

Communicated by Sanming Zhou.

 \boxtimes Yiqiao Wang yqwang@bucm.edu.cn

Weifan Wang: Research supported partially by NSFC (Nos.11771402 and 11371328). Qiaojun Shu: Research supported partially by NSFC (No. 11601111) and ZJNSF (No. LQ15A010010). Yiqiao Wang: Research supported partially by NSFC (Nos. 11301035 and 11671053).

¹ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

² School of Science, Hangzhou Dianzi University, Hangzhou 310018, China

³ School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

integer *k* such that *G* is edge-*k*-colorable. A proper edge-*k*-coloring of *G* is called *acyclic* if there are no bichromatic cycles in *G*, that is, the union of any two color classes induces a subgraph of *G* that is a forest. The *acyclic chromatic index* of *G*, denoted *a* (*G*), is the smallest integer *k* such that *G* is acyclically edge-*k*-colorable.

Let $\Delta = \Delta(G)$ denote the maximum degree of a graph *G*. By Vizing's theorem [\[17](#page-7-0)], $\Delta \leq \chi'(G) \leq \Delta + 1$. So it holds automatically that $a'(G) \geq \chi'(G) \geq \Delta$. Fiamčik [\[9](#page-7-1)] and later Alon et al. [\[2\]](#page-6-0) put forward the following conjecture:

Conjecture 1 *For any graph G,* $a'(G) \leq \Delta + 2$ *.*

Using probabilistic method, Alon et al. [\[1](#page-6-1)] proved that $a'(G) \leq 64\Delta$ for any graph *G*. This upper bound was gradually improved to that $a'(G) \le 16\Delta$ in [\[12](#page-7-2)], that $a'(G) \leq [9.62(\Delta - 1)]$ in [\[13\]](#page-7-3), that $a'(G) \leq 4\Delta$ in [\[8\]](#page-7-4), and that $a'(G) \leq$ $\lceil 3.74(\Delta - 1) \rceil + 1$ in [\[10](#page-7-5)]. For the class of subcubic graphs, Conjecture 1 was affirmed to be true, see [\[3](#page-6-2)[,4](#page-6-3)]. Other results about this topic can be seen in $[6,7,11,14,16]$ $[6,7,11,14,16]$ $[6,7,11,14,16]$ $[6,7,11,14,16]$ $[6,7,11,14,16]$ $[6,7,11,14,16]$.

In 2009, Basavaraju and Chandran [\[5\]](#page-6-5) showed that if *G* is a graph with $\Delta = 4$ and $|E(G)| \le 2|V(G)| - 1$, then $a'(G) \le 6$. Namely, every non-regular graph of $\Delta = 4$ satisfies Conjecture 1. More recently, Shu et al. [\[15\]](#page-7-10) extended this result by showing that every 4-regular graph *G* without 3-cycles is acyclically edge-6-colorable. In this paper, we solve the case of 4-regular graphs having at least one 3-cycle. Hence, combining the previously known results, Conjecture 1 is confirmed for all graphs with $\Delta = 4.$

2 Main Results

Assume that *c* is a partial acyclic edge-*k*-coloring of a graph *G* using the color set $C = \{1, 2, \ldots, k\}$. For a vertex $v \in V(G)$, we use $C(v)$ to denote the set of colors assigned to edges incident to v under c. If the edges of a cycle $ux \cdots vu$ are alternately colored with colors *i* and *j*, then we call such cycle an $(i, j)_{(u, v)}$ -*cycle*. If the edges of a path $ux \cdots v$ are alternately colored with colors *i* and *j*, then we call such path an $(i, j)_{(u, v)}$ -path. For simplicity, we use $\{e_1, e_2, \ldots, e_m\} \rightarrow a$ to express that all edges e_1, e_2, \ldots, e_m are colored or recolored with same color *a*. In particular, when $m = 1$, we write simply $e_1 \rightarrow a$. Moreover, we use $(e_1, e_2, \ldots, e_m)_c = (a_1, a_2, \ldots, a_m)$ to denote that $c(e_i) = a_i$ for $i = 1, 2, ..., m$. Let $(e_1, e_2, ..., e_n) \rightarrow (b_1, b_2, ..., b_n)$ denote that e_i is colored or recolored with color b_i for $i = 1, 2, \ldots, n$. Note that b_i and b_j may be same for some $i \neq j$.

For a graph *G*, let $X = \{v_1, v_2, ..., v_j\} \subset V(G)$ and $S = \{e_1, e_2, ..., e_k\}$ be an edge subset. We use $(G - X) \cup S$ or $G - \{v_1, v_2, \ldots, v_j\} + \{e_1, e_2, \ldots, e_k\}$ to denote the graph obtained by deleting from *G* the vertices in *X* together with all the edges incident with some vertex in *X* and adding the edges in *S* together with all the new vertices incident with some edge in *S*. We write $G - v_1 + \{e_1, e_2, \ldots, e_k\}$ if $j = 1$ or $G - \{v_1, v_2, \ldots, v_j\} + e_1$ if $k = 1$.

Several lemmas below will be frequently used in the proof of the main result.

Lemma 1 ([\[15](#page-7-10)]) *Suppose that a graph G has an edge-6-coloring c. Let* $P = uv_1v_2 \cdots$ v_kv_{k+1} *be a maximal* $(a, b)_{(u, v_{k+1})}$ *-path in G with* $c(uv_1) = a$ *and* $b \notin C(u)$ *. If* $w \notin V(P)$, then there is no $(a, b)_{(u, w)}$ -path in G under c.

Lemma 2 ([\[3](#page-6-2),[4\]](#page-6-3)) *If G is a graph with* $\Delta \leq 3$ *, then a'*(*G*) ≤ 5 *, and a'*(*G*) $= 5$ *if and only if* $G \in \{K_4, K_{3,3}\}.$

Lemma 3 ([\[5](#page-6-5)]) *If G is a graph with* $\Delta = 4$ *that is not 4-regular, then a'* (*G*) \leq 6*.*

Lemma 4 ([\[15](#page-7-10)]) *If G is a 4-regular graph without 3-cycles, then* $a'(G) \leq 6$ *.*

Theorem 1 *If G* is a 4-regular graph, then $a'(G) \leq 6$.

Proof The proof is proceeded by induction on the number $\sigma(G) = |V(G)| + |E(G)|$. If $\sigma(G) = 15$, that is, $|V(G)| = 5$, then *G* is the complete graph K_5 , and it is easy to show that $a'(G) \leq 6$. Let *G* be a 4-regular graph with $\sigma(G) \geq 16$, so $|V(G)| \geq 6$. Obviously, we may assume that *G* is 2-connected by Lemma [3.](#page-2-0) If *G* contains no 3-cycles, then $a'(G) \le 6$ by Lemma [4.](#page-2-1) So assume that *G* contains at least one 3-cycle. For any graph *H* with $\Delta(H) \leq 4$ and $\sigma(H) < \sigma(G)$, by the induction hypothesis or Lemmas [3](#page-2-0) and [4,](#page-2-1) *H* admits an acyclic edge-6-coloring *c* using the color set $C = \{1, 2, ..., 6\}$. Before constructing an acyclic edge-6-coloring of *G*, we first prove the following lemma. prove the following lemma. 

Lemma 5 Let $\emptyset \neq X \subset V(G)$ and put $S = [X, \overline{X}]$ where $\overline{X} = V(G) \setminus X$. If $S = \{x_1y_1, x_2y_2, x_3y_3, x_4y_4\}$ *with* $x_i \in X$, $y_i \in \overline{X}$, $i = 1, 2, 3, 4$, where x_1, x_2, x_3, x_4 *are pairwise distinct, but some of y_i's may be identical. Then* $(G - X) \cup S$ has an *acyclic edge-6-coloring c using the color set* $C = \{1, 2, \ldots, 6\}$ *such that* $c(x_i y_i) = i$ *for each i* $\in \{1, 2, 3, 4\}$ *.*

Proof Note that for any graph *H* with $\Delta(H) \leq 4$ and $\sigma(H) < \sigma(G)$, *H* has an acyclic edge-6-coloring *c* using $C = \{1, 2, ..., 6\}$ by the foregoing discussion. By symmetry, we have to consider the following cases. Let $u \notin V(G)$ be a new vertex.

- If y_1, y_2, y_3, y_4 are identical to a vertex, say v, then we define $H = G X + uv$ and can assume $c(uv) = 1$ with 2, 3, 4 $\notin C(v)$.
- If y_1, y_2, y_3 are identical to a vertex v and $y_4 \neq v$, then we define $H = G X +$ $\{uv, uy_4\}$ and assume that $(uv, uy_4)_c = (1, 4)$ with $2, 3 \notin C(v)$.
- If y_1, y_2 are identical to a vertex v_1 , and y_3, y_4 are identical to a vertex v_4 , let *H* = $G - X + \{uv_1, uv_4\}$ and we can assume that $(uv_1, uv_4)_c = (1, 4)$ with 2 ∈ $C \setminus (C(v_1) \cup \{1, 4\}),$ 3 ∈ $C \setminus (C(v_4) \cup \{1, 4, 2\}).$
- If y_1, y_2 are identical to a vertex v, and $y_3 \neq y_4 \neq y_1$ let $H = G X +$ $\{uv, uy_3, uy_4\}$ and assume that $(uv, uy_3, uy_4)_c = (1, 3, 4)$ with $2 \in C \setminus (C(v) \cup C)$ {3, 4}).
- If y_1, y_2, y_3, y_4 are all distinct, let $H = G X + \{uy_1, uy_2, uy_3, uy_4\}$ and assume that $(uy_1, uy_2, uy_3, uy_4)_c = (1, 2, 3, 4).$

Now we only need to let $x_i y_i \rightarrow i$ for $i = 1, 2, 3, 4$ for all cases above to complete the proof. the proof. \Box

Let $v \in V(G)$ be a vertex adjacent to v_0, v_1, v_2, v_3 . By Lemma [4,](#page-2-1) we may assume that v lies in a 3-cycle. To obtain an acyclic edge-6-coloring of *G*, the proof is divided into the following five cases by symmetry.

Case 1 v_0v_1 , v_1v_2 , v_2v_3 , $v_3v_0 \in E(G)$.

For *i* ∈ {0, 1, 2, 3}, let v_i' be the neighbor of v_i different from v, v_{i-1}, v_{i+1} , where all indices are taken modulo 4. Since $|V(G)| \geq 6, G \neq K_5$. We only need to consider the following subcases by symmetry:

Case 1.1 v_1v_3 ∈ $E(G)$ and v_2v_0 ∉ $E(G)$.

Take $X = \{v, v_1, v_2, v_3\}$ and $S = \{v_0v_1, v_2v_2', v_0v_3, v_0v_0\}$, and let $H = (G - X) \cup S$. By Lemma [5,](#page-2-2) *H* has an acyclic edge-6-coloring *c* with $(v_0v_1, v_2v'_2, v_0v_3, vv_0)_c$ = $(1, 2, 3, 4)$. To extend *c* to the whole graph *G*, we let $(v_1v_3, v_2, v_1v_2, v_3, v_1, v_2v_3)$ \rightarrow (2, 3, 4, 5, 6, 6).

Case 1.2 v_1v_3 , $v_2v_0 \notin E(G)$.

Take $X = \{v, v_0, v_1, v_2, v_3\}$ and $S = \{v_1v'_1, v_2v'_2, v_3v'_3, v_0v'_0\}$, and let $H = (G -$ *X*)∪*S*. By Lemma [5,](#page-2-2) *H* has an acyclic edge-6-coloring *c* with $(v_1v'_1, v_2v'_2, v_3v'_3, v_0v'_0)_c$ $= (1, 2, 3, 4)$. To extend *c* to the whole graph *G*, we let $(v_0v_3, vv_3, v_1v_2, vv_1, vv_2, v_0v_1,$ vv_0 , v_2v_3) \rightarrow (1, 2, 3, 4, 5, 5, 6, 6).

Case 2 v_0v_1 , v_1v_2 , v_2v_3 ∈ $E(G)$ and v_0v_3 ∉ $E(G)$.

If v_1v_3 , $v_0v_2 \text{ ∈ } E(G)$, then since v_0v_1 , v_0v_2 , v_2v_3 , $v_1v_3 \text{ ∈ } E(G)$, v_2 lies in four 3-cycles and the proof can be reduced to Case 1. Thus, without loss of generality, assume that $v_0v_2 \notin E(G)$. Let v_2' be the neighbor of v_2 other than v, v_1, v_3 .

Case 2.1 v_1v_3 ∈ $E(G)$.

Let v'_3 be the neighbor of v_3 other than v, v_1, v_2 . Take $X = \{v, v_1, v_2, v_3\}$ and $S = \{v_0v_1, v_2v_2', v_3v_3', v_0\}$, and let $H = (G - X) \cup S$. By Lemma [5,](#page-2-2) *H* has an acyclic edge-6-coloring *c* with $(v_0v_1, v_2v'_2, v_3v'_3, vv_0)_c = (1, 2, 3, 4)$. It suffices to define $(v_2v_3, vv_3, v_1v_2, v_1v_3, vv_2, vv_1) \rightarrow (1, 2, 3, 4, 5, 6).$

Case 2.2 v_1v_3 ∉ $E(G)$

Let v_5 be the neighbor of v_1 other than v, v_0, v_2 . There are two possibilities as follows.

Case 2.2.1 $v'_2 = v_5$.

By Case 1, we may assume that v_0v_5 , $v_3v_5 \notin E(G)$. Let $H = G - \{v, v_1, v_2\} +$ $\{v_0v_5, v_3v_5\}$ and assume that $(v_0v_5, v_3v_5)_c = (1, 2)$. First, let $\{v_1v_5, v_0v_0\} \rightarrow 1$ and $\{v_2v_5, v_3\} \rightarrow 2$. Next, if $C(v_0) = \{3, 4\}$ and $C(v_3) = \{5, 6\}$, then let $(v_1v_2, v_2v_3, v_1, v_0v_1, v_2) \rightarrow (3, 4, 5, 6, 6)$. Otherwise, w.l.o.g., assume that 3 \notin *C*(*v*₃) ∪ *C*(*v*₀) and 4 ∉ *C*(*v*₀). Let (*v*₀*v*₁, *v*₂*y*₃, *v*₁*v*₂, *vv*₁, *vv*₂) → (3, 3, 4, 5, 6). Obviously, there is neither a $(1, 5)(v, v_1)$ -cycle nor a $(2, 6)(v, v_2)$ -cycle in *G*.

Case 2.2.2 $v'_2 \neq v_5$.

Let $H = G - \{v, v_1, v_2\} + \{uv_5, uv_2', uv_3, uv_0, v_0v_3\}$ and assume that $(uv_0, uv_3,$ v_0v_3 _c = (1, 2, 3), where *u* is a new vertex. First, let $v_2v_3 \rightarrow 2$ and $(v_1v_5, v_2v_2') \rightarrow$ $(c(uv_5), c(uv'_2)).$

• Assume that $(uv_5, uv'_2)_c = (3, 4)$.

Let $(v_0v_1, vv_1, vv_0, v_1v_2) \rightarrow (1, 2, 3, 6)$. If $\{5, 6\} \setminus C(v_3) \neq \emptyset$, say $5 \notin C(v_3)$, let $(vv_2, vv_3) \rightarrow (1, 5)$; otherwise, $C(v_3) = \{5, 6\}$, we let $(vv_2, vv_3) \rightarrow (5, 1)$.

• Assume that $(uv_5, uv'_2)_c = (4, 5)$.

If $4 \notin C(v_0)$, then let $(vv_0, v_1v_2, v_0v_1, vv_3, vv_2, vv_1) \rightarrow (1, 1, 3, 3, 4, 6)$. Otherwise, $4 \in C(v_0)$. Then first let $(v_0v_1, vv_1, vv_0) \rightarrow (1, 2, 3)$. Next, if $4 \notin C(v_3)$, then let $(vv_3, vv_2, v_1v_2) \rightarrow (4, 1, 6)$. Or else, $4 \in C(v_3)$, and similarly assume $5 \in C(v_3) \cap C(v_0)$. It is enough to let $(vv_3, v_1v_2, v_2) \rightarrow (1, 3, 6)$.

Case 3 v_1v_2 , v_2v_3 ∈ $E(G)$ and v_1v_0 , v_3v_0 ∉ $E(G)$.

If v_1v_3 , $v_0v_2 \in E(G)$, then the proof is reduced to Case 2. Thus, assume that $v_1v_3 \notin E(G)$, or $v_0v_2 \notin E(G)$.

Case 3.1 v_1v_3 ∈ $E(G)$ and v_0v_2 ∉ $E(G)$.

Let v_5 , v_6 , v_7 be the forth neighbor of v_1 , v_2 , v_3 other than v , v_0 , v_1 , v_2 , v_3 , respectively. Take $X = \{v, v_1, v_2, v_3\}$ and $S = \{v_1v_5, v_2v_6, v_3v_7, v_0v_0\}$, and let *H* = $(G − X) ∪ S$. By Lemma [5,](#page-2-2) *H* has an acyclic edge-6-coloring *c* with $(v_1v_5, v_2v_6, v_3v_7, vv_0)_c = (1, 2, 3, 4)$. To extend *c* to *G*, we let $(v_2v_3, vv_3, vv_1, vv_2,$ $v_1v_3, v_1v_2 \rightarrow (1, 2, 3, 5, 5, 6).$

Case 3.2 v_1v_3 ∉ $E(G)$ and v_0v_2 ∈ $E(G)$.

Let $H = G - \{v, v_2\} + \{v_0v_1, v_0v_3, v_1v_3\}$ and assume that (v_0v_1, v_0v_3, v_1v_3) _c = $(1, 2, 3)$ with $4 \in C \setminus (C(v_1) \cup \{1, 2, 3\})$. First, let $(vv_0, vv_3, v_1v_2, vv_1) \rightarrow (1, 3, 3, 4)$. If ${5, 6} \ C(v_3) \neq \emptyset$, say $5 \notin C(v_3)$, let $(v_0v_2, v_2v_3, v_3v_2) \rightarrow (2, 5, 6)$; otherwise, *C*(*v*₃) = {5, 6}, we let *v*₂*v*₃ → 1. Then if {5, 6}*C*(*v*₀) \neq Ø, say 5 \notin *C*(*v*₀), let $(v_0v_2, vv_2) \rightarrow (2, 5)$; or else, $C(v_0) = \{5, 6\}$, let $(v_2, v_0v_2) \rightarrow (2, 4)$.

Case 3.3 v_1v_3 , $v_0v_2 \notin E(G)$.

Let $v_5 \notin \{v, v_1, v_3, v_0\}$ be the forth neighbor of v_2 , and $v_6, v_7 \notin \{v, v_2, v_0, v_3\}$ be the other two neighbors of v_1 . Note that v_5 , v_6 , v_7 are pairwise distinct by Case 2. Let $H = G - \{v, v_2\} + \{v_0v_1, v_1v_5\}$ and suppose that $(v_1v_5, v_0v_1, v_1v_6, v_1v_7)_c$ $(1, 2, 3, 4)$. Let $(v_2v_5, vv_0) \rightarrow (1, 2)$.

Case 3.3.1 $C(v_3) \cap \{1, 2\} \neq \emptyset$, say 1 ∈ $C(v_3)$.

• Assume that $2 \notin C(v_3)$.

Since $\{3, 4\} \setminus C(v_3) \neq \emptyset$ and $\{5, 6\} \setminus C(v_3) \neq \emptyset$, we may assume that 4, 6 $\notin C(v_3)$. If 6 $\notin C(v_5)$, then let $(v_1v_2, v_3, v_2, v_1, v_2v_3) \rightarrow (2, 4, 5, 6, 6).$ If $4 \notin C(v_5)$, then let $(vv_1, v_1v_2, v_2v_3, vv_2, vv_3) \rightarrow (1, 2, 4, 5, 6)$. Otherwise, 4, 6 $\in C(v_5)$ and $\{3, 5\} \setminus C(v_3) \subseteq C(v_5)$. It follows that $2 \notin C(v_5)$, and hence, let $(vv_2, v_2v_5, vv_3, v_1v_2, vv_1, v_2v_3) \rightarrow (1, 2, 4, 5, 6, 6).$

• Assume that $C(v_3) = \{1, 2\}.$

Assume that $6 \notin C(v_5)$. Let $(v_1v_2, vv_2, v_2v_3) \to (2, 4, 6)$. If $5 \notin C(v_0)$, then let $(vv_1, vv_3) \rightarrow (1, 5)$. If $3 \notin C(v_0)$, let $(vv_1, vv_3) \rightarrow (5, 3)$. Otherwise, we may assume that $C(v_0) = \{2, 3, 4, 5\}$, and hence, let $(vv_1, vv_3, vv_0) \rightarrow (1, 5, 6)$.

Assume that $\{5, 6\} \subseteq C(v_5)$, and $\{5, 6\} \subseteq C(v_0)$ similarly. If 3, 4 $\notin C(v_0) \cup C(v_5)$, then let $(v_1v_2, v_2v_5, v_3, v_1, v_2v_3, v_2v_7) \rightarrow (1, 3, 4, 5, 5, 6)$. Otherwise, we suppose that $C(v_0) = \{2, 4, 5, 6\}$. Let $(vv_1, vv_2, vv_0, vv_3, v_1v_2) \rightarrow (1, 2, 3, 5, 6)$ and color v_2v_3 with a color in $\{3, 4\} \setminus C(v_5)$.

Case 3.3.2 1, 2 $\notin C(v_3)$.

If $\{5, 6\} \setminus C(v_3) \neq \emptyset$, say $6 \notin C(v_3)$, then let $(vv_3, v_1v_2, vv_1, v_2v_3) \rightarrow (1, 2, 6, 6)$, and color vv_2 with a color in {3, 4, 5}\ $C(v_3)$. Otherwise, $C(v_3) = \{5, 6\}$, and it suffices to let $(vv_1, v_2v_3, vv_3, vv_2, v_1v_2) \rightarrow (1, 2, 3, 4, 5)$.

Case 4 v_0v_3 , v_1v_2 ∈ $E(G)$ and v_0v_1 , v_2v_3 , v_1v_3 , $v_0v_2 \notin E(G)$.

Let $V_i = \{v_{i1}, v_{i2}\}\$ be the set of other neighbors of v_i for $i \in \{0, 1, 2, 3\}$. By Cases 1–3, we assume that $V_1 \cap V_2 = \emptyset$ and $V_0 \cap V_3 = \emptyset$. Let $H =$ $G - \{v, v_0, v_1, v_2, v_3\} + \{uv_{11}, uv_{12}, uv_{21}, uv_{22}, wv_{31}, wv_{32}, wv_{01}, wv_{02}\}$, where *u* and w are new vertices added. Assume that $(uv_{11}, uv_{12}, uv_{21}, uv_{22})_c = (1, 2, 3, 4),$ $\{c(wv_{01}), c(wv_{02}), c(wv_{31}), c(wv_{32})\} = \{a, b, c, d\}$. Let $(v_1v_{11}, v_1v_{12}, v_2v_{21}, v_2v_{22},$ v_0v_{01} , v_0v_{02} , v_3v_{31} , v_3v_{32}) \rightarrow (1, 2, 3, 4, *a*, *b*, *c*, *d*). Since $|\{1, 2, 3, 4\} \cap \{a, b, c, d\}| \ge$ 2, we may assume that $1 \in \{a, b\}$. By symmetry, let us handle the following subcases.

Case 4.1 $\{a, b\} = \{1, 2\}$ and $\{c, d\} \in \{\{3, 4\}, \{3, 5\}, \{5, 6\}\}.$

If $\{c, d\} \in \{\{3, 5\}, \{5, 6\}\}\$, then let $(vv_2, vv_1, vv_3, vv_0, v_1v_2) \rightarrow (1, 3, 4, 5, 6)$ and color v_0v_3 with a color in {3, 6}\{*c*, *d*}. Otherwise, {*c*, *d*} = {3, 4}. If 1 $\notin C(v_{21})$, let $(vv_2, vv_0, v_1v_2, vv_3, vv_1, v_0v_3) \rightarrow (1, 3, 5, 5, 6, 6)$. Or else, $1 \in C(v_{21})$, and furthermore assume that $1, 2 \in C(v_{21}) \cap C(v_{22})$. Hence, $\{5, 6\} \setminus C(v_{21}) \neq \emptyset$, say $5 \notin C(v_{21})$. Let $(vv_0, vv_1, vv_2, v_0v_3, v_1v_2, vv_3) \rightarrow (3, 4, 5, 5, 6, 6)$. If $6 \notin C(v_{22})$, we are done. Or else, $C(v_{22}) = \{4, 1, 2, 6\}$, we recolor $\{vv_1, v_2v_{22}\}$ with 5, and vv_2 with 4.

Case 4.2 $\{a, b\} = \{1, 3\}$ and $\{c, d\} \in \{\{2, 4\}, \{2, 5\}, \{4, 5\}, \{5, 6\}\}.$

Note that *G* contains no $(2, 3)_{(v_0, v_3)}$ -path. We first let $(vv_2, vv_0, vv_3, v_1v_2, vv_1) \rightarrow$ $(1, 2, 3, 5, 6)$, then let $v_0v_3 \to 5$ if $\{c, d\} = \{2, 4\}; v_0v_3 \to 6$ if $\{c, d\} = \{4, 5\};$ and $v_0v_3 \rightarrow 4$ if $\{c, d\} = \{2, 5\}$ or $\{5, 6\}.$

Case 4.3 $\{a, b\} = \{1, 5\}$ and $\{c, d\} \in \{\{2, 6\}, \{3, 6\}\}.$

In this case, it suffices to let $(vv_2, vv_0, v_0v_3, v_1v_2, vv_3, vv_1) \rightarrow (1, 2, 4, 5, 5, 6).$

Case 5 v_1v_2 ∈ $E(G)$ and v_2v_3 , v_0v_3 , v_0v_1 , v_1v_3 , v_0v_2 ∉ $E(G)$.

Let *V*₁, *V*₂ be defined similarly as in Case 4. By Cases 1–4, *V*₁ \cap *V*₂ = \emptyset . Let *H* = $G - \{v, v_1, v_2\} + \{uv_{11}, uv_{12}, uv_{21}, uv_{22}, v_0v_3\}$ and assume $(uv_{11}, uv_{12}, uv_{21}, uv_{22})_c$ $= (1, 2, 3, 4)$, where *u* is a new vertex. Let $(v_1v_{11}, v_1v_{12}, v_2v_{21}, v_2v_{22}) \rightarrow (1, 2, 3, 4)$. Without loss of generality, we assume that $c(v_0v_3) \in \{1, 5\}.$

Case 5.1 $c(v_0v_3) = 1$.

• Assume that $2 \notin C(v_3)$.

If *G* contains neither a $(2, 3)_{(v_1, v_3)}$ -path nor a $(1, 3)_{(v_1, v_0)}$ -path, let $(vv_0, vv_3, vv_1,$ v_1v_2, vv_2) \rightarrow (1, 2, 3, 5, 6). Otherwise, *G* contains a $(2, 3)_{(v_1, v_3)}$ -path or a $(1, 3)_{(v_1, v_0)}$ -path. If $3 \in C(v_3) \setminus C(v_0)$, then let $(v_0, v_3, v_0) \rightarrow (1, 2, 3)$ and $vv_1 \to a \in \{4, 5, 6\} \backslash C(v_3), v_1v_2 \to b \in \{5, 6\} \backslash \{a\}.$ If $3 \in C(v_0) \backslash C(v_3)$, then let $(vv_0, vv_2, vv_3) \rightarrow (1, 2, 3)$ and $vv_1 \rightarrow c \in \{4, 5, 6\} \setminus C(v_0), v_1v_2 \rightarrow d \in \{5, 6\} \setminus \{c\}.$ Otherwise, $3 \in C(v_3) \cap C(v_0)$ and $4 \in C(v_3) \cap C(v_0)$ similarly. Hence, {5, 6} $\setminus C(v_3) \neq$ Ø, say 5 $\notin C(v_3)$. Let $(vv_0, vv_2, v_1v_2, vv_3, vv_1)$ → (1, 2, 5, 5, 6). If there is no $(1, 6)_{(v_1, v_0)}$ -path in *G*, we are done. Otherwise, *G* contains a $(1, 6)_{(v_1, v_0)}$ -path, which cannot pass through v_3 and $C(v_0) = \{3, 4, 6\}$. It suffices to let $(vv_3, vv_0) \rightarrow (1, 5)$.

• Assume that $2 \in C(v_3) \cap C(v_0)$ and $3 \notin C(v_3)$.

If 5 ∉ $C(v_0)$, let (vv₃, vv₂, vv₁, vv₀, v₁v₂) → (1, 2, 3, 5, 6). Otherwise, 5 ∈ $C(v_0)$ and $6 \in C(v_0)$. Let $(v_0, v_3, v_1, v_2, v_1v_2) \to (1, 3, 4, 5, 6)$. If there is no $(3, 5)_{(v_2, v_3)}$ -path in *G*, we are done. Otherwise, it suffices to let $(vv_0, vv_3) \rightarrow (3, 1)$.

• Assume that $C(v_3) = C(v_0) = \{2, 3, 4\}.$

Let $(vv_3, vv_2, v_1v_2, vv_0, vv_1) \rightarrow (1, 2, 5, 5, 6)$. If *G* contains no $(2, 5)_{(v_1, v_0)}$ -path, we are done. Otherwise, it suffices to let $(vv_0, vv_3) \rightarrow (1, 5)$.

Case 5.2 $c(v_0v_3) = 5$.

Note that $\{1, 2, 3, 4\} \setminus C(v_3) \neq \emptyset$, say $1 \notin C(v_3)$, by symmetry. If *G* contains no $(1, i)_{(v_1, v_3)}$ -path for some $i \in \{3, 4\}$, let $(vv_3, vv_2, vv_1, vv_0, v_1v_2) \rightarrow$ (1, 2, *i*, 5, 6). Otherwise, for any *i* ∈ {3, 4}, *G* contains a $(1, i)_{(v_1, v_3)}$ -path, implying that 3, 4 ∈ $C(v_{11}) \cap C(v_3)$ and *G* contains no $(1, i)_{(v_2, v_3)}$ -path. If $1 \notin C(v_0)$, let $(vv_0, vv_2, vv_1, vv_3, v_1v_2) \rightarrow (1, 2, 3, 5, 6)$. Otherwise, $1 \in C(v_0)$. If *G* contains neither a $(2, 5)_{(v_1, v_0)}$ -path nor a $(1, 6)_{(v_1, v_3)}$ -path, let $(vv_3, vv_2, vv_0, v_1v_2, vv_1) \rightarrow$ $(1, 2, 5, 5, 6).$

Assume that *G* contains a $(1, 6)_{(v_1, v_3)}$ -path. Thus, $6 \in C(v_1) \cap C(v_3)$, and $C(v_{11}) = \{1, 3, 4, 6\}$ and $C(v_3) = \{3, 4, 6\}$. Let $(vv_3, v_1v_2, v_1v_3, v_1v_4, v_5v_0) \rightarrow$ $(1, 1, 2, 5, 5)$, and color vv_1 with a color in $\{3, 4, 6\} \backslash C(v_0)$.

Assume that *G* contains a $(2, 5)_{(v_1, v_0)}$ -path. Then $2 \in C(v_0)$, and $\{3, 4\} \setminus C(v_0) \neq$ Ø, say 3 ∉ $C(v_0)$. If 5 ∉ $C(v_{11})$, then let (vv₃, vv₂, vv₁, v_v₀, v₁v₁₁, v₁v₂) → (1, 2, 3, 5, 5, 6). Otherwise,*C*(v11) = {1, 3, 4, 5}, it suffices to let(v1v2, vv3, vv0, vv1, $vv_2, v_1v_{11}) \rightarrow (1, 1, 3, 4, 5, 6).$

References

- 1. Alon, A., McDiarmid, C., Reed, B.: Acyclic coloring of graphs. Random Struct. Algorithm. **2**, 277–288 (1991)
- 2. Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. J. Gr. Theory **37**, 157–167 (2001)
- 3. Andersen, L.D., Máčajová, E., Mazák, J.: Optimal acyclic edge-coloring of cubic graphs. J. Gr. Theory **71**, 353–364 (2012)
- 4. Basavaraju, B., Chandran, L.S.: Acyclic edge coloring of subcubic graphs. Discret. Math. **308**, 6650– 6653 (2008)
- 5. Basavaraju, B., Chandran, L.S.: Acyclic edge coloring of graphs with maximum with degree 4. J. Gr. Theory **61**, 192–209 (2009)
- 6. Basavaraju, B., Chandran, L.S.: Acyclic edge coloring of 2-degenerate graphs. J. Gr. Theory **69**, 1–27 (2012)
- 7. Basavaraju, B., Chandran, L.S., Cohen, N., Havet, F., Müller, T.: Acyclic edge-coloring of planar graphs. SIAM J. Discret. Math. **25**, 463–478 (2011)
- 8. Esperet, L., Parreau, A.: Acyclic edge-coloring using entropy compression. Eur. J. Comb. **34**, 1019– 1027 (2013)
- 9. Fiamˇcik, J.: The acyclic chromatic class of a graph. Math. Slovaca **28**, 139–145 (1978). (in Russian)
- 10. Giotis, I., Kirousis, K., Psaromiligkos, K.I., Thilikos, D.M.: On the algorithmic Lovász local lemma and acyclic edge coloring. In: Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), San Diego, CA, USA, pp. 16–25 (2015)
- 11. Hou, J., Wu, J., Liu, G., Liu, B.: Acyclic edge chromatic number of outerplanar graphs. J. Gr. Theory **64**, 22–34 (2010)
- 12. Molloy, M., Reed, B.: Further algorithmic aspects of Lovász local lemma. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, Dallas, Texas, USA, pp. 524–529 (1998)
- 13. Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of graphs. Eur. J. Comb. **33**, 592–609 (2012)
- 14. Shu, Q., Wang, W., Wang, Y.: Acyclic chromatic indices of planar graphs with girth at least four. J. Gr. Theory **73**, 386–399 (2013)
- 15. Shu, Q., Wang, Y., Ma,Y., Wang, W.: Acyclic edge coloring of 4-regular graphs without 3-cycles. Bull. Malays. Math. Sci. Soc. (2017). <https://doi.org/10.1007/s40840-017-0484-x>
- 16. Wang, W., Shu, Q., Wang, Y.: A new upper bound on the acyclic chromatic indices of planar graphs. Eur. J. Comb. **33**, 338–354 (2013)
- 17. Vizing, V.: On an estimate of the chromatic index of a *p*-graph. Diskret Analiz. **3**, 25–30 (1964)