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Abstract Let G be a finite group and X be a conjugacy class of G. The rank of X
in G, denoted by rank(G:X), is defined to be the minimal number of elements of X
generating G. In this paper we establish some general results on the ranks of certain
conjugacy classes of elements for simple alternating group An . We apply these general
results together with the structure constants method to determine the ranks of all the
non-trivial classes of A8 and A9.

Keywords Conjugacy classes · Rank · Generation · Structure constant · Alternating
group

Mathematics Subject Classification 20C15 · 20C40 · 20D08

1 Introduction

Generation of finite groups by suitable subsets is of great interest and has many appli-
cations to groups and their representations. For example, the computations of the
genus of simple groups can be reduced to the generations of the relevant simple
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groups (see Woldar [1] for details). Also Di Martino et al. [2] established a useful
connection between generation of groups by conjugates and the existence of elements
representable by almost cyclic matrices. Their motivation was to study irreducible
projective representations of sporadic simple groups. Recently, more attention was
paid to the generation of finite groups by conjugate elements. In his Ph.D. thesis [3],
Ward considered the generation of a simple group by conjugate involutions satisfying
certain conditions.

We are interested in the generation of finite simple groups by the minimal number
of elements from a given conjugacy class of the group. This motivates the following
definition.

Definition 1 LetG be a finite simple group and X be a conjugacy class ofG.The rank
of X in G, denoted by rank(G:X), is defined to be the minimal number of elements
of X generating G.

One of the applications of ranks of conjugacy classes of a finite group is that they
are involved in the computations of the covering number of the finite simple group
(see Zisser [4]).

In [5–7], the second author computed the ranks of involuntary classes of the Fischer
sporadic simple group Fi22. He found that rank(Fi22:2B) = rank(Fi22:2C) =
3, while rank(Fi22:2A) ∈ {5, 6}. The work of Hall and Soicher [8] implies that
rank(Fi22:2A) = 6. Then in a considerable number of publications (for example, but
not limited to, see [9–14] or [7]) Moori, Ali and Ibrahim explored the ranks for various
sporadic simple groups. In this article we prove some general results on the ranks of
certain conjugacy classes of elements for the simple alternating group An . Then we
apply these general results together with the structure constants method to determine
the ranks for all non-trivial conjugacy classes of A8 and A9. In this paper we follow
the notation of [15].

2 Preliminaries

Let G be a finite group and C1,C2, . . . ,Ck be k ≥ 3 (not necessarily distinct)
conjugacy classes of G with g1, g2, . . . , gk being representatives for these classes,
respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci , 1 ≤ i ≤ k − 1, denote by
�G = �G(C1,C2, . . . ,Ck) the number of distinct (k − 1)-tuples (g1, g2, . . . , gk−1)

such that g1g2 . . . gk−1 = gk . This number is known as class algebra constant or
structure constant. With Irr(G) = {χ1, χ2, . . . , χr } being the set of complex irre-
ducible characters of G, the number �G is easily calculated from the character table
of G through the formula

�G(C1,C2, . . . ,Ck) =
∏k−1

i=1 |Ci |
|G|

r∑

i=1

χi (g1)χi (g2) . . . χi (gk−1)χi (gk)

(χi (1G))k−2 . (1)
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Also for a fixed gk ∈ Ck we denote by �∗
G(C1,C2, . . . ,Ck) the number of distinct

(k − 1)-tuples (g1, g2, . . . , gk−1) ∈ C1 × C2 × · · · × Ck−1 satisfying

g1g2 . . . gk−1 = gk and 〈g1, g2, . . . , gk−1〉 = G. (2)

Definition 2 If�∗
G(C1,C2, . . . ,Ck) > 0, the groupG is said to be (C1,C2, . . . ,Ck)-

generated.

Furthermore, if H ≤ G is any subgroup containing a fixed element gk ∈
Ck, we let �H (C1,C2, . . . ,Ck) be the total number of distinct (k − 1)-tuples
(g1, g2, . . . , gk−1) such that g1g2 . . . gk−1 = gk and 〈g1, g2, . . . , gk−1〉 ≤ H. The
value of �H (C1,C2, . . . ,Ck) can be obtained as a sum of the structure constants
�H (c1, c2, . . . , ck) of H -conjugacy classes c1, c2, . . . , ck such that ci ⊆ H

⋂
Ci .

Theorem 2.1 Let G be a finite group and H be a subgroup of G containing a fixed
element g such that gcd(o(g), [NG(H):H ]) = 1. Then the number h(g, H) of con-
jugates of H containing g is χH (g), where χH (g) is the permutation character of G
with action on the conjugates of H. In particular,

h(g, H) =
m∑

i=1

|CG(g)|
|CNG (H)(xi )| ,

where x1, x2, . . . , xm are representatives of the NG(H)-conjugacy classes fused to
the G-class of g.

Proof See, for example, Ganief and Moori [16–18]. 	

The above number h(g, H) is useful in giving a lower bound for �∗

G(C1,C2, . . . ,

Ck), namely �∗
G(C1,C2, . . . ,Ck) ≥ �G(C1,C2, . . . ,Ck), where

�G(C1,C2, . . . ,Ck) = �G(C1,C2, . . . ,Ck) −
∑

h(gk, H)�H (C1,C2, . . . ,Ck),

(3)
gk is a representative of the class Ck , and the sum is taken over all the representatives
H ofG-conjugacy classes ofmaximal subgroups containing elements of all the classes
C1,C2, . . . ,Ck .

Since we have all the maximal subgroups of the sporadic simple groups (except for
G = M the Monster group), it is possible to build a small subroutine in GAP [19] or
Magma [20] to compute the values of �G = �G(C1,C2, . . . ,Ck) for any collection
of conjugacy classes of a sporadic simple group.

If �G > 0 then certainly G is (C1,C2, . . . ,Ck)-generated. In the case C1 = C2 =
· · · = Ck−1 = C then G can be generated by k − 1 elements suitably chosen from C
and hence rank(G:C) ≤ k − 1.

We now quote some results for establishing generation and non-generation of finite
simple groups. These results are also important in determining the ranks of the finite
simple groups.
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Lemma 2.2 (e.g., see Ali andMoori [14] or Conder et al. [21]) Let G be a finite simple
group such that G is (l X,mY, nZ)-generated. Then G is (l X, l X, . . . , l X

︸ ︷︷ ︸
m−times

, (nZ)m)-

generated.

Proof Since G is (l X,mY, nZ)-generated group, it follows that there exist x ∈ l X
and y ∈ mY such that xy ∈ nZ and 〈x, y〉 = G. Let N := 〈x, x y, x y2 , . . . , x ym−1〉.
Then N � G. Since G is simple group and N is non-trivial subgroup we obtain that
N = G. Furthermore, we have

xx yx y
2
x y

m−1 = x(yxy−1)(y2xy−2) · · · (ym−1xy1−m)

= (xy)m ∈ (nZ)m .

Since x y
i ∈ l X for all i, the result follows. 	


Corollary 2.3 (e.g., see Ali and Moori [14]) Let G be a finite simple group such that
G is (l X,mY, nZ)-generated. Then rank(G:l X) ≤ m.

Proof Follows immediately by Lemma 2.2. 	

Lemma 2.4 (e.g., see Ali and Moori [14]) Let G be a finite simple (2X,mY, nZ)-
generated group. Then G is (mY,mY, (nZ)2)-generated.

Proof Since G is (2X,mY, nZ)-generated group, it is also (mY, 2X, t K )-generated
group. The result follows immediately by Lemma 2.2. 	

Corollary 2.5 If G is a finite simple (2X,mY, nZ)-generated group, then rank
(G:mY ) = 2.

Proof By Lemma 2.4 and Corollary 2.3 we have rank(G:mY ) ≤ 2.But a non-abelian
simple group cannot be generated by one element. Thus, rank(G:mY ) = 2. 	


The following two results are in some cases useful in establishing non-generation
for finite groups.

Lemma 2.6 (e.g., see Ali and Moori [14] or Conder et al. [21]) Let G be a
finite centerless group. If �∗

G(C1,C2, . . . ,Ck) < |CG(gk)|, gk ∈ Ck, then
�∗

G(C1,C2, . . . ,Ck) = 0 and therefore G is not (C1,C2, . . . ,Ck)-generated.

Proof Weprove the contrapositive of the statement, that is if�∗
G(C1,C2, . . . ,Ck) > 0

then �∗
G(C1,C2, . . . ,Ck) ≥ |CG(gk)|, for a fixed gk ∈ Ck . So let us assume

that �∗
G(C1,C2, . . . ,Ck) > 0. Thus, there exists at least one (k − 1)-tuple

(g1, g2, . . . , gk−1) ∈ C1 × C2 × · · · × Ck−1 satisfying Eq. (2). Let x ∈ CG(gk).
Then we obtain

x(g1g2 . . . gk−1)x
−1 = (xg1x

−1)(xg2x
−1) · · · (xgk−1x

−1) = (xgkx
−1) = gk .

Thus, the (k − 1)-tuple (xg1x−1, xg2x−1, . . . , xgk−1x−1) will generate G. More-
over, if x1 and x2 are distinct elements of CG(gk), then the (k − 1)-tuples
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On the Ranks of the Alternating Group An 1961

(x1g1x
−1
1 , x1g2x

−1
1 , . . . , x1gk−1x

−1
1 ) and (x2g1x

−1
2 , x2g2x

−1
2 , . . . , x2gk−1x

−1
2 ) are

also distinct since G is centerless. Thus, we have at least |CG(gk)| (k − 1)-tuples
(g1, g2, . . . , gk−1) generating G. Hence, �∗

G(C1,C2, . . . ,Ck) ≥ |CG(gk)|. 	

The following result is due to Ree [22].

Theorem 2.7 Let G be a transitive permutation group generated by permutations
g1, g2, . . . , gs acting on a set of n elements such that g1g2 . . . gs = 1G . If the generator
gi has exactly ci cycles for 1 ≤ i ≤ s, then

∑s
i=1 ci ≤ (s − 2)n + 2.

Proof See, for example, Ali and Moori [14].

The following result is due to Conder et al. [21] and Scott [23].

Theorem 2.8 (Scott’s theorem) Let g1, g2, . . . , gs be elements generating a group G
with g1g2 . . . gs = 1G and V be an irreducible module for G with dimV = n ≥ 2.
Let CV(gi ) denote the fixed point space of 〈gi 〉 on V, and let di be the codimension of
CV(gi ) in V. Then

∑s
i=1 di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible module
V and 1〈gi 〉 being the trivial character of the cyclic group 〈gi 〉, the codimension di of
CV(gi ) in V can be computed using the following formula [16]:

di = dim(V) − dim(CV(gi )) = dim(V) − 〈χ↓G〈gi 〉, 1〈gi 〉〉

= χ(1G) − 1

|〈gi 〉|
o(gi )−1∑

j=0

χ(g j
i ). (4)

3 Some General Results on Ranks of An

In this section we give some general results on the ranks for certain conjugacy classes
of elements of the simple group An .

The alternating group An, n ≥ 5 has � n
3 
 conjugacy classes of elements of order

3. The cycle structures of these classes are 3m1n−3m, 1 ≤ m ≤ � n
3 
. For m = 1,

let 3A denote the class of elements of An of cycle structure (a, b, c). In this section
we determine the rank of this class in An . We will use (An)[k1,k2,...,kr ] to denote the
subgroup of An fixing the points k1, k2, . . . , kr , and if it fixes a single point ki , we use
(An)ki .

Lemma 3.1 rank(A5:3A) = 2.

Proof We claim that A5 = 〈(1, 2, 3), (1, 4, 5)〉. We have (1, 2, 3)(1, 4, 5) =
(1, 4, 5, 2, 3), which has order 5. This implies that 15||〈(1, 2, 3), (1, 4, 5)〉|. By look-
ing at the maximal subgroups of A5 (see the ATLAS [24] for example) we can see
that there is no maximal subgroup of A5 with order divisible by 15. It follows that
〈(1, 2, 3), (1, 4, 5)〉 = A5 and hence rank(A5:3A) = 2. 	

Lemma 3.2 rank(An :3A) �= 2, ∀ n ≥ 6.
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Proof Suppose that x, y ∈ 3A of An, n ≥ 6, and let x = (a, b, c) and y = (d, e, f ).
If xy = yx then 〈x, y〉 ∼= Z3×Z3. If xy �= yx, then x and y are not disjoint cycles and
have some common points, i.e., {a, b, c}⋂{d, e, f } �= φ. Thus, the number of moved
points by 〈x, y〉 is at most 5 and it follows that 〈x, y〉 ≤ A5.Hence, rank(An :3A) �= 2
for n ≥ 6. 	

Lemma 3.3 rank(A6:3A) = 3.

Proof Weshow that A6=〈(1, 2, 3), (1, 4, 5), (1, 5, 6)〉.Let H = 〈(1, 2, 3), (1, 4, 5)〉.
Then H ∼= A5 and H = (A6)6, which is a maximal subgroup of A6. Since (1, 5, 6) /∈
H, we have 〈H, (1, 5, 6)〉 = A6. Since rank(A6:3A) �= 2 by Lemma 3.2, it follows
that rank(A6:3A) = 3. 	


Now we state and prove an important theorem on the rank of the class 3A of
An, n ≥ 5.

Theorem 3.4 For the alternating group An, n ≥ 5, we have

rank(An :3A) =
{

n−1
2 if n is odd,

n
2 if n is even.

Proof We use the mathematical induction on n. The result is true for n = 5 and n = 6
by Lemmas 3.1 and 3.3, respectively. We will show that

An =
{ 〈(1, 2, 3), (1, 4, 5), (1, 6, 7), . . . , (1, n−3, n − 2), (1, n − 1, n)〉 if n is odd,

〈(1, 2, 3), (1, 4, 5), (1, 6, 7), . . . , (1, n−2, n−1), (1, n − 1, n)〉 if n is even.
(5)

Suppose that the result is true for n odd; then, we will show that the result will
be true for n + 1 and n + 2. So assume that Eq. (5) is true for n odd. Note that
if H = 〈(1, 2, 3), (1, 4, 5), (1, 6, 7), . . . , (1, n − 1, n)〉, then Eq. (5) implies that
An ∼= (An+1)n+1 = H. Since (1, n, n+1) ∈ An+1\An and H is a maximal subgroup
of An+1, we have

K = 〈H, (1, n, n + 1)〉 = An+1. (6)

Since n + 1 is even, we have proven the result for the even case. Now since K is a
maximal subgroup of An+2 (K = (An+2)n+2), then 〈K , (1, n + 1, n + 2)〉 = An+2
as (1, n + 1, n + 2) ∈ An+2\An+1. Thus,

〈H, (1, n, n + 1), (1, n + 1, n + 2)〉 = An+2. (7)

We now show that we do not need the element (1, n, n+1) in Eq. (7) to generate An+2;
that is, (1, n, n+1) is redundant. Let α = (1, n−1, n) ∈ H and β = (1, n+1, n+2).
Thenαβ = (n−1, n, n+1) := γ and γ α = (1, n+1, n) = (1, n, n+1)−1.This shows
that 〈H, (1, n, n+1), (1, n+1, n+2)〉 can actually be reduced to 〈H, (1, n+1, n+2)〉.
That is 〈H, (1, n + 1, n + 2)〉 = An+2, i.e.,

〈(1, 2, 3), (1, 4, 5), (1, 6, 7), . . . , (1, n − 1, n), (1, n + 1, n + 2)〉 = An+2,

completing the proof. 	
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Next we turn to the generation of An by the classes of n-cycles for n odd and
(n − 1)-cycles for n even.

Note 1 (i). It is well known that for n odd, the class of the n-cycles of the symmetric
group Sn splits into two classes (same size) in An . For n even, we have no n-cycles
in An , but the class of the (n − 1)-cycles splits into two classes (same size) in
An . The reason for both cases is obvious since if α is an n-cycle (for n odd) or an
(n − 1)-cycle (for n even), then CSn (α) = CAn (α) = 〈α〉.

(ii). Assume that α is an n-cycle (for n odd) or an (n − 1)-cycle (for n even) in An .
If h ∈ Sn\An , then α and αh are not conjugate in An . If α ∼ αh in An , then we
have g ∈ An such that α = (αh)g which implies that hg ∈ CSn (α) = CAn (α), a
contradiction since hg is an odd permutation and cannot be in An .

The following lemma is useful in the determination of the ranks of the classes of
n- or (n − 1)-cycles of An .

Lemma 3.5 Let G be a primitive subgroup of Sn . If G contains a 3-cycle, then G ≥
An .

Proof See Cameron [25]. 	

Now we give an important result showing the ranks for the classes of n-cycles and

(n − 1)-cycles of An .

Theorem 3.6 For n ≥ 5, we have rank(An :nX)
︸ ︷︷ ︸

n is odd

= 2 = rank(An :(n − 1)X)
︸ ︷︷ ︸

n is even

, X ∈

{A, B}.
Proof We consider the case when n is odd and the even case follows easily. For n ≥ 5
odd, let α1 = (1, 2, 3, . . . , n) and α2 = (1, 2, 3, . . . , n, n − 1) be representatives of
the two classes nA and nB of the n-cycle classes of An , respectively. (Note that α1

and α2 are conjugate in Sn, but not in An as α2 = α
(n−1,n)
1 , see Note 1 (ii).) Also

let β1 = (1, 4, 5, 6, 7, . . . , n, 2, 3) and β2 = (1, 4, 5, 6, 7, . . . , n − 2, n, n − 1, 2, 3).
We handle the class nA, and the result for the other class nB follows similarly. Let
H := 〈α1, β1〉. Clearly, H ≤ Sn and in fact, since H contains even permutations
only, it follows that H ≤ An . We are aiming to show that the equality holds; that is,
H = An . To establish the converse inequality (H ≥ An) we need to show that H is
primitive in Sn and contains a 3-cycle element. Since α1, β1 ∈ H, we have

H � α−1
1 β1 = (1, n, n − 1, n − 2, . . . , 4, 3, 2)(1, 4, 5, 6, 7, . . . , n, 2, 3)

= (1, 3, n), a 3-cycle element.

Now since H contains n-cycle elements (at least α1 and β1), it follows byO’Nan–Scott
theorem (see, for example, Theorem 2.4 ofWilson [26]) that H cannot be of type (i) or
(ii) of maximal subgroups of Sn (as subgroups of these two types cannot have n-cycle
elements). Hence, H is a primitive subgroup of Sn , and since H contains a 3-cycle
element (α−1

1 β1 = (1, 3, n)), it follows by Lemma 3.5 that H ≥ An . This together
with the information H ≤ An implies that H = An .
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So far, we proved that the group H, generated by the two n-cycles α1 and β1,

is just An . Next we prove that α1 and β1 are conjugate in H. But this follows as
(1, 2, 3) ∈ 3A ⊂ An = H , and it is easy to see that β1 = α

(1,2,3)
1 , i.e., β1 ∈ nA.

Thus, rank(An :nA) = 2. The result holds similarly for the class nB of An, n odd, by
letting H := 〈α2, β2〉, where in a similar manner it will be shown that H = An and
also one can see that β2 = α

(1,2,3)
2 , i.e., β2 ∈ nB. Thus, rank(An :nB) = 2.

The even case follows consequently from the odd case, because if n is even then
the treatment of the two classes (n − 1)A and (n − 1)B of the (n − 1)-cycles of An

reduce to the odd case. Hence, the result. 	


4 Ranks of the Classes of A8 and A9

In this section we apply the general results discussed in previous sections, namely
Sects. 2 and 3, to the groups A8 and A9. We determine the ranks for all conjugacy
classes.

4.1 Ranks of A8

The group A8 is a simple group of order 20160 = 26 × 32 × 5 × 7. By the ATLAS
the group A8 has exactly 14 conjugacy classes of its elements and 6 conjugacy classes
of its maximal subgroups. Representatives of these classes of maximal subgroups can
be taken as follows:

H1 = A7 H2 = 23:L3(2)
H3 = 23:L3(2) H4 = S6
H5 = 24:(S3 × S3) H6 = (A5 × 3):2.

We firstly list in Table 1 the values of h(g, Hi ) for all the non-identity classes and
maximal subgroups Hi , 1 ≤ i ≤ 6, of A8.

We start our investigation on the ranks of the non-trivial classes of A8 by looking
at the two classes of involutions 2A and 2B. It is well known that two involutions
generate a dihedral group. Thus, the lower bound of the rank of an involuntary class
in a finite group G �= D2n (the dihedral group of order 2n) is 3.

In this subsection we let G = A8.

Lemma 4.1 rank(G:2Z) �= 3, for Z ∈ {A, B}.
Proof We show that the group G is not (2Z , 2Z , 2Z , nX)-generated group for
Z ∈ {A, B} and for any non-trivial conjugacy class nX of G. We start with
the case Z = A. The direct computations yield �G(2A, 2A, 2A, nX) = 0 for
nX ∈ T1 := {3A, 5A, 6A, 15A, 15B}. Thus, G is not (2A, 2A, 2A, nX)-generated
group for any class nX in T1. The group A8 has a 14-dimensional complex irreducible
module V. For any conjugacy class nX, let dnX = dim(V/CV(nX)) denote the codi-
mension of the fixed space (in V) of a representative of nX. Using Eq. (4) together
with the power maps associated with the character table of A8 given in the ATLAS,
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Table 1 Values
h(g, Hi ), 1 ≤ i ≤ 6 for
non-identity classes and
maximal subgroups of A8

H1 H2 H3 H4 H5 H6

2A 0 7 7 4 11 0

2B 4 3 3 8 7 12

3A 5 0 0 10 5 11

3B 2 3 3 1 2 2

4A 0 3 3 0 3 0

4B 2 1 1 2 1 2

5A 1 0 0 3 0 1

6A 1 0 0 2 1 3

6B 0 1 1 1 2 0

7A 1 1 1 0 0 0

7B 1 1 1 0 0 0

15A 0 0 0 0 0 1

15B 0 0 0 0 0 1

Table 2 dnX = dim(V/CV(nX)), nX is a non-trivial class of G and dim(V) = 14

nX 2A 2B 3A 3B 4A 4B 5A 6A 6B 7A 7B 15A 15B

dnX 4 6 10 8 8 10 12 12 12 0 0 14 14

Table 3 dnX = dim(V/CV(nX)), nX is a non-trivial class of G and dim(V) = 7

nX 2A 2B 3A 3B 4A 4B 5A 6A 6B 7A 7B 15A 15B

dnX 3 2 2 4 6 4 4 4 4 6 6 6 6

we were able to compute all the values of dnX for all non-trivial classes nX of G, and
we list these values in Table 2.

Now if A8 is (2A, 2A, 2A, nX)-generated group, then by Scott’s theorem (see The-
orem2.8)wemust have d2A+d2A+d2A+dnX ≥ 2×14.However, it is clear fromTable
2 that 3× d2A + dnX < 28, for each nX ∈ T2 := {2A, 2B, 3B, 4A, 4B, 6B, 7A, 7B}
and therefore A8 is not (2A, 2A, 2A, nX)-generated group, for any nX ∈ T2. Since
G is not (2A, 2A, 2A, nX)-generated group, for any nX ∈ T1

⋃
T2, it follows that

rank(G:2A) �= 3.
We now turn to the other case Z = B to show that G is not (2B, 2B, 2B, nX)-

generated group, for all non-trivial conjugacy classes nX of G. We use similar
arguments to the above case. We know that the group A8 has a 7-dimensional complex
irreduciblemoduleV.Let dnX be the codimension of the fixed space inV, dim(V) = 7
of a representative of nX. Similarly, we list in Table 3 the values of dnX for all non-
trivial classes nX of G.

Now if A8 is (2B, 2B, 2B, nX)-generated group, then we must have d2B + d2B +
d2B + dnX ≥ 2 × 7. However, it is clear from Table 3 that 3 × d2B + dnX < 14,
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for all non-trivial classes nX of A8 and therefore A8 is not (2B, 2B, 2B, nX)-
generated group, for any class nX of A8. This establishes the non-generation of A8 by
three conjugate involutions from class 2B. Thus, rank(G:2B) �= 3, completing the
proof. 	

Note 2 Observe that the non-generation of A8 by three conjugate involutions from
class 2A can be established without the need of computing the structure constants
�G(2A, 2A, 2A, nX), nX ∈ T1, as it is clear from Table 2 that 3× d2A + dnX < 28
for all the non-trivial classes nX of A8.

Lemma 4.2 The group A8 is (2A, 4B, 15A)- and (2B, 4A, 15B)-generated group.

Proof Let a1 := (1, 2)(3, 4)(5, 6)(7, 8) ∈ 2A, a2 := (5, 6)(7, 8) ∈ 2B,

b1 := (2, 3)(4, 6, 7, 5) ∈ 4B and b2 := (1, 2, 6, 8)(3, 5, 4, 7) ∈ 4A. Then
〈a1, b1〉 = 〈a2, b2〉 = A8 with a1b1 = (1, 3, 6, 4, 2)(5, 7, 8) ∈ 15A and a2b2 =
(1, 2, 6, 4, 7)(3, 5, 8) ∈ 15B. Thus, A8 is (2A, 4B, 15A)- and (2B, 4A, 15B)-
generated group. 	

Proposition 4.3 rank(G:2Z) = 4, for Z ∈ {A, B}.
Proof Since by Lemma 4.2, A8 is (2A, 4B, 15A)- and (2B, 4A, 15B)-generated
group, it follows by applications of Lemma 2.2 that A8 is (2A, 2A, 2A, 2A, (15A)4)-
and (2B, 2B, 2B, 2B, (15B)4)-generated group. Thus, rank(A8:2Z) ≤ 4, for Z ∈
{A, B}. Since rank(A8:2Z) �= 3 by Lemma 4.1, it follows that rank(A8:2Z) = 4,
for Z ∈ {A, B}. 	

Remark 1 The generation of A8 by four suitable involutions from class 2A or 2B can
be established using the structure constant method. For example, the direct compu-
tations show that �G(2Z , 2Z , 2Z , 2Z , 15A) = 3375 (74250) for Z = A and B,
respectively. From Table 1 we see that h(g, Hi ) = 0 for g ∈ 15A and i ∈
{1, 2, 3, 4, 5}, while h(g, H6) = 1 for g ∈ 15A. The computations show that
�H6(2Z , 2Z , 2Z , 2Z , 15A) = 0 (10125) for Z = A and B, respectively. It follows
that

�G(2Z , 2Z , 2Z , 2Z , 15A) = �G(2Z , 2Z , 2Z , 2Z , 15A)

−
6∑

i=1

h(gi , Hi )�Hi (2Z , 2Z , 2Z , 2Z , 15A)

= 3375 − 0 = 3375 (74250 − 10125 = 64125)

for Z = A and B , respectively,

establishing the generation ofG by the tuple (2Z , 2Z , 2Z , 2Z , 15A).Hence, the result.

Proposition 4.4 rank(G:3A) = 4.

Proof Direct application of Theorem 3.4. 	
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Table 4 Some information on the classes nX ∈ T

�G (nX, nX, 15A) h (15A, H6) �H6 (nX, nX, 15A) �G (nX, nX, 15A)

3B 35 1 5 30

4A 45 1 0 45

4B 270 1 45 225

5A 45 1 0 45

6A 155 1 20 135

6B 510 1 0 510

7A 405 1 0 405

7B 405 1 0 405

15B 125 1 5 120

Remark 2 We can prove Proposition 4.4 without using Theorem 3.4. The rank of class
3A in G can still be established using the structure constant method together with the
results of Sect. 2. The direct computations togetherwith applications of Lemma2.6 and
Theorem 2.8 reveal that G is neither (3A, 3A, nX)- nor (3A, 3A, 3A, nX)-generated
group for any non-trivial class nX ofG.Thus, rank(G:3A) /∈ {2, 3}. It is easy to show
that G is (3A, 4A, 15A)-generated group. Now it follows by applications of Lemma
2.2 that G is (3A, 3A, 3A, 3A, (15A)4)-generated group. Thus, rank(G:3A) ≤ 4.
Since rank(G:3A) /∈ {2, 3}, we deduce that rank(G:3A) = 4.

Proposition 4.5 rank(G:7X) = 2, for X ∈ {A, B}.
Proof Direct application of Theorem 3.6. 	


The above result can be established using the structure constant method. In the next
proposition, we give the ranks of all the remaining non-trivial classes of A8 including
the classes 7A and 7B.

Proposition 4.6 Let T := {3B, 4A, 4B, 5A, 6A, 6B, 7A, 7B, 15A, 15B}. Then
rank(G:nX) = 2 for any nX ∈ T .

Proof The aim here is to show that G is an (nX, nX, 15A)-generated group for
any nX ∈ T \{15A}. For all the classes nX ∈ T \{15A} we give in Table 4
some information about �G(nX, nX, 15A), h(15A, H6), �H6(nX, nX, 15A) and
�G(nX, nX, 15A), where by h(15A, H6) we mean the number of conjugate sub-
groups of H6 that contain a fixed element of 15A.

The last column of Table 4 establishes the generation of G by the triple
(nX, nX, 15A) for allnX ∈ T \{15A}.Thus, rank(G:nX) = 2 for allnX ∈ T \{15A}.

Now it is possible to show that G is (15A, 15A, nX) for any non-trivial class nX
of G. For example, we have �G(15A, 15A, 7Y ) = 91, h(g, H1) = h(g, H2) =
h(g, H3) = 1 and �Hi (15A, 15A, 7Y ) = 0 for all 1 ≤ i ≤ 6 and Y ∈ {A, B}. It
follows that �G(15A, 15A, 7Y ) = 91− 0 = 91, showing the generation of G by the
triple (15A, 15A, 7Y ). Thus, rank(G:15A) = 2. Hence, the result. 	
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Table 5 Values
h(g, Hi ), 1 ≤ i ≤ 8, for
non-identity classes and
maximal subgroups of A9

H1 H2 H3 H4 H5 H6 H7 H8

2A 5 12 20 0 0 26 20 0

2B 1 4 4 8 8 6 16 8

3A 6 15 21 0 0 21 10 0

3B 0 0 3 3 3 0 10 21

3C 3 3 3 6 6 6 1 6

4A 3 4 4 0 0 4 2 0

4B 1 0 0 0 0 2 0 4

5A 4 6 4 0 0 1 0 0

6A 2 3 5 0 0 5 2 0

6B 1 1 1 2 2 0 1 2

7A 2 1 0 1 1 0 0 0

9A 0 0 0 3 0 0 1 0

9B 0 0 0 0 3 0 1 0

10A 0 2 0 0 0 1 0 0

12A 0 1 1 0 0 1 2 0

15A 1 0 1 0 0 1 0 0

15B 1 0 1 0 0 1 0 0

Remark 3 For most of the classes nX ∈ T of Proposition 4.6, the result can also be
proved using Lemma 2.5 together with the facts that the group A8 is (2B, 4A, 15B)-,
(2A, 4B, 15A)-, (2A, 5A, 15A)-, (2A, 6A, 15B)-, (2A, 6B, 15A)-, (2A, 7A, 15A)-,
(2A, 7B, 15B)-, (2A, 15A, 15B)- and (2A, 15B, 15A)-generated group.

Now we gather the results on ranks of the non-trivial classes of A8.

Theorem 4.7 Let G be the alternating group A8. Then

1. rank(G:2A) = rank(G:2B) = rank(G:3A) = 4.
2. rank(G:nX) = 2 for all nX /∈ {1A, 2A, 2B, 3A}.
Proof The result follows by Propositions 4.3, 4.4 and 4.6. 	


4.2 Ranks of A9

The group A9 is a simple group of order 181440 = 26 × 34 × 5 × 7. By the ATLAS
the group A9 has exactly 18 conjugacy classes of its elements and 8 conjugacy classes
of its maximal subgroups. Representatives of these classes of maximal subgroups can
be taken as follows:

H1 = A8 H2 = S7
H3 = (A6 × 3):2 H4 = L2(8):3
H5 = L2(8):3 H6 = (A5 × A4):2
H7 = 33:S4 H8 = 32:2A4.

We firstly list in Table 5 the values of h(g, Hi ) for all the non-identity classes and
maximal subgroups Hi , 1 ≤ i ≤ 8, of A9.
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We start our investigation on the ranks of the non-trivial classes of A9 by looking
at the two classes of involutions 2A and 2B.

From now on let G = A9.

Lemma 4.8 rank(G:2A) �= 3.

Proof We show that the group G is not (2A, 2A, 2A, nX)-generated group for any
non-trivial conjugacy class nX of G. The group A9 has an 8-dimensional complex
irreduciblemoduleV.For any conjugacy class nX, let dnX = dim(V/CV(nX)) denote
the codimension of the fixed space (in V) of a representative of nX. Using Eq. (4)
together with the power maps associated with the character table of A9 given in the
ATLAS, we were able to compute all the values of dnX for all non-trivial classes nX
of G, and we list these values in Table 6.

Now if A9 is (2A, 2A, 2A, nX)-generated group, then by Scott’s theorem (see
Theorem 2.8) we must have d2A +d2A +d2A +dnX ≥ 2×8.However, it is clear from
Table 6 that 3 × d2A + dnX < 16, for all the non-trivial classes nX of G. Therefore,
A9 is not (2A, 2A, 2A, nX)-generated group for any non-trivial class nX of G and it
follows that rank(G:2A) �= 3.

Lemma 4.9 The group A9 is (2A, 4B, 9B)-generated group.

Proof Let a := (6, 7)(8, 9) ∈ 2A and b := (1, 3, 6, 9)(2, 5, 4, 7) ∈ 4B. Then
〈a, b〉 = A9 with ab = (1, 3, 6, 2, 5, 4, 7, 9, 8) ∈ 9B. Thus A9 is (2A, 4B, 9B)-
generated group. 	

Proposition 4.10 rank(G:2A) = 4.

Proof Since by Lemma 4.9, A9 is (2A, 4B, 9B)-generated group, it follows by
applications of Lemma 2.2 that A9 is (2A, 2A, 2A, 2A, (9B)4)-generated group.
Thus, rank(A9:2A) ≤ 4. Since rank(A9:2A) �= 3 by Lemma 4.8, it follows that
rank(A9:2A) = 4. 	

Remark 4 The generation of A9 by four suitable involutions from class 2A can be
established using the structure constant method. For example, the direct computations
show that�G(2A, 2A, 2A, 2A, 9A) = 59049. FromTable 5we see that h(g, Hi ) = 0
for g ∈ 9A and i ∈ {1, 2, . . . , 8}\{4, 7}, while h(g, H4) = 3 and h(g, H7) = 1
for g ∈ 9A. However, the computations show that �H4(2A, 2A, 2A, 2A, 9A) =
�H7(2A, 2A, 2A, 2A, 9A) = 0. It follows that

�G(2A, 2A, 2A, 2A, 9A) = �G(2A, 2A, 2A, 2A, 9A)

−
8∑

i=1

h(gi , Hi )�Hi (2A, 2A, 2A, 2A, 9A)

= 59049 − 0 = 59049,

establishing the generation ofG by the tuple (2A, 2A, 2A, 2A, 9A).Hence, the result.

Lemma 4.11 The group A9 is (2B, 3C, 15A)-generated group.
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Proof Let a := (2, 4)(3, 6)(5, 7)(8, 9) ∈ 2B and b := (1, 8, 2)(3, 5, 7)(4, 6, 9) ∈
3C. Then 〈a, b〉 = A9 with ab = (1, 8, 4)(2, 6, 5, 3, 9) ∈ 15A. Thus, A9 is
(2B, 3C, 15A)-generated group. 	

Proposition 4.12 rank(G:2B) = 3.

Proof Since by Lemma 4.11, A9 is (2B, 3C, 15A)-generated group, and it follows by
applications of Lemma 2.2 that A9 is (2B, 2B, 2B, (15A)4)-generated group. Thus,
rank(A9:2B) ≤ 3. Since two involutions generate dihedral group, it follows that
rank(A9:2B) �= 2 and hence we have rank(A9:2B) = 3. 	

Proposition 4.13 rank(G:3A) = 4.

Proof Direct application of Theorem 3.4. 	

Remark 5 Similarly to Remark 2, generation of G = A9 by four suitable elements
from class 3A can be established using the structure constant method together with
the results of Sect. 2. The direct computations together with applications of Lemma
2.6 and Theorem 2.8 reveal that G is neither (3A, 3A, nX)- nor (3A, 3A, 3A, nX)-
generated group for any non-trivial class nX of G. Thus, rank(G:3A) /∈ {2, 3}.
Now the direct computations yield �G(3A, 3A, 3A, 3A, 9A) = 729. From Table
5 we see that h(g, Hi ) = 0 for g ∈ 9A and i ∈ {1, 2, . . . , 8}\{4, 7}, while
h(g, H4) = 3 and h(g, H7) = 1 for g ∈ 9A. However, the computations show
that �H4(3A, 3A, 3A, 3A, 15A) = �H7(3A, 3A, 3A, 3A, 15A) = 0 and it follows
that

�G(3A, 3A, 3A, 3A, 9A) = �G(3A, 3A, 3A, 3A, 9A)

−
8∑

i=1

h(gi , Hi )�Hi (3A, 3A, 3A, 3A, 9A)

= 729 − 0 = 729,

establishing the generation of A9 by the tuple (3A, 3A, 3A, 3A, 9A). Thus, rank
(G:3A) ≤ 4. Since rank(G:3A) /∈ {2, 3}, we deduce that rank(G:3A) = 4.

Proposition 4.14 rank(G:9X) = 2, for X ∈ {A, B}.
Proof Direct application of Theorem 3.6. 	


The above result can be established using the structure constant method. In the next
proposition, we give the ranks of all the remaining non-trivial classes of A9 including
the classes 9A and 9B.

Proposition 4.15 Let T := {3B, 3C, 4A, 4B, 5A, 6A, 6B, 7A, 9A, 9B, 10A, 12A,

15A, 15B}. Then rank(G:nX) = 2 for any nX ∈ T .

Proof The aim here is to show that G is an (nX, nX, 9A)-generated group for
any nX ∈ T \{9A}. For all the classes nX ∈ T \{9A} we give in Table 7
some information about �G = �G(nX, nX, 9A), h(9A, H4), h(9A, H7), �H4 =
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Table 7 Some information on the classes nX ∈ T

�G h (9A, H4) �H4 h (9A, H7) �H7

∑
i∈{4,7} h(9A, Hi )

�Hi (nX, nX, 9A)

�G

3B 24 3 0 1 15 15 9

3C 36 3 9 1 0 27 9

4A 144 3 0 1 9 9 135

4B 729 3 0 1 0 0 729

5A 9 3 0 1 0 0 9

6A 324 3 0 1 0 0 324

6B 5220 3 144 1 36 468 4752

7A 3240 3 0 1 0 0 3240

9A 1872 3 0 1 9 9 1863

9B 1872 3 0 1 9 9 1863

10A 405 3 0 1 0 0 405

12A 1116 3 0 1 36 36 1080

15A 792 3 0 1 0 0 792

15B 792 3 0 1 0 0 792

�H4(nX, nX, 9A), �H7 = �H7(nX, nX, 9A) and �G = �G(nX, nX, 9A), where
by h(9A, H4), h(9A, H7) we mean the number of conjugate subgroups of H4 (resp.
H7) that contain a fixed element of 9A.

The last column of Table 7 establishes the generation of G by the triple
(nX, nX, 9A) for all nX ∈ T \{9A}. Thus, rank(G:nX) = 2 for all nX ∈ T \{9A}.

Now it is possible to show that G is (9A, 9A, nX) for any non-trivial class nX
of G. For example, we have �G(9A, 9A, 15A) = 2280, h(g, H1) = h(g, H3) =
h(g, H6) = 1 and �Hi (9A, 9A, 15A) = 0 for all 1 ≤ i ≤ 8. It follows that
�G(9A, 9A, 15A) = 2280 − 0 = 2280, showing the generation of G by the triple
(9A, 9A, 15A). Thus, rank(G:9A) = 2. Hence, the result. 	

Remark 6 For most of the classes nX ∈ T of Proposition 4.15, the result can also be
proved using Corollary 2.5 together with the facts that the group A9 is (2B, 3C, 15A)-
, (2B, 4A, 15A)-, (2A, 4B, 9B)-, (2B, 5A, 9B)-, (2B, 6A, 9A)-, (2B, 6B, 15B)-,
(2B, 7A, 5A)-, (2A, 9A, 7A)-, (2A, 9B, 7A)-, (2B, 10A, 7A)-, (2B, 15A, 5A)- and
(2B, 15B, 5A)-generated group. We also note that A9 is not (2X, 3B, nY )-generated
group for X ∈ {A, B} and for any non-trivial conjugacy class nY of G.

We now gather the results on the ranks of all non-trivial classes of A9.

Theorem 4.16 Let G be the alternating group A9. Then

1. rank(G:nA) = 4 for n ∈ {2, 3}.
2. rank(G:2B) = 3.
3. rank(G:nX) = 2 for all nX /∈ {1A, 2A, 2B, 3A}.
Proof The result follows by Propositions 4.10, 4.12, 4.13 and 4.15. 	


123



On the Ranks of the Alternating Group An 1973

Acknowledgements The first author would like to thank his supervisor (second author) for his assistance
and guidance. He also would like to thank the North-West University and the National Research Foundation
(NRF) of South Africa for the financial support received.

References

1. Woldar, A.J.: Representing M11, M12, M22 and M23 on surfaces of least genus. Commun. Algebra
18, 15–86 (1990)

2. Di Martino, L., Pellegrini, M., Zalesski, A.: On generators and representations of the sporadic simple
groups. Commun. Algebra 42, 880–908 (2014)

3. Ward, J.: Generation of simple groups by conjugate involutions. Ph.D. thesis, University of London
(2009)

4. Zisser, I.: The covering numbers of the sporadic simple groups. Israel J. Math. 67, 217–224 (1989)
5. Moori, J.: Generating sets for F22 and its automorphism group. J. Algebra 159, 488–499 (1993)
6. Moori, J.: Subgroups of 3-transposition groups generated by four 3-transpositions. Quaest. Math. 17,

483–94 (1994)
7. Moori, J.: On the ranks of the Fischer group F22. Math. Jpn. 43, 365–367 (1996)
8. Hall, J.I., Soicher, L.H.: Presentations of some 3-transposition groups. Commun. Algebra 23, 2517–

2559 (1995)
9. Ali, F.: On the ranks of Fi22. Quaest. Math. 37, 591–600 (2014)

10. Ali, F.: On the ranks of O
′
N and Ly. Discrete Appl. Math. 155(3), 394–399 (2007)

11. Ali, F., Ibrahim, M.A.F.: On the ranks of HS and McL . Util. Math. 70, 187–195 (2006)
12. Ali, F., Ibrahim, M.A.F.: On the ranks of Conway group Co1. Proc. Jpn. Acad. 81A6, 95–98 (2005)
13. Ali, F., Ibrahim, M.A.F.: On the ranks of Conway groups Co2 and Co3. J. Algebra Appl. 45, 557–565

(2005)
14. Ali, F., Moori, J.: On the ranks of Janko groups J1, J2, J3 and J4. Quaest. Math. 31, 37–44 (2008)
15. Basheer, A.B.M.,Moori, J.: On the ranks of finite simple groups. Khayyam J.Math. 2(1), 18–24 (2016)
16. Ganief, S.: 2-Generations of the sporadic simple groups. University of Natal, South Africa, Ph.D. thesis

(1997)
17. Ganief, S., Moori, J.: (p, q, r)-Generations of the smallest Conway group Co3. J. Algebra 188, 516–

530 (1997)
18. Ganief, S., Moori, J.: 2-Generations of the smallest Fischer group F22. Nova J. Math. Game Theory

Algebra 6, 127–145 (1997)
19. The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.4.10. http://www.gap-

system.org (2007)
20. Bosma, W., Cannon, J.J.: Handbook of Magma functions. University of Sydney, Department of Math-

ematics (1994)
21. Conder, M.D.E., Wilson, R.A., Woldar, A.J.: The symmetric genus of sporadic groups. Proc. Am.

Math. Soc. 116, 653–663 (1992)
22. Ree, R.: A theorem on permutations. J. Comb. Theory Ser. A 10, 174–175 (1971)
23. Scott, L.L.: Matrices and cohomology. Ann. Math. 105(3), 473–492 (1977)
24. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Clarendon

Press, Oxford (1985)
25. Cameron, P.: Permutation Groups. Cambridge University Press, Cambridge (1999)
26. Wilson, R.A.: The Finite Simple Groups. Graduate Texts inMathematics 251. Springer, London (2009)

123

http://www.gap-system.org
http://www.gap-system.org

	On the Ranks of the Alternating Group An
	Abstract
	1 Introduction
	2 Preliminaries
	3 Some General Results on Ranks of An
	4 Ranks of the Classes of A8 and A9
	4.1 Ranks of A8
	4.2 Ranks of A9

	Acknowledgements
	References




