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Abstract Let D be a finite and simple digraphwith vertex set V (D). A double Roman
dominating function (DRDF) on a digraph D is a function f : V (D) → {0, 1, 2, 3}
satisfying the condition that if f (v) = 0, then the vertex v must have at least two in-
neighbors assigned 2 under f or one in-neighbor assigned 3, while if f (v) = 1, then
the vertex v must have at least one in-neighbor assigned 2 or 3. The weight of a DRDF
f is the sum

∑
v∈V (D) f (v). The double Roman domination number of a digraph

D is the minimum weight of a DRDF on D. In this paper, we initiate the study of
the double Roman domination of digraphs, and we give several relations between the
double Roman domination number of a digraph and other domination parameters such
as Roman domination number, k-domination number and signed domination number.
Moreover, various bounds on the double Roman domination number of a digraph are
presented, and a Nordhaus–Gaddum type inequality for the parameter is also given.
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1 Introduction

Due to the diversity of its applications to both theoretical and practical problems,
domination and its variants have become one of the important research topics in graph
theory (see, for example, [2,5,6,11,13]). Our aim in this paper is to initiate the study
of the double Roman domination in digraphs.

Throughout this paper, D = (V, A) is a finite digraph with neither loops nor mul-
tiple arcs (but pairs of opposite arcs are allowed). For two vertices u, v ∈ V (D), we
use (u, v) to denote the arc with direction from u to v, and we also call v an out-
neighbor of u and u an in-neighbor of v. For v ∈ V (D), the out-neighborhood
and in-neighborhood of v, denoted by N+

D (v) = N+(v) and N−
D (v) = N−(v),

are the sets of out-neighbors and in-neighbors of v, respectively. The closed out-
neighborhood and closed in-neighborhood of a vertex v ∈ V (D) are the sets
N+
D [v] = N+[v] = N+(v) ∪ {v} and N−

D [v] = N−[v] = N−(v) ∪ {v}, respec-
tively. In general, for a set X ⊆ V (D), we denote N+

D (X) = ⋃
v∈X N+

D (v) and
N+
D [X ] = ⋃

v∈X N+
D [v]. The out-degree and in-degree of a vertex v ∈ V (D) are

defined by d+
D(v) = d+(v) = |N+

D (v)| and d−
D(v) = d−(v) = |N−

D (v)|, respectively.
The maximum out-degree, maximum in-degree, minimum out-degree and minimum
in-degree among the vertices of D are denoted by �+(D) = �+, �−(D) = �−,
δ+(D) = δ+ and δ−(D) = δ−, respectively. For two vertices u and v of D, the dis-
tance d(u, v) from u to v is the length of a shortest directed u-v path in D. If D contains
no directed u-v path, then d(u, v) = ∞. For a subdigraph H of D and v ∈ V (D), the
distance from H to v in D is d(H, v) = min{d(u, v) : u ∈ V (H)}. Let −→P n and

−→
C n

denote a directed path and a directed cycle of order n, respectively.
A rooted tree is a connected digraph with a vertex of in-degree 0, called the root,

such that every vertex different from the root has in-degree 1. The height of a rooted
tree T , denoted by h(T ), is max{d(r, v) : v ∈ V (T )}, where r is the root of T . A
digraph D is contrafunctional if each vertex of D has in-degree 1. The complement
of a digraph D is the digraph D, where V (D) = V (D) and (u, v) ∈ A(D) if and only
if (u, v) /∈ A(D).

A k-dominating set of a digraph D is a subset S of the vertex set of D such that
every vertex not in S has at least k in-neighbors in S. The minimum cardinality of a k-
dominating set of a digraph D is called the k-domination number of D and is denoted
by γk(D). A k-dominating set of D of cardinality γk(D) is called a γk(D)-set. If k = 1,
then the k-dominating set is exactly the dominating set and we simply write γ (D) for
γ1(D), which was introduced by Fu [7] and now has been studied extensively (see,
for example, [4,8,9]).

A signed dominating function (abbreviated SDF) on D is a function f : V (D) →
{−1, 1} such that

∑
x∈N−[v] f (x) ≥ 1 for each vertex v ∈ V (D). The weight of an

SDF f is ω( f ) = ∑
v∈V (D) f (v). The signed domination number γS(D) of a digraph
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Double Roman Domination in Digraphs 1909

D is the minimum weight of an SDF on D. An SDF on D with weight γS(D) is
called a γS(D)-function. The signed domination number of a digraph was introduced
by Zelinka [16] and has been studied by several authors, for example, in Karami et al.
[12], Volkmann [15] and elsewhere.

A Roman dominating function (abbreviated RDF) on a digraph D is a function
f : V (D) → {0, 1, 2} satisfying the condition that every vertex v with f (v) = 0
has an in-neighbor u with f (u) = 2. The weight of an RDF f is the sum ω( f ) =∑

v∈V (D) f (v). The Roman domination number of a digraph D, denoted by γR(D), is
theminimumweight of anRDFon D. ARoman dominating function on Dwithweight
γR(D) is called a γR(D)-function. An RDF f on D can be represented by the ordered
partition (V0, V1, V2), where Vi = {v ∈ V (D) : f (v) = i} for i ∈ {0, 1, 2}. The
Roman domination of a digraph has been studied by Sheikholeslami and Volkmann
[14].

Let G be a finite, simple and undirected graph with vertex set V (G). A double
Roman dominating function (abbreviated DRDF) on a graph G is defined in [3] as
a function f : V (G) → {0, 1, 2, 3} having the property that if f (v) = 0, then the
vertex v must be adjacent to at least two vertices assigned 2 under f or one vertex
assigned 3, while if f (v) = 1, then the vertex v must be adjacent to at least one vertex
assigned 2 or 3. The weight of a DRDF f is ω( f ) = ∑

v∈V (G) f (v). The double
Roman domination number γdR(G) of a graph G is the minimum weight of a DRDF
on G.

In this paper, motivated by the work in [3,14], we initiate the study of the dou-
ble Roman domination number of digraphs. A double Roman dominating function
(abbreviated DRDF) on a digraph D is a function f : V (D) → {0, 1, 2, 3} having
the property that if f (v) = 0, then the vertex v must have at least two in-neighbors
assigned 2 under f or one in-neighbor assigned 3, while if f (v) = 1, then the vertex
v must have at least one in-neighbor assigned 2 or 3. The weight of a DRDF f is
ω( f ) = ∑

v∈V (D) f (v). The double Roman domination number γdR(D) of a digraph
D is the minimum weight of a DRDF on D. A γdR(D)-function is a DRDF on D
with weight γdR(D). A DRDF f on D can be represented by the ordered partition
(V0, V1, V2, V3), where Vi = {v ∈ V (D) : f (v) = i} for i ∈ {0, 1, 2, 3}.

The rest of the paper is organized as follows. In the next section, we give two
simple but useful properties of the double Roman domination number of a digraph.
We then relate the double Roman domination number of digraphs to other domination
parameters such as Roman domination number, k-domination number and signed
domination number in Sect. 3. In Sect. 4, we establish lower and upper bounds on the
double Roman domination number of a digraph in terms of its order, maximum out-
degree and minimum in-degree. Finally, in Sect. 5 we present a Nordhaus–Gaddum
result for the double Roman domination number of a digraph.

2 Preliminaries

In this section, we shall give two simple properties of the double Roman domination
number of a digraph that will be useful in the next sections.
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Proposition 1 For any digraph D, there exists a γdR(D)-function such that no vertex
needs to be assigned the value 1.

Proof Let f be a γdR(D)-function. Suppose that there exists some vertex v of D such
that f (v) = 1. Then by the definition of γdR(D)-function, we have that there exists a
vertex u ∈ N−(v) such that either f (u) = 2 or f (u) = 3. If f (u) = 3, then we define
the function f ′ by f ′(v) = 0 and f ′(x) = f (x) for each x ∈ V (D)\{v}. Obviously,
f ′ is a DRDF of weight γdR(D) − 1, a contradiction. If f (u) = 2, then we define the
function f ′′ by f ′′(v) = 0, f ′′(u) = 3 and f ′′(x) = f (x) for each x ∈ V (D)\{u, v}.
Clearly, f ′′ is a DRDF of weight γdR(D), implying that f ′′ is a γdR(D)-function. 	


By Proposition 1, it is reasonable to claim that V1 = ∅ for all double Roman
dominating functions under consideration. In this case, any double Roman dominating
function f on D can be represented by the ordered partition (V0, V2, V3), where
Vi = {v ∈ V (D) : f (v) = i} for i ∈ {0, 2, 3}.
Proposition 2 Let D be a digraph and let f = (V0, V1, V2) be a γR(D)-function.
Then γdR(D) ≤ 2|V1| + 3|V2|.
Proof We set g(v) = 0 for each v ∈ V0, g(v) = 2 for each v ∈ V1 and g(v) = 3
for each v ∈ V2. Then it is easy to see that g is a DRDF on D and hence γdR(D) ≤
ω(g) = 2|V1| + 3|V2|. 	


3 Relations to Other Domination Parameters

In this section, we shall relate the double Roman domination number of digraphs
to other domination parameters such as Roman domination number, k-domination
number and signed domination number.

We first give some relations between the double Roman domination number and
Roman domination number of digraphs.

Theorem 1 For any digraph D, γdR(D) ≤ 2γR(D) with equality if and only if D is
empty.

Proof Let f = (V0, V1, V2) be a γR(D)-function such that |V1| is minimal. Then by
Proposition 2,

γdR(D) ≤ 2|V1| + 3|V2| = 2γR(D) − |V2| ≤ 2γR(D), (1)

establishing the desired result.
The sufficiency is trivial. To show the necessity, let γdR(D) = 2γR(D). Then we

have equality throughout the inequality chain (1). Therefore, |V2| = 0 and hence by
the definition of γR(D)-function, |V0| = 0. This implies that V1 = V (D). If there
exists some arc, say (u, v), of D, then we set g(v) = 0, g(u) = 2 and g(x) = 1 for
each x ∈ V (D)\{u, v}. It is easy to see that g is an RDF on D with ω(g) = γR(D).
This implies that g is a γR(D)-function. Moreover, |x ∈ V (D) : f (x) = 1}| − |x ∈
V (D) : g(x) = 1}| = 2, contradicting the minimality of f . Therefore, D is empty. 	
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Theorem 2 For any digraph D, γdR(D) ≥ γR(D) + 1.

Proof Let f = (V0, V2, V3) be a γdR(D)-function. If V3 
= ∅, then every vertex in
V3 can be reassigned the value 2 and the resulting function will be an RDF on D and
hence

γdR(D) = 2(|V2| + |V3|) + |V3| ≥ γR(D) + |V3| ≥ γR(D) + 1.

Suppose next that V3 = ∅. Then by the definition of γdR(D)-function, V2 
= ∅, for
otherwise, V0 = V (D), a contradiction. Therefore, all vertices are assigned either the
value 0 or the value 2, and all vertices in V0 must have at least two in-neighbors in V2.
In this case one vertex in V2 can be reassigned the value 1 and the resulting function
will be an RDF on D and hence γdR(D) = 2|V2| ≥ γR(D) + 1. 	


Combining Theorems 1 and 2, we may obtain the following result immediately.

Corollary 1 For any nontrivial connected digraph D,

γR(D) + 1 ≤ γdR(D) ≤ 2γR(D) − 1.

We now establish a relation between the double Roman domination number and
the domination number of digraphs.

Theorem 3 For any digraph D,

2γ (D) ≤ γdR(D) ≤ 3γ (D).

Moreover,

(a) The left equality holds if and only if γ (D) = γ2(D).

(b) The right equality holds if and only if there exists a γdR(D)-function (V0, V2, V3)
such that V2 = ∅.

Proof Let f = (V0, V2, V3) be a γdR(D)-function and let S be a γ (D)-set. We set
f ′(v) = 3 for each v ∈ S and f ′(v) = 0 otherwise. Then it is easy to see that f ′ is a
DRDF on D and hence γdR(D) ≤ 3|S| = 3γ (D). On the other hand, by the definition
of γdR(D)-function, V2 ∪ V3 is a dominating set of D and hence γ (D) ≤ |V2| + |V3|,
implying that

γdR(D) = 2|V2| + 3|V3| ≥ 2(|V2| + |V3|) ≥ 2γ (D). (2)

(a) Suppose that γdR(D) = 2γ (D). Then we have equality throughout the
inequality chain (2). This means that V3 = ∅ and hence γdR(D) = 2|V2|, imply-
ing that γ (D) = |V2|. Therefore, by the definition of γdR(D)-function, we have
that every vertex in V (D)\V2 must have at least two in-neighbors in V2. Thus,
γ2(D) ≤ |V2| = γ (D). On the other hand, clearly γ (D) ≤ γ2(D). As a result,
γ (D) = γ2(D).

123



1912 G. Hao et al.

Conversely, suppose that γ (D) = γ2(D). Let S′ be a γ2(D)-set. We set g(v) = 2
for each v ∈ S′ and g(v) = 0 otherwise. Then clearly g is a DRDF on D and hence
γdR(D) ≤ 2|S′| = 2γ2(D) = 2γ (D). As proved previously, γdR(D) ≥ 2γ (D).
Thus, γdR(D) = 2γ (D).

(b) Suppose that γdR(D) = 3γ (D). Set g(v) = 3 for each v ∈ S and g(v) = 0
otherwise. Then clearly ω(g) = 3|S| = 3γ (D) = γdR(D), implying that g is a
γdR(D)-function.

Conversely, suppose that V2 = ∅. Then V3 is a dominating set of D and hence
|V3| ≥ γ (D). Thus, γdR(D) = 3|V3| ≥ 3γ (D). As proved earlier, γdR(D) ≤ 3γ (D).
Therefore, γdR(D) = 3γ (D). 	

Proposition 3 If D is a digraph, then γdR(D) ≤ 2γ2(D).

Proof Let S be a γ2(D)-set. Define the function f (x) = 2 for x ∈ S and f (x) = 0
otherwise. Then it is easy to verify that f is a DRDF on D and hence γdR(D) ≤
2|S| = 2γ2(D). 	


If K ∗
n is the complete digraph of order n ≥ 2, then γ (K ∗

n ) = 1, γR(K ∗
n ) = 2

and γdR(K ∗
n ) = 3. Thus, Corollary 1 and the upper bound in Theorem 3 are sharp.

In addition, let u, v, x1, x2, . . . , xn−2 be the vertex set of the digraph H such that
(u, xi ), (v, xi ) ∈ A(H) for 1 ≤ i ≤ n − 2. Then γ (H) = 2, γ2(H) = 2 and
γdR(H) = 4. This example shows that the lower bound in Theorem 3 and Proposition
3 is sharp.

We end this section by relating the double Roman domination number to signed
domination number of digraphs. To this end, we need a result due to Ahangar et al.
[1].

Let G be a bipartite (undirected) graph with bipartition (L,R) (standing for “left”
and “right”). A subset S of vertices in R is a left dominating set of G if every vertex
of L is adjacent to a vertex in S. The left domination number, denoted by γL(G), is
the minimum cardinality of a left dominating set of G. A left dominating set of G of
cardinality γL(G) is called a γL(G)-set. Let δL(G) denote the minimum degree of a
vertex of L in G. Ahangar et al. [1] established the following upper bound on the left
domination number of a bipartite (undirected) graph in terms of its order.

Theorem 4 ([1]) Let G be a bipartite (undirected) graph of order n with bipartition
(L,R). If δL(G) ≥ 2, then γL(G) ≤ n/3.

Theorem 5 For any digraph D of order n,

γdR(D) ≤ γS(D) + 4n/3.

Proof Let f be a γS(D)-function and let L andR denote the sets of those vertices in
D which are assigned under f the values −1 and 1, respectively. Then |L| + |R| = n
and γS(D) = ω( f ) = |R| − |L|, implying that 2|R| = n + γS(D).

If L = ∅, that is, if R = V (D), then we set g(x) = 2 for each x ∈ V (D). Then it
is easy to see that g is a DRDF on D, implying that

γdR(D) ≤ ω(g) = 2n = 2|R| = 2γS(D) < γS(D) + 4n/3.
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Double Roman Domination in Digraphs 1913

Hence we may assume that L 
= ∅. Let D′ be the bipartite spanning subdigraph of D
with bipartition (L,R), where A(D′) = {(u, v) ∈ A(D) : u ∈ R and v ∈ L}. Since
f is a γS(D)-function, each vertex of L has at least 2 in-neighbors in R in D′ and
hence δ−

L(D′) ≥ 2, where δ−
L(D′) = min{d−

D′(v) : v ∈ L}. Let H be the (undirected)
graph obtained from D′ by replacing any arc with an edge and let R2 be a γL(H)-
set. Then δL(H) = δ−

L(D′) ≥ 2 and hence by Theorem 4, |R2| = γL(H) ≤ n/3.
Moreover, since R2 is a γL(H)-set, any vertex in L is adjacent to some vertex in R2
in H and hence any vertex in L has at least one in-neighbor inR2 in D′ and so in D.
Let R1 = R\R2. Set

g′(x) =
⎧
⎨

⎩

0, if x ∈ L,

2, if x ∈ R1,

3, if x ∈ R2.

Then g′ is a DRDF on D and hence

γdR(D) ≤ ω(g′) = 2|R1| + 3|R2|
= 2(|R1| + |R2|) + |R2| = 2|R| + |R2|
= n + γS(D) + |R2|
≤ γS(D) + 4n/3,

which completes the proof. 	


4 Upper and lower bounds

Our aim in the section is to establish upper and lower bounds on the double Roman
domination number of a digraph in term of its order, maximum out-degree and mini-
mum in-degree.

Wefirst present upper bounds on the doubleRomandomination number of digraphs.

Proposition 4 If D is a digraph of order n, then γdR(D) ≤ 2n with equality if and
only if D is empty.

Proof Define the function f by f (x) = 2 for each x ∈ V (D). Then f is a DRDF
on D and hence γdR(D) ≤ 2n. If D is empty, then γdR(D) = 2n. Now assume that
γdR(D) = 2n, and suppose to the contrary that D contains an arc (u, v). Define the
function g(v) = 0, g(u) = 3 and g(x) = 2 for each x ∈ V (D) \ {u, v}. Then g is a
DRDF on D of weight 2n − 1, a contradiction. 	

Theorem 6 Let D be a digraph of order n ≥ 2 such that |A(D)| ≥ 1. Then γdR(D) ≤
2n − 1 with equality if and only if D has exactly one nontrivial component of order 2
or one nontrivial component H of order 3 such that H is a directed path or a directed
cycle.

Proof Proposition 4 implies γdR(D) ≤ 2n − 1. If D has exactly one nontrivial com-
ponent of order 2 or one nontrivial component H of order 3 such that H is a directed
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path or a directed cycle, then it is easy to see that γdR(D) = 2n − 1. Conversely,
assume that γdR(D) = 2n − 1. Suppose that D contains two arcs (u, v) and (w, z).

If u 
= w, z and v 
= w, z, then define f by f (v) = f (z) = 0, f (u) = f (w) = 3
and f (x) = 2 for each x ∈ V (D)\{u, v, w, z}. Then f is a DRDF on D of weight
2n − 2, a contradiction. Therefore, D contains at most one nontrivial component H .

If v = z and u 
= w, then define g by g(v) = 0 and g(x) = 2 otherwise. Then g is
a DRDF on D of weight 2n − 2, a contradiction.

If u = w and v 
= z, then define h by h(u) = 3, h(v) = h(z) = 0 and h(x) = 2
otherwise. Then h is a DRDF on D of weight 2n − 3, a contradiction.

Using these observations, we deduce that 2 ≤ |V (H)| ≤ 3, and if |V (H)| = 3,
then H is a directed path or a directed cycle of order 3. 	

Proposition 5 Let T be a rooted tree with h(T ) = 1. Then γdR(T ) = 3.

Proof Let r be the root of T . We set f (r) = 3 and f (u) = 0 for each u ∈ V (D)\{r}.
Then it is easy to see that f is a γdR(D)-function and hence γdR(T ) = ω( f ) = 3. 	

Theorem 7 Let T �

−→
P 3 be a rooted tree of order n ≥ 2. Then

γdR(T ) ≤ (5n − 1)/3.

Proof We proceed by induction on n. If n = 2, then by Proposition 5, γdR(T ) = 3 =
(5n−1)/3. Hence we may assume that n ≥ 3. If h(T ) = 1, then again by Proposition
5, γdR(T ) = 3 ≤ (5n − 1)/3.

Suppose next that h(T ) ≥ 2. Let r be the root of T ; let x be a vertex of T such that
d(r, x) = h(T )−1; let T1 be the connected component of T − x that contains the root
r and let T2 = T − T1. Note that h(T2) = 1. Therefore, by Proposition 5, γdR(T2) =
3 ≤ (5|V (T2)| − 1)/3. If |V (T1)| = 1, then clearly |V (T2)| ≥ 3 since T �

−→
P 3 and

(V0, V2, V3) is a DRDF on D, where V3 = {x}, V2 = {r} and V0 = V (D)\{r, x}, and
hence γdR(T ) ≤ 3 + 2 ≤ (5n − 1)/3. Assume next that |V (T1)| ≥ 2. If T1 �

−→
P 3,

then by the induction hypothesis, γdR(T1) ≤ (5|V (T1)| − 1)/3 and hence

γdR(T ) ≤ γdR(T1) + γdR(T2)

≤ (5|V (T1)| − 1)/3 + (5|V (T2)| − 1)/3

< (5n − 1)/3.

If T1 ∼= −→
P 3, then γdR(T1) = 5 = 5|V (T1)|/3 and hence

γdR(T ) ≤ γdR(T1) + γdR(T2)

≤ 5|V (T1)|/3 + (5|V (T2)| − 1)/3

= (5n − 1)/3,

which completes our proof. 	

Harary et al. [10] showed that every connected contrafunctional digraph D has a

unique directed cycle and the removal of any arc of the directed cycle results in a
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Double Roman Domination in Digraphs 1915

rooted tree T . Therefore, we have γdR(D) ≤ γdR(T ), which, together with Theorem
7, would yield the following result directly.

Corollary 2 Let D be a connected contrafunctional digraph of order n. Then

γdR(D) = 5 if D ∼= −→
C 3, and γdR(D) ≤ (5n − 1)/3 otherwise.

For a special class of contrafunctional digraphs, we will improve Corollary 2
slightly. For this purpose, we define the height of a connected contrafunctional digraph
D, denoted by h(D), to be the maximum distance from its unique directed cycle C to
all vertices of D, i.e., h(D) = max{d(C, v) : v ∈ V (D)}. In particular, the height of
a directed cycle is exactly equal to 0.

Theorem 8 Let D be a connected contrafunctional digraph of order n with h(D) = 1.
Then γdR(D) ≤ 3n/2.

Proof Let C be the unique directed cycle of D, vi j be the vertex set of C such that
vi j has at least one out-neighbor not in C for 1 ≤ j ≤ t , and let V ′ be the set of out-
neighbors of vi j not in C for 1 ≤ j ≤ t . Define the function f by f (vi j ) = 3 for 1 ≤
j ≤ t and f (x) = 0 for each x ∈ V ′.Weobserve that D′ = D\({vi1, vi2 , . . . , vit }∪V ′)
is empty or consists of some directed paths. If w1w2 . . . wk is such a directed path
of D′, then for 1 ≤ i ≤ k, we define f (wi ) = 0 if i is odd and f (wi ) = 3 if i is
even. Altogether, it is easy to verify that f is a DRDF on D of weight ω( f ) ≤ 3n/2.
Therefore, γdR(D) ≤ ω( f ) ≤ 3n/2. 	

Theorem 9 Let D �

−→
C 3 be a connected digraph of order n ≥ 3 with δ−(D) ≥ 1.

Then

γdR(D) ≤ (5n − 1)/3.

Proof If n = 3, then it is easy to see that γdR(D) = 3 ≤ (5n − 1)/3 since D �
−→
C 3.

Hence we may assume that n ≥ 4. Since δ−(D) ≥ 1, we can choose an arbitrary
incoming arc of v for each vertex v of D. Then all such arcs induce a spanning
subdigraph H of D consisting of some connected components, say H1, H2, . . . , Hl .
Moreover, Hi (i ∈ {1, 2, . . . , l}) is a connected contrafunctional subdigraph of D
since each vertex of Hi has in-degree 1.

Firstly, we consider the case that H is not the disjoint union of copies of
−→
C 3.

Without loss of generality, assume that H1 �
−→
C 3. Then by Corollary 2, we have

γdR(H1) ≤ (5|V (H1)| − 1)/3 and γdR(Hi ) ≤ 5|V (Hi )|/3 for each i ∈ {2, 3, . . . , l}.
Therefore,

γdR(D) ≤ γdR(H) =
l∑

i=1

γdR(Hi )

≤ (5|V (H1)| − 1)/3 +
l∑

i=2

5|V (Hi )|/3

= (5n − 1)/3.
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Next, we consider the case that H is the disjoint union of copies of
−→
C 3. This implies

that Hi ∼= −→
C 3 for i ∈ {1, 2, . . . , l}. Note that n ≥ 4. Therefore, l ≥ 2. Since D is

connected but H is not, the arc set A(D) of D consists of A(H) and some arcs not in
H . In addition, if we add some arc in A(D)\A(H) to H , then it is easy to verify that
the resulting digraph has a strictly smaller double Roman domination number than
that of H . Therefore, by Corollary 2, we have

γdR(D) ≤ γdR(H) − 1

=
l∑

i=1

γdR(Hi ) − 1

=
l∑

i=1

5|V (Hi )|/3 − 1

≤ (5n − 1)/3,

which completes our proof. 	

Theorem 10 For any digraph D of order n, γdR(D) ≤ 2(n − �+) + 1.

Proof Let v be a vertex of out-degree �+. Then it is easy to see that f = (V0, V2, V3)
is a DRDF on D, where V0 = N+(v), V2 = V (D)\N+[v] and V3 = {v}. Thus,
γdR(D) ≤ ω( f ) = 3 + 2(n − d+(v) − 1) = 2(n − �+) + 1. 	

Theorem 11 For any digraph D of order n with δ− ≥ 1,

γdR(D) ≤ n

⎧
⎨

⎩
3 − 3

(
3

2(1 + δ−)

) 1
δ− + 2

(
3

2(1 + δ−)

) 1+δ−
δ−

⎫
⎬

⎭
.

Proof Given a digraph D and a real number p with 0 ≤ p ≤ 1, select a set X
of vertices each of which is selected independently with probability p (with p to
be defined later). Then the expected size of X is np since X admits the binomial
distribution with parameters n and p. Let Y = V (D)\N+

D [X ]. We set f (v) = 3 for
any v ∈ X , f (v) = 2 for any v ∈ Y and f (v) = 0 otherwise. Then it is easy to see
that f is a DRDF on D. Note that

P(v ∈ Y ) = P(v ∈ V (D)\N+
D [X ])

= (1 − p)1+d−(v)

≤ (1 − p)1+δ−
.

Thus,

E(ω( f )) ≤ 3np + 2n(1 − p)1+δ−
,
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where E(ω( f )) is the expected weight of f . It is not difficult to verify that the upper

bound for E(ω( f )) is minimum when p = 1 −
(

3
2(1+δ−)

) 1
δ− and hence

E(ω( f )) ≤ n

⎧
⎨

⎩
3 − 3

(
3

2(1 + δ−)

) 1
δ− + 2

(
3

2(1 + δ−)

) 1+δ−
δ−

⎫
⎬

⎭
.

This implies that there must be some DRDF on D with at most the above bound as its
weight, which completes our proof. 	


We next give a lower bound on the double Roman domination number of a digraph.

Theorem 12 For any connected digraph D of order n ≥ 4,

γdR(D) ≥
⌈

6n + 3

2�+ + 3

⌉

.

Proof Let f = (V0, V2, V3) be a γdR(D)-function and let n0 = |V0|. If V3 = ∅, then
it is easy to see that γdR(D) = 2|V2| = 2(n − n0). Moreover, by the definition of
γdR(D)-function, each v ∈ V0 must have at least two in-neighbors assigned 2 under
f and hence

∑
u∈N−(v) f (u) ≥ 4. Thus, γdR(D) = ω( f ) ≥ n0 · 4

�+ . Then it follows
that

2γdR(D) = 4n − 4n0 ≥ 4n − γdR(D)�+

and hence

γdR(D)(�+ + 2) ≥ 4n,

implying that γdR(D) ≥
⌈

4n
�++2

⌉
≥

⌈
6n+3
2�++3

⌉
.

If V3 
= ∅, then it is easy to see that γdR(D) = 2(|V2| + |V3|) + |V3| ≥ 2(n −
n0) + 1. Moreover, by the definition of γdR(D)-function, each v ∈ V0 must have at
least two in-neighbors assigned 2 under f or one in-neighbor assigned 3, and hence∑

u∈N−(v) f (u) ≥ 3. Thus, γdR(D) = ω( f ) ≥ n0 · 3
�+ . Then it follows that

3γdR(D) ≥ 6n − 6n0 + 3 ≥ 6n − 2γdR(D)�+ + 3

and hence

γdR(D)(2�+ + 3) ≥ 6n + 3,

implying that γdR(D) ≥
⌈

6n+3
2�++3

⌉
. 	


The following result, derived from Theorem 12, shows that the upper bound in
Theorem 10 and the lower bound in Theorem 12 are sharp.
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Corollary 3 Let D be a connected digraph of order n ≥ 3. Then γdR(D) = 3 if and
only if �+ = n − 1.

Proof Clearly, by the definition, γdR(D) ≥ 3. Now let �+ = n − 1, and let v be
a vertex of out-degree �+. Define the function f by f (v) = 3 and f (x) = 0 for
x ∈ V (D)\ {v}. Then f is a DRDF on D of weight 3 and hence γdR(D) ≤ 3 and thus
γdR(D) = 3. Conversely, assume that γdR(D) = 3. If �+ ≤ n − 2, then Theorem 12
leads to the contradiction

γdR(D) ≥
⌈

6n + 3

2�+ + 3

⌉

≥
⌈

6n + 3

2(n − 2) + 3

⌉

≥ 4,

which completes our proof. 	


5 A Nordhaus–Gaddum type result

In this section,wederive aNordhaus–Gaddumboundon the doubleRomandomination
number of digraphs.

Theorem 13 For any digraph D of order n ≥ 4,

γdR(D) + γdR(D) ≤ 2n + 3.

Proof It is easy to see that d+
D(v) + d+

D
(v) = n − 1 for any vertex v ∈ V (D). This

implies that �+(D) = n − 1 − δ+(D). Then by Theorem 10, we have

γdR(D) + γdR(D) ≤ (2n − 2�+(D) + 1) + (2n − 2�+(D) + 1)

= 2n − 2�+(D) + 2δ+(D) + 4

≤ 2n + 4. (3)

Suppose that γdR(D) + γdR(D) = 2n + 4. Then we have equality throughout the
inequality chain (3). This implies that �+(D) = δ+(D). Let k = �+(D) = δ+(D).
Then �+(D) = δ+(D) = n − 1− k. Without loss of generality, we may assume that
k ≤ (n − 1)/2, since our argument is symmetric in D and D. Since equality holds,
γdR(D) = 2(n − k) + 1 and γdR(D) = 2k + 3. Let v ∈ V (D).

Claim 1 All of the out-neighbors of every vertex not in N+
D [v] are in N+

D [v].
Proof of Claim 1 If some vertex u outside N+

D [v] in D has at least one out-neighbor,
say w, outside N+

D [v], then set f (v) = 3, f (w) = 1, f (x) = 0 for x ∈ N+
D (v) and

f (x) = 2 otherwise. Clearly, f is a DRDF on D with weight 2(n−k), a contradiction
to the fact that γdR(D) = 2(n − k) + 1. So, this claim is true.

Claim 2 For any vertex u outside N+
D [v], (u, v) ∈ A(D).
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Proof of Claim 2 Suppose, to the contrary, that there exists some vertex u outside
N+
D [v] such that (u, v) /∈ A(D). Note that �+(D) = δ+(D) = k. Hence by Claim 1,

N+
D (u) = N+

D (v). We set g(x) = 0 for any x ∈ N+
D (v) and g(x) = 2 otherwise. Then

g is a DRDF on D with weight 2(n − k), a contradiction. So, this claim is true.

Claim 3 There exists at most one vertex outside N+
D [v].

Proof of Claim 3 Suppose, to the contrary, that there exist at least two vertices, say u
andw, outside N+

D [v]. Then byClaim 2, we have that (u, v), (w, v) ∈ A(D). Note that
�+(D) = δ+(D) = k. Hence by Claim 1, N+

D (u) = N+
D (w) or |N+

D (v)\(N+
D (u) ∩

N+
D (w))| = 2. Let N+

D (v) = {v1, v2, . . . , vk}.
If N+

D (u) = N+
D (w), then we assume, without loss of generality, that N+

D (u) =
N+
D (w) = {v, v1, v2, . . . , vk−1}. We set h(x) = 0 for any x ∈ {v, v1, v2, . . . , vk−1}

and h(x) = 2 otherwise. It is easy to see that h is a DRDF on D with weight 2(n− k),
a contradiction. If |N+

D (v)\(N+
D (u) ∩ N+

D (w))| = 2, then we assume, without loss
of generality, that N+

D (u) = {v, v1, v2, . . . , vk−1} and N+
D (w) = {v, v2, v3, . . . , vk}.

Set h′(v1) = h′(vk) = 1, h′(x) = 0 for any x ∈ {v, v2, v3, . . . , vk−1} and h′(x) = 2
otherwise. It is easy to see that h′ is aDRDFon Dwithweight 2(n−k), a contradiction.
So, this claim is true.

Thus, by Claim 3, we have k = d+
D(v) ≥ n − 2 for any v ∈ V (D). Together with

our earlier assumptions, k ≤ (n − 1)/2. Therefore, n − 2 ≤ k ≤ (n − 1)/2 and
hence n ≤ 3, a contradiction. This implies that γdR(D) + γdR(D) ≤ 2n + 3, which
completes our proof. 	
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