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Abstract Suppose G is a finite group with identity element 1. The generating graph
�(G) is defined as a graph with vertex setG in such a way that two distinct vertices are
connected by an edge if and only if they generateG and the Q-generating graph�(G)

is defined as the quotient graph �(G)\{1}
C�(G)

, where C�(G) is the set of all non-identity
conjugacy classes of G and �(G)\{1} is a graph obtained from �(G) by removing the
vertex 1. In this paper, some structural properties of this graph are investigated. The
structure of Q-generating graphs of dihedral, semidihedral, dicyclic and all sporadic
groups other than M , B and Fi ′24 is also presented.

Keywords Generating graph · Q-generating graph · Sporadic group

Mathematics Subject Classification 20C40

1 Introduction

Throughout this paper, group means finite group. Suppose G is a finite group and
P(G) = |{(x,y)∈G×G | 〈x,y〉=G}|

|G|2 . It is clear that 0 ≤ P(G) ≤ 1 and this quantity is

the probability that G can be generated by two elements. This quantity is the source
of several research works in computational group theory [23]. It is well known that
P(G) �= 0, when G is a non-abelian finite simple group. By motivation of this prob-
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ability function, the generating graph �(G) is defined as a graph with vertex set
V (�(G)) = G in such a way that two distinct vertices are connected by an edge if
and only if they generate G [32,33].

Suppose X is a graph and θ is a partition on V (X). The quotient graph ̂X is a graph
with vertex set θ in such a way that two elements A, B ∈ θ are adjacent if and only
if there are a ∈ A and b ∈ B such that a and b are adjacent in X . For simplicity of
our argument, we introduce another graph ��(G) = �(G) − {1G}, where 1G is the
identity element of group G.

The Q-generating graph �(G) is the quotient graph ̂��(G) over the partition θ

of all non-identity conjugacy classes of G.
Let G be a finite group with at least one non-identity conjugacy class of elements.

The Q-generating graph ofG has all non-identity conjugacy classes as the vertices and
two different classes are adjacent when there is at least one element in each class which
make a pair of generators of G. It is well known that for any involution a in a finite
simple group G, there exists b ∈ G with G = 〈a, b〉. So, the condition of choosing a
pair of elements from two different classes of a group makes the Q-generating graph
to be simple without loop.

Following Woldar [39], the group G is said to be nX -complementary generated
if for an arbitrary non-identity element x ∈ G, there exists a y ∈ nX such that
G =< x, y >. If there exist x ∈ l X , y ∈ mY and z ∈ nZ such that xy = z and
G =< x, y >, then the group G is said to be (l X,mY, nZ)-generated. A group G is
called (l,m, n)-generated, if these exist three conjugacy classes l X ,mY and nZ in G
such that G is a (l X,mY, nZ)-generated. If G is (l,m, n)-generated, then we can see
that for any permutation π of S3, the group G is also ((l)π, (m)π, (n)π)-generated.
Therefore, without loss of generality, we may assume that l ≤ m ≤ n.

Suppose G is a non-abelian simple group. By [13], if G is (l,m, n)-generated, then
either G ∼= A5 or 1

l + 1
m + 1

n < 1. Hence, if G is a non-abelian finite simple group
and l,m, n are divisors of |G| such that 1

l + 1
m + 1

n < 1, then it is natural to ask
whether or not G is (l,m, n)-generated. The motivation for this question came from
the calculation of the genus of finite simple groups [37,40]. The problem of finding all
triples (l,m, n) such that G is (l,m, n)-generated was presented many years ago by
Moori [35]. Ganief andMoori [25,29] computed all 2-generations of the Janko groups
J1, J2, J3 and J4. We refer the interested readers to [24] and references therein for the
motivation of this study and for more information on this topic. Interest in studying
the (2,m, n)-generated groups has a geometrical motivation which is related to the
study of regular maps on surfaces and their automorphisms. Brahana [11] proved a
necessary and sufficient condition for a group G to be the automorphism group of
a regular map on a surface is that G can be generated by an involution and another
element of order greater than 2.

Suppose l X,mY and nZ are conjugacy classes of a finite group G. The cardinality
of the set

� = {(x, y) | x ∈ l X, y ∈ mY & xy = z ∈ nZ is a fixed element}
is denoted by �G = �G(l X,mY, nZ). This number is called the structure constant
of G in the classes l X,mY and nZ . The quantities ��

G = ��
G(l X,mY, nZ) and
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	(H1 ∪ H2 ∪ · · · ∪ Hr ) are also defined as the number of pairs (x, y) ∈ � such that
G = 〈x, y〉 and 〈x, y〉 ⊆ Hi , for some 1 ≤ i ≤ r , respectively. The number of pairs
(x, y) ∈ � generating a subgroup H of G will be given by	�(H), and the centralizer
of a representative of l X will be denoted by CG(l X). A general conjugacy class of a
subgroup H of G with elements of order n will be denoted by nX . It is clear that if
��(G) > 0, then G is (l X,mY, nZ)-generated. In this case, the triple (l X,mY, nZ)

is called a generating triple for G and we will useGAP [36] for the computations in
order to compute the generating triples ofG. For the sake of completeness, wemention
here some useful results in resolving generation-type questions for finite groups.

Lemma 1.1 [39] The group G is nX-complementary generated if and only if for each
conjugacy class pY in G, there is a conjugacy class tp Z, where tp is a divisor of |G|
related to the prime p, such that G is (pY, nX, tp Z)-generated.

Lemma 1.2 [39] Let G be a finite simple group with a conjugacy class pX where p
is a greatest prime divisor |G|, then G is a pX-complementary generated.

Theorem 1.3 [25] Let G be a finite centerless group and suppose l X,mY and nZ
are G-conjugacy classes for which ��(G) = ��

G(l X,mY, nZ) < |CG(z)|, z ∈ nZ.
Then, ��(G) = 0 and therefore G is not (l X,mY, nZ)-generated.

Throughout this paper, our notation is standard and taken mainly from [3,14,31].
The complete and star graph with exactly n vertices are denoted by Kn and Starn ,
respectively.

2 Examples

In this section, we aim to construct and mention some of the properties of the Q-
generating graphs of some finite groups as dihedral, semidihedral, dicyclic, V8n and
U6n . The conjugacy classes of D2n , T4n , V8n and U6n , when n is odd, are calculated
in the famous book of James and Liebeck [31]. The conjugacy classes of V8n , with n
even and SD8n of order 8n are computed in [22,30], respectively.

Example 2.1 D2n = 〈a, b | an = b2 = 1, bab−1 = a−1〉. For an even n = 2m,
the Q-generating graph �(D2n) is a disconnected graph with m + 2 vertices and
2φ(m −1)+1 edges, where φ denotes the Euler’s totient function. The set of vertices
is:

V (�(D2(2m))) =
{

{

am
}

,
{

a−1, a
}

,
{

a2, a−2}, . . . ,
{

am−1, a−m+1},

{

b, a2b, a4b, . . . , an−2b
}

,
{

ab, a3b, a5b, . . . , an−1b
}

}

.

In this case, �(D2n) contains the triangles which have an edge {bD2n − abD2n } in
common and the isolated vertices corresponding to the representatives ar , 1 ≤ r ≤
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m−1 and (r, n) �= 1. For an odd number n,�(D2n) is disconnected with 1
2 (n+3)−1

vertices

V (�(D2n))

=
{

{

a, a−1},
{

a−2, a2
}

, . . . ,
{

a(n−1)/2, a−(n−1)/2},
{

b, ab, . . . , an−1b
}

}

.

and φ((n − 1)/2) edges. We can see that in this case �(D2n) contains the star
Starφ(n−1)/2 with the vertex bD2n in the center and the isolated vertices corresponding
to the representatives ar , 1 ≤ r ≤ (n − 1)/2 and (r, n) �= 1.

Example 2.2 SD8n = 〈a, b | a4n = b2 = 1, bab = a2n−1〉. For an even number
n ≥ 2, �(SD8n) has 2n + 2 non-identity conjugacy classes as the vertices

V (�(SD8n)) =
{

{

a2n
}

,
{

ar , a(2n−1)r},

r ∈ {

1, 3, . . . , n − 1, 2, 4, . . . , 2n − 2, 2n + 1, 2n + 3, 2n + 5, . . . , 3n − 1
}

,

{

ba2t , 0 ≤ t ≤ 2n − 1
}

,
{

ba2t+1, 0 ≤ t ≤ 2n − 1

}

.

It is clear that bSD8n and (ab)SD8n are adjacent and aSD8n − abSD8n ∈ E(�(SD8n)).
The vertices {a2n} and {a2r , a(2n−1)r } are isolated, where r is even. Then, the graph is
a union of isolated vertices and triangles sharing a common edge. For an odd number
n, �(SD8n) has 2n + 5 vertices as follows,

V (�(SD8n)) = {{

an
}

,
{

a2n
}

,
{

a3n
}

,
{

ar , a(2n−1)r},

r ∈ {

1, 3, . . . , n − 2, 2, 4, . . . , 2n − 2, 2n + 1, 2n + 3, 2n + 5, . . . , 3n − 1
}

,
{

ba4t , 0 ≤ t ≤ n − 1
}

,
{

ba4t+1, 0 ≤ t ≤ n − 1
}

,
{

ba4t+2, 0 ≤ t ≤ n − 1
}

,
{

ba4t+3, 0 ≤ t ≤ n − 1
}

.

The vertex with the representative b is adjacent to the vertices with representatives
ba and ba3. Also the vertices with representatives ar , (r, n) = 1 and r is not even,
are linked to the vertices with the representatives b, ba, ba2 and ba3. Moreover, there
are no edges between the vertices with representative ar . In this graph, {an}, {a2n},
{a3n}, {ar , a(2n−1)r }, where r is even number in the mentioned set of vertices, are the
isolated vertices of �(SD8n).

Example 2.3 T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉. The structure of
�(T4n) is similar to �(D2(2m)), with n + 2 vertices of

V (�(T4n)) =
{

{

an
}

,
{

ar , a−r}, 1 ≤ r ≤ n − 1,
{

a2sb, 0 ≤ s ≤ n − 1
}

,

{

a2s+1b, 0 ≤ s ≤ n − 1
}

}
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and 2φ(n) + 1 edges. This graph is also disconnected with φ(n) triangles which have
a common edge and n − φ(n) isolated vertices.

Example 2.4 V8n = 〈a, b | a2n = b4 = 1, aba = b−1, ab−1a = b〉. When n is
even, the vertices of �(V8n) are listed as follows:

V (�(V8n)) =
{

{

b2
}

,
{

an
}

,
{

anb2
}

,
{

a2r+1, a−2r−1b2
}

, 0 ≤ r ≤ n − 1,

{

a2s, a−2s}, 1 ≤ s ≤ n

2
− 1,

{

a2sb2, a−2sb2
}

, 1 ≤ s ≤ n

2
− 1,

{

a2kb(−1)k |0 ≤ k ≤ n − 1
}

,
{

a2kb(−1)k+1 |0 ≤ k ≤ n − 1
}

,

{

a2k+1b(−1)k |0 ≤ k ≤ n − 1
}

,
{

a2k+1b(−1)k+1 |0 ≤ k ≤ n − 1
}

}

.

The Q-generating graph �(V8n) is a disconnected graph in which {b2}, {an}, {anb2},
(a2s)

V8n , (a2sb2)
V8n and (a2r+1)

V8n are the isolated vertices, where 1 ≤ r ≤ n − 1,
(2r + 1, n) = 1 and 1 ≤ s ≤ n

2 . Among the vertices with representatives b, b−1, ab
and ab−1, we can see that b is adjacent to the vertex {a jb | j is odd, k = 1, 3} and
also ab is adjacent to the vertex {a jb | j is even, k = 1, 3}. These four vertices are
also adjacent to the vertices of {a2r+1, a−2r−1b2}, where (2r + 1, n) = 1.

When n is odd, the graph �(V8n) is disconnected with the vertex set

V (�(V8n)) =
{

{

b2
}

,
{

a2r+1, a−2r−1b2
}

, 0 ≤ r ≤ n − 1

2
,

{

a2s, a−2s}, 1 ≤ s ≤ n − 1

2
,
{

a2sb2, a−2sb2
}

, 1 ≤ s ≤ n − 1

2
,

{

a jbk | j even, k = 1, 3
}

,
{

a jbk | j odd , k = 1, 3
}

}

.

When n = p > 2 is prime, then the graph �(V8p) is a union of the triangles which
share an edge and the vertices corresponding to the class representatives b2, a2s, a2sb2

and a p, are the isolated vertices. When n is odd but not prime, then �(V8n) is again

disconnected and the vertices {b2}, (a2s)V8n , (a2sb2)V8n , anV8n and {a2r+1, a−2r−1b2},
0 ≤ r ≤ n − 1 are the isolated vertices, where (2r + 1, n) �= 1 or (−2r − 1, n) �= 1.
In this case, again the graph is the union of triangles with a common edge and some
isolated vertices.

Example 2.5 U6n = 〈a, b | a2n = b3 = 1, bab = a〉. The Q-generating graph
�(U6n) is also disconnected with the vertex set

V (�(U6n)) = {{a2r }, {a2r b, a2r b2}, {a2r+1b, a2r+1, a2r+1b2}, 0 ≤ r ≤ n − 1}.

Among the vertices, the vertices (ai )
U6n are isolated, when i is even. The vertices

(a j )
U6n , j �= i and ( j, n) = 1 are joined to all other vertices, because they generate

U6n .
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It is merit to mention here that Breuer et al. [12], proved that if G is a non-abelian
finite simple group, then for every pair of non-identity elements x1 and x2 in G there
exists an element y in G such that 〈x1, y〉 = 〈x2, y〉 = G. So ��(G) is a connected
graph of diameter 2. Notice that if the Q-generating graph �(G) is connected, then it
has at most diameter 2.

3 Finite Groups with Complete Q-Generating Graph

In this section, we first present a characterization of finite solvable groups with com-
plete Q-generating graph. The sporadic groups with complete Q-generating graphs
are also classified.

Theorem 3.1 Let G be a finite solvable group such that the Q-generating graph�(G)

is complete. Then, G is isomorphic to one of the following groups:

1. G is isomorphic to Z4, Z2 × Z2 or Zp,
2. G ∼= S3 or G is a non-abelian group of order 2r (2r −1), r is prime, and 2r −1 is a

Mersenne prime. Moreover, the Sylow 2-subgroup of G is normal and elementary
abelian.

Proof Suppose the Q-generating graph of a solvable group G is complete. Suppose
1 < N < G and that N is normal. (If no such N exists, then G is simple, and since
G is solvable, it has prime order and we are done.) Then, no two distinct classes of G
contained in N can be connected, so all non-trivial elements of N are conjugate in G,
and it follows that N is an elementary abelian p-group for some prime p.

Also, there cannot exist a normal subgroup M of G with N < M < G because by
the same reasoning, all non-trivial elements of M would have to be conjugate in G
and this is not the case since elements of M not in N cannot be conjugate to elements
of N . Since no such subgroup M can exist, G

N is simple, and since G is solvable, G
N

has prime order q for some prime q.
If |N | = 2, then N is central and |G| = 2q. Then, G is abelian and every minimal

normal subgroup of G has order 2, so q = 2 and |G| = 4. We can now assume
|N | > 2, and since the non-identity elements of N are conjugate in G, we see that G
is not abelian. Then, N is the centralizer of each of its non-identity elements, so the
class of each of these elements has size q. It follows that |N | = q + 1, and this is a
power of p. If q = 2, then |N | = 3 and G = S3. Otherwise, q is odd, so |N | is even
and p = 2. If |N | = 2r , we have 2r − 1 = q, so q is Mersenne. �

Lemma 3.2 The Q-generating graphs of sporadic groups are connected.

Proof By a result of Woldar [38], if pX is a conjugacy class of a group G such that p
is the greatest prime divisor of |G|, then the groupG is pX -complementary generated.
Hence, the vertex pX of the corresponding Q-generating graph �(G) is joined to all
other vertices. As a consequence, �(G) is connected. �

Lemma 3.3 The following are hold:

1. J1 and J3 are nX-complementary generated if and only if n > 2.
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2. The group O ′N is nX-complementary generated for n ∈ {4, 6, 8, 10, 12, 14,
15, 16, 20, 28} or n = p, an odd prime divisor of |O ′N |.

3. The group T h is nX-complementary generated if and only if n > 2 and also it
is (p, q, r)-generated where p, q, r are the distinct prime divisors of |Th|, with
p < q < r , except when (p, q, r) = (2, 3, 5).

Proof The proof of (1) follows from [24], proof of (2) follows from [19], and proof
of (3) follows from [5]. �


Theorem 3.4 Suppose G is a sporadic group. Then, �(G) is complete if and only if
G ∼= J1, J3, O ′N or T h. Moreover, �(J1) ∼= K14, �(J3) ∼= K20, �(O ′N ) ∼= K29
and �(Th) ∼= K46.

Proof The first Janko group J1 has 14 non-identity conjugacy classes as the vertices

2A, 3A, 5A, 5B, 6A, 7A, 10A, 10B, 11A, 15A, 15B, 19A, 19B, 19C,

in which there is only one class of involutions. By Lemma 3.3(1), J1 is nX -
complementary generated for each divisor n of |J1|, n > 2. Hence, all vertices are
connected and �(J1) ∼= K14.

The group J3 has 20 non-identity conjugacy classes which are the vertices as
V (�(J3)) = {2A, 3A, 3B, 4A, 5A, 5B, 6A, 8A, 9A, 9B, 9C , 10A, 10B, 12A,

15A, 15B, 17A, 17B, 19A, 19B}. This group is nX -complementary generated for
n > 2, and it has only one conjugacy class of involutions. It means that �(J3) is
complete and isomorphic to K20.

We now prove that the group O ′N with 29 non-identity conjugacy classes has a
complete Q-generating graph isomorphic to K29. The vertices are

2A 3A 4A 4B 5A 6A 7A 7B 8A 8B 10A
11A 12A 14A 15A 15B 16A 16B 16C 16D 19A 19B
19C 20A 20B 28A 28B 31A 31B

Based onLemma3.3(2), sinceO ′N is pX -complementary generated for each prime
divisor p > 2 of its order, and it has only one conjugacy class of involutions, we can
conclude that each pX is connected to other vertices. Also the other vertices nX , n
is not prime, are adjacent to other vertices, again because O ′N is nX -complementary
generated. Then, �(O ′N ) ∼= K29.

The Q-generating graph �(Th) has 46 vertices as follows.

2A 3A 3B 3C 4A 4B 5A 6A 6B 6C 7A
8A 8B 9A 9B 9C 10A 12A 12B 12C 12D 13A
14A 15A 15B 18A 18B 19A 20A 21A 24A 24B 24C
27A 27B 27C 28A 30A 30B 31A 31B 36A 36B 36C
39A 39B
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Based on Lemma 3.3(3), Th has only one class of involutions and for n > 2 it is
nX -complementary generated, so all vertices are joined and �(Th) ∼= K46.

By Atlas of finite groups [14], we can see that the Monster group M , the baby
monster group B and the Fischer group Fi ′24 have more than one conjugacy classes
of involutions. Suppose G is one of these groups and A and B are two G-conjugacy
classes of involutions. Choose x ∈ A and y ∈ B. Since 〈x, y〉 is a dihedral group
of order 2o(xy) and G is simple, {x, y} is a not a generating set for G. This proves
that the conjugacy classes A and B are not adjacent in the Q-generating graph of
G. Therefore, G is not complete. The graphs of some other sporadic groups are not
complete, and their proofs will be given Sect. 4. �


4 Sporadic Groups with Non-complete Q-Generating Graphs

Now we bring one of the main results of this paper, which is related to the structure
of Q-generating graphs of some other sporadic groups. In an exact phrase, the Q-
generating graphs of M11, M22, M23, McL, J2, J4, Fi22, Fi23, Ly, He, Co1, Co2,
Co3, Suz and HS are calculated. To do this, we need the following crucial lemmas:

Lemma 4.1 The (l,m, n)-generating triple of some sporadic groups are as follows:

1. Every sporadic group G is (2,m, n)-generated, for some integers m and n the
divisors of |G|.

2. The sporadic groups except M11, M22, M23 and McL are (2, 3, n)-generated, for
some n.

3. The groups J3, Fi22, Ly, He, HN, Co3 and Ru are (p, q, r)-generated where
p, q, r are the distinct prime divisors of |J3|, |Fi22|, |Ly|, |He|, |HN |, |Co3| and
|Ru|, respectively, with p < q < r , except when (p, q, r) = (2, 3, 5).

4. The Conway group Co1 is (p, q, r)-generated for each prime p and q ∈
{7, 11, 13, 23}. This group is also (pX, 5Y, tp Z)-generated for each prime class
pX and Y ∈ {B,C}. Besides Co1 is (2, p, q)-generated for all p, q ∈
{3, 5, 7, 11, 13, 23} with p < q, except when (p, q) = (3, 5) or (3, 7).

5. Co2 is (p, q, r)-generated for all p, q, r in {2, 3, 5, 7, 11, 23} with p < q < r ,
except with (p, q, r) = (2, 3, 5) or (2, 3, 7).

6. The Suzuki’s sporadic simple group Suz is (2, 3, t)-generated, where t is an odd
divisor of |Suz| except t = 7.

7. The Higman–Sims group HS is (p, q, r)-generated for all p, q, r in {2, 3, 5, 7, 11}
with p < q < r , except with (p, q, r) = (2, 3, 5) or (2, 3, 7).

Proof We refer to the papers [1,2,4,7,15–18,20,24–28,34,39] for a complete proof
for different parts of this result. �

Lemma 4.2 The nX-complementary generations of the sporadic groups are as fol-
lows:

1. McL is nX-complementary generated if and only if n ≥ 4.
2. J4 and Ru are nX-complementary generated if and only if n > 2.
3. J2 is nX-complementary generated if and only if nX ∈ {5C, 5D} or n ≥ 6.

123



On a Special Quotient of the Generating Graph of a Finite… 1839

Fig. 1 The graph H1 2A

2B 3A

4. He is nX-complementary generated if and only if n ≥ 4 or nX = 3B.
5. Co1 is nX-complementary generated if and only if n ≥ 4 and nX /∈ {4A, 4B,

4C, 4D, 5A, 6A}.
6. Co2 is nX-complementary generated if and only if n ≥ 7 or nX ∈ {4G, 5A, 5B,

6A, 6B, 6E, 6F}.
7. Ly is nX-complementary generated if and only if n ≥ 3 and nX �= 3A.
8. Fi22 is nX-complementary generated if and only if nX ∈ {6K , 8C, 8D, 9C,

12E, . . . , 12K } or n ∈ {7, 10, 11, 13, . . . , 30}.
9. Fi23 is nX-complementary generated if and only if n > 12 or n ∈ {7, 8, 10, 11}

or

nX ∈ {6N , 6O, 9D, 9E, 12C, 12D, . . . , 12O}.

10. Suz is nX-complementary generated if and only if nX = 3C or n ≥ 4 and
nX �= 4A, 6A.

11. HN is nX-complementary generated if and only if nX /∈ {2A, 2B, 3A, 5A, 5B}.
12. HS is nX-complementary generated if and only if nX = 4C or n ≥ 5.

Proof The proofs of (1) and (12) follow from [26], proofs of (2), (3) and (8) follow
from the main results of [8,24] and proofs of (4), (5), (6), (7), (9), (10) and (11)
follow from [6,9,10,18,20,21,28], respectively. �


In the following two results, the Q-generating graph of some sporadic groups is
obtained.

Theorem 4.3 The Q-generating graph of the sporadic groups He, J2, M12, M24,
McL, HN, Fi22, Fi23, Co1, Co2, Co3, Suz and HS can be computed as follows:

1. �(He) ∼= K32 − H1, 2. �(J2) ∼= K20 − H2,

3. �(M12) ∼= K14 − H3, 4. �(M24) ∼= K25 − H4,

5. �(McL) ∼= K23 − H5, 6. �(HN ) ∼= K53 − H6,

7. �(Fi22) ∼= K64 − H7, 8. �(Fi23) ∼= K97 − H8,

9. �(Co1) ∼= K100 − H9, 10. �(Co2) ∼= K59 − H10,

11. �(Co3) ∼= K41 − H11, 12. �(Suz) ∼= K42 − H12
13. �(HS) ∼= K23 − H13,

in which the graph Hi , 1 ≤ i ≤ 13, are depicted in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 and 13.

Proof Our main proof will consider some separete cases as follows:
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2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 7A
7B 7C 7D 7E 8A 10A 12A 12B 14A 14B 14C
14D 15A 17A 17B 21A 21B 21 21D 28A 28B

1. In the following, there are 32 non-identity conjugacy classes of Held group He,
Based on Lemma 4.2(4), in the Q-generating graph of He all conjugacy classes
nX , n ≥ 4, are adjacent. On the other hand, the vertex 3B and all other vertices

Fig. 2 The graph H2 2A

3A4A

2B

3B

5A

5B

Fig. 3 The graph H3 2A

2B 3B
3A

4A 4B

Fig. 4 The graph H4 2A

2B 3A 4B

Fig. 5 The graph H5 2A

3A 3B

Fig. 6 The graph H6 2A

2B
3A 5A

5B

Fig. 7 The graph H7

2B 2C

2A

3B 3C 3D 4A
· · ·
4E
5A

· · ·6A

6J
8A
8B

12A 12D· · ·
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Fig. 8 The graph H8

2A

2B 2C

3C

3A

3B 3D

4A

4B 4C

4D
5A

6A
· · ·6M6B 9A 9B 9C

12A
12B

Fig. 9 The graph H9

2A

2B 2C
3A

3B
3C
3D

4D

5A

4A 4B
4C

6A

Fig. 10 The graph H10

2A

2B 2C

3A 3B
3C

6C

6D

4A4B4C
4D

4E

4F

Fig. 11 The graph H11

2A

2B 3A

3B4A4B

Fig. 12 The graph H12 2A

2B

3A

4A

3B 6A
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Fig. 13 The graph H13

2A

2B 4A

3A 4B

are adjacent and since He is simple, there is no edge between 2A and 2B. Also
for each vertex t Z , t �= 2, we have �He(2A, 3A, t Z) < |CHe(t Z)|. Then by
Theorem 1.3, �∗(2A, 3A, t Z) = 0 and so 2A − 3A /∈ E(�(He)). Therefore,
�(He) ∼= K32 − {2A − 2B, 2A − 3A}.

2. The Q-generating graph of J2 with 20 vertices of is not a complete graph.

2A 2B 3A 3B 4A 5A 5B 5C 5D 6A
6B 7A 8A 10A 10B 10C 10D 12A 15A 15B

By Lemma 4.2(3), J2 is nX -complementary generated if and only if n ≥ 6 or
nX ∈ {5C, 5D} and it is not (2A,mY, t Z)-generated where t Z is an arbitrary con-
jugacy class andmY ∈ {3A, 3B, 4A, 5A, 5B}. Besides, our calculations show that
�(2B, 3A, t Z) < |CJ2(t Z)| for each vertex t Z and so�∗(2B, 3A, t Z) = 0. Also
for t Z �= 7A, we have �J2(3A, 4A, t Z) < |CJ2(t Z)| and hence �∗(3A, 4A, t Z)

= 0. But�J2(3A, 4A, 7A) = 14 > |CJ2(7A)| = 7 and (3A, 4A, 7A) is a generat-
ing triple of themaximal subgroupU3(3).Our computations show that the elements
of 7A are located in two different conjugacy classes 7a and 7b ofU3(3)which have
non-empty intersection with 3a and 4c, then	U3(3)((3a, 4c, 7a)+ (3a, 4c, 7b) =
7 + 7 = 14. Hence,

�∗ < �(3A, 4A, 7A) − 	U3(3)(3A, 4A, 7A) = 14 − 14 < |CJ2(7A)| = 7.

Then 3A − 4A /∈ E(�(J2)). Therefore, �(J2) ∼= K20 − H2.
3. The Q-generating graph of M12 has 14 vertices with two conjugacy classes of

involutions. By Atlas [14],

V (�(M12)) = {2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 6B, 8A, 8B, 10A, 11A, 11B}.

For n > 4, M12 is nX -complementary generated and so all vertices nX , (n > 4)
are connected in the graph. Obviously, 2A − 2B /∈ E(�(M12)). Also the vertex
2A is not adjacent with 3B. Note that �(2A, 3B, 5A) = 20 > |CM12(5A)| = 10
and there exists a maximal subgroup L2(11) which intersects conjugacy classes
2A, 3B and 5A. Then,

�(2A, 3B, 5A) − 	L2(11)((2a, 3b, 5a) + (2a, 3b, 5b)) = 20 − (10 + 10) = 0

and so 2A − 3B /∈ E(�(M12)). Also the vertex 2B is not adjacent to the vertices
3A, 4A and 4B. Since M11 is the maximal subgroup of M12 which has intersection
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with 2B, 3A and 5A, and

�(2B, 3A, 5A) − 	M11(2B, 3A, 5A) = 20 − 15 < |CM12(5A)| = 10,

�∗(2B, 3A, 5A) = 0 and 2B − 3A /∈ E(�(M12)). Also, �(2B, 4A, 5A) =
20 > |CM12(5A)| = 10 and the maximal subgroup M2 of M12 (Gap notation) has
non-empty intersection with 2B, 4A and 5A. Hence

�(2B, 4A, 5A) − 	M2(2B, 4A, 5A) = 20 − 15 < |CM12(5A)| = 10.

This shows that �∗(2B, 4A, 5A) = 0 and 2B − 4A /∈ E(�(M12)). Again by
GAP, one can see that

�(2B, 4B, 5A) − 	M11(2B, 4B, 5A) = 20 − 15 < |CM12(5A)| = 10.

Then�∗(2B, 4B, 5A) = 0 and 2B−4B is not an edge in�(M12) and�(M12) ∼=
K14 − H3.

4. For the Mathieu group M24, the graph �(M24) has 25 vertices as follows:
For n > 2, all vertices nX are adjacent except 3A and 4B, since M24 is nX -

2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 7A
7B 8A 10A 11A 12A 12B 14A 14B 15A 15B 21A
21B 23A 23B

complementary generated for n > 2 and nX �= 3A, 4B. Clearly, 2A − 2B /∈
E(�(M24)), and for each conjugacy class t Z we have that �(2A, 3A, t Z) <

|CM24(t Z)|. Then, �∗(2A, 3A, t Z) = 0. Hence, M24 is not (2A, 3A)-generated.
Moreover, 2A− 4B /∈ E(�(M24)), since �(2A, 4B, 3A) = 1215, |CM24(3A)| =
1080 and the maximal subgroup M23 in triple (2a, 4a, 3a) has this property that
	M23(2a, 4a, 3a) = 540. On the other hand, 1215 − 540 = 675 < 1080 which
implies that �∗(2A, 4B, 3A) = 0 and �(M24) ∼= K25 − H4.

5. The sporadic group McL has 23 non-identity conjugacy classes as vertices;
According to Lemma 4.2(1),McL is nX -complementary generated for n ≥ 4, and

2A 3A 3B 4A 5A 5B 6A 6B 7A 7B
8A 9A 9B 10A 11A 11B 12A 14A 14B 15A
15B 30A 30B

it has only one conjugacy class of involutions. Then,we should check the adjacency
between the vertices 2A and 3Y , Y ∈ {A, B}. Our computations show that for any
conjugacy class t Z ,�(2A, 3Y, t Z) < |CMcL(t Z)|, which implies that 2A−3Y /∈
E(�(McL)), Y ∈ {A, B}. Hence, �(McL) ∼= K23 − {2A − 3A, 2A − 3B}.
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6. The Harada-Norton group HN has 53 non-identity conjugacy classes as follows:
Based on Lemma 4.2(11), HN is nX -complementary generated when nX �= 2A,

2A 2B 3A 3B 4A 4B 4C 5A · · · 5E 6A
6B 6C 7A 8A 8B 9A 10A · · · 10H 11A 12A
12B 12C 14A 15A 15B 15C 19A 19B 20A · · · 20E
21A 22A 25A 25B 30A 30B 30C 35A 35B 40A 40B

2B, 3A, 5A and 5B, which means that the degree of the other vertices equals
52. Also based on Lemma 4.1(3) HN is (p, q, r)-generated when (p, q, r) �=
(2, 3, 5). Thus, each vertex pX has degree 52 where p is a prime divisor of
|HN | except 2, 3 or 5. For each conjugacy class t Z , we have �(2A, nY, t Z) <

|CHN (t Z)|, where nY ∈ {3A, 5A, 5B}. Then, {2A − 3A, 2A − 5A, 2A − 5B} �

E(�(HN )) and also it is obvious that 2A−2B /∈ E(�(HN )). Our computations
show that these are the only pairs of conjugacy classes that cannot generate HN
and do not belong to the set of edges of Q-generating graph �(HN ). Hence,
�(HN ) ∼= K53 − H6.

7. Fi22 has 64 non-identity conjugacy classes as the vertices of �(Fi22) with three
conjugacy classes of involutions.

2A 2B 2C 3A 3B 3C 3D 4A · · · 4E 5A
6A · · · 6K 7A 8A 8B 8C 8D 9A 9B 9C
10A 10B 11A 11B 12A · · · 12K 13A 13B 14A 15A
16A 16B 18A 18B 18C 18D 20A 21A 22A 22B 24A
24B 30A

By Lemma 4.1(3) and 4.2(8), we conclude that in this graph the vertices pX and
qY are adjacent to all other vertices except when p = 2 and q = 3. Since for
every non-identity conjugacy class t Z ,

�(2A, 3Y, t Z) < |CFi22(t Z)|, Y �= A,

�Fi22(2A, 4Y, t Z) < |CFi22(t Z)|, Y ∈ {A, . . . , E},

we conclude that for these triples�∗ = 0 and {2A−3B, 2A−3C, 2A−3D, 2A−
4Y } � E(�(Fi22)), where Y ∈ {A, . . . , E}. Also our computations show that

�(2A, 5A, 30A) − 	2·U6(2)(2A, 5A, 30A) = 36 − 30 < |CFi22(30A)| = 30,

which means�∗ = 0 and 2A−5A /∈ E(�(Fi22)). Also 2A−6Y /∈ E(�(Fi22)),
Y ∈ {A, . . . , I } because for each vertex t Z , �(2A, 6Y, t Z) < |CFi22(t Z)|. Fi22
is not 6J -complementary generated and

�(2A, 6J, 14A) = 14 = 	2·U6(2)(2A, 6J, 14A)
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�(2A, 6J, 21A) = 21 = 	O+
8 (2):S3(2A, 6J, 21A)

�(2A, 6J, 24A) = 24 = 	O+
8 (2):S3(2A, 6J, 24A)

then 2A − 6J /∈ E(�(Fi22)). Besides

�(2A, 8A, 10B) − 	(2 ·U6(2)) = 45 − 25 < |CFi22(10B)| = 40

�(2A, 8A, 12K ) − 	(O+
8 (2) : S3) = 36 − 12 < |CFi22(12K )| = 36,

�(2A, 8A, 18D) − 	(2 ·U6(2)) = 36 − 18 < |CFi22(18D)| = 36

�(2A, 8A, 22A) − 	(2 ·U6(2)) = 22 − 22 < |CFi22(22A)|,

which means that in each case �∗ = 0, so 2A and 8A are not adjacent. Since

�(2A, 8B, 11Z) − 	(2 ·U6(2)) = 22 − 22 < |CFi22(11Z)|,
�(2A, 8B, 14A) − 	(2 ·U6(2)) = 14 − 14 < |CFi22(14A)|,

�(2A, 8B, 21A) − 	(O+
8 (2) : S3) = 21 − 21 < |CFi22(21A)|,

where Z ∈ {A, B},�∗ = 0 and 2A−8B /∈ E(�(Fi22)). Our computations show
that {2A − 9A, 2A − 12A, 2A − 12B, 2A − 12C, 2A − 12D} � E(�(Fi22)).

8. The group Fi23 has 97 non-identity conjugacy classes.
By Lemma 4.2(9), for n > 12 or n ∈ {7, 8, 10, 11}, Fi23 is nX -complementary

2A 2B 2C 3A 3B 3C 3D 4A 4B 4C 4D
5A 6A 6B · · · 6N 6O 7A 8A 8B 8C 9A
9B 9C 9D 9E 10A 10B 10C 11A 12A 12B · · ·
12O 13A 13B 14A 14B 15A 15B 16A 16B 17A 18A
18B · · · 18H 20A 20B 21A 22A 22B 22C 23A 23B
24A 24B 24C 26A 26B 27A 28A 30A 30B 30C 35A
36A 36B 39A 39B 42A 60A

generated which means deg(nX) = 96 for such n. If nX ∈ {6N , 6O, 9D, 9E,

12C, . . . , 12O}, deg(nX) = 96. Clearly, Fi23 is not 2X -complementary gener-
ated, and then {2A−2B, 2A−2C, 2B−2C} � E(�(Fi23)). For each conjugacy
class t Z , we have that

�(2A, 3Y, t Z) < |CFi23(t Z)|, Y ∈ {A, B,C, D},
�(2A, 4Y, t Z) < |CFi23(t Z)|, Y ∈ {A, B,C, D},
�(2A, 5Y, t Z) < |CFi23(t Z)|, Y = A,

�(2A, 6Y, t Z) < |CFi23(t Z)|, Y �= N , O,

�(2A, 12Y, t Z) < |CFi23(t Z)|, Y ∈ {A, B},
�(2A, 9Y, t Z) < |CFi23(t Z)|, Y ∈ {A, B}.
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For the pair (2A, 9C), our computations show that �(2A, 9C, 30C) = 30 =
|CFi23(30C)|. Besides, the maximal subgroup M = O+

8 (3) · 3 · 2 has intersection
with the conjugacy classes 2A, 9C and 30C , such that

�(2A, 9C, 30C) − 	M (2A, 9C, 30C) = 30 − 30 < |CFi23(30C)|,

then �∗(2A, 9C, 30C) = 0 and 2A − 9C /∈ E(�(Fi23)). For vertex 2B we
obtained that for each conjugacy class t Z

�(2B, 3Y, t Z) < |CFi23(t Z)|, Y ∈ {A, B,C},
�(2B, 6A, t Z) < |CFi23(t Z)|,

and also for t Z = 20A, since

�(2B, 4A, 20A) − 	2·Fi22(2B, 4A, 20A) = 165 − 55 < |CFi23(20A)| = 120,

2B − 4A /∈ E(�(Fi23)). Moreover,

�(2B, 6B, 18G) − 	O+
8 (3)·3·3(2B, 6B, 18G) = 81 − 81 < |CFi23(18G)| = 54,

and 2B − 6B /∈ E(�(Fi23)). The conjugacy class 2C is not adjacent to 4Y , Y ∈
{A, B}, because for each vertex t Z , �(2C, 4Y, t Z) < |CFi23(t Z)|. Consequently,
�(Fi23) ∼= K97 − H8.

9. The Conway group Co1 has 100 non-identity conjugacy classes as follows,

2A 2B 2C 3A 3B 3C 3D 4A · · · 4F 5A
5B 5C 6A · · · 6I 7A 7B 8A · · · 8F 9A
9B 9C 10A · · · 10F 11A 12A · · · 12M 14A 14B
15A · · · 15E 16A 16B 18A 18B 18C 20A 20B 20C
21A 21B 21C 22A 23A 23B 24A · · · 24F 26A 28A
28B 30A · · · 30E 33A 35A 36A 39A 39B 40A 42A
60A

which are the vertices of �(Co1). Based on Lemma 4.2(5), deg(nX) = 99, for
n ≥ 4 and nX /∈ {4A, 4B, 4C, 4D, 5A, 6A}. Since for each vertex t Z , we have

�(2A, 3A, t Z) < |CCo1(t Z)|, �(2B, 3A, t Z) < |CCo1(t Z)|,
�(3A, 5A, t Z) < |CCo1(t Z)|, �(3A, 4D, t Z) < |CCo1(t Z)|,
�(2A, 4C, t Z) < |CCo1(t Z)|, �(2A, 6A, t Z) < |CCo1(t Z)|,

then �∗ = 0 and {2A − 3A, 2B − 3A, 3A − 5A, 3A − 4D, 2A − 4C, 2A −
6A} � E(�(Co1)). For two vertices 2B and 3B, �(2B, 3B, t Z) = 84 >

|CCo1(t Z)| = 72 and there is a maximal subgroup M = 3.Suz.2, such that
	M (2B, 3B, 12L) = 24 and�(2B, 3B, 12L)−	M (2B, 3B, 12L) = 84−24 <
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72 which implies that �∗(2B, 3B, 12L) = 0 and 2B − 3B /∈ E(�(Co1)). Also
we have �(2A, 4B, 12L) = 96 > |CCo1(12L)| = 72, but

�(2A, 4B, 12L) − 	M (2A, 4B, 12L) = 96 − 24 < |CCo1(12L)|,

which means that (2A, 4B) is not a generating pair of Co1. Similarly, we have

�(2B, 4A, 12E) − 	M (2B, 4A, 12E) = 243 − 81 < |CCo1(12E)| = 216,

so the pair of (2B, 4A) does not generate Co1. For the conjugacy classes 2C
and 4A, our calculations show that �(2C, 4A, t Z) is greater than |CCo1(t Z)|, for
every vertex t Z . On the other hand, there is no maximal subgroup containing the
subgroup 〈2C, 4A〉 and so (2C, 4A) is a generating pair for Co1. This concludes
that �(Co1) ∼= K100 − H9.

10. The Conway group Co2 has 59 non-identity conjugacy classes as the vertices of
�(Co2) which are

2A 2B 2C 3A 3B 4A · · · 4G 5A 5B 6A
· · · 6F 7A 8A · · · 8F 9A 10A 10B 10C 11A
12A · · · 12H 14A 14B 14C 15A 15B 15C 16A 16B
18A 20A 20B 23A 23B 24A 24B 28A 30A 30B 30C

According to our calculation with GAP, we can see that for each vertex t Z ,
�(2A, 3Y, t Z), Y ∈ {A, B}, �(2A, 4Y, t Z), Y ∈ {A, B,C, D}, �(2B, 3A, t Z)

and �(2B, 4A, t Z) are less than |CCo2(t Z)|. Since the group generated by two
involutions is isomorphic to dihedral group, the conjugacy classes of the involu-
tions are not adjacent in �(Co2). Up to isomorphism, the Conway group Co2 has
eleven maximal subgroups m1,m2, . . . ,m11 as follows:

m1 = U6(2) · 2 m2 = 210 : M22 : 2 m3 = McL
m4 = 21 + 8 : s6 f 2 m5 = HS · 2 m6 = 21 + 4 + 6 · a8
m7 = U4(3) · D8 m8 = 2(4+10)(S5 × S3) m9 = M23

m10 = 31 + 4 : 21 + 4 · s5 m11 = 5(1+2) : 4S4
For two vertices 2B, 3B we have �(2B, 3B, 7A) = 91 > |CCo2(7A)| = 56. The
maximal subgroupm1 has non-empty intersectionwith these conjugacy classes and
	m1(2B, 3B, 7A) = 63, so 91− 63 < 56, which implies that �∗(2B, 3B, 7A) =
0. For vertices 2A, 4E and 4F we have,

�(2A, 4E, 10C) − 	m4(2A, 4E, 10C) = 50 − 17 < |CCo2(10C)| = 40,

�(2A, 4F, 11A) − 	m2(2A, 4F, 11A) = 11 − 11 < |CCo2(11A)| = 11.

Then �∗(2A, 4E, 10C) = 0 and �∗(2A, 4F, 11A) = 0. Since

�(2B, 4B, 10C) − 	m2(2B, 4B, 10C) = 40 − 30 < |CCo2(10C)| = 30,
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�(2B, 4C, 7A) − 	m1(2B, 4C, 7A) = 91 − 63 < |CCo2(7A)| = 56,

�(2B, 4D, 15A) − 	m1(2B, 4D, 15A) = 45 − 30 < |CCo2(15A)| = 30,

�(2B, 4E, 11A) − 	m1(2B, 4E, 11A) = 11 − 11 < |CCo2(11A)| = 11,

2B − 4Y /∈ E(�(Co2)), where Y ∈ {B,C, D, E}. For the vertices 2C and 4A,
we have that �(2C, 4A, 12G) = 84 > |CCo2(12G)| = 48 and the maximal
subgroups which have non-empty intersection with three conjugacy classes 2C ,
4A and 12G are conjugate to m1 or m4. Then

[� − (	m1 + 	m4)](2C, 4A, 12G) = 84 − (24 + 36) < |CCo2(12G)| = 48.

By Lemma 4.2(6), Co2 is 4G-, 5A-, 5B-generated, then they are adjacent to all
other vertices in �(Co2). On the other hand, the group Co2 is 6A-, 6B-, 6E- and
6F-complementary generated, but for the pair (2A, 6C), one can see that for each
vertex t Z ,

�∗(2A, 6C, t Z) ≤ (�Co2 − 	m1)(2A, 6C, t Z) < |CCo2(t Z)|,

where t Z ∈ {14A, 16B, 18A, 24A} and m1 is the only maximal subgroup of Co2
with non-empty intersection by 2A and 6C . Moreover, for the pair (2A, 6D), again
we have

�∗(2A, 6D, t Z) ≤ (�Co2 − 	m1)(2A, 6D, t Z) < |CCo2(t Z)|,

where t Z ∈ {7A, 9A, 10B, 11A, 16A, 18A}. Furthermore {2A−6C, 2A−6D} �

E(�(Co2)). Since Co2 is nX -complementary generated for n ≥ 7, for these
vertices, we have deg(nX) = 58 and �(Co2) ∼= K59 − H10.

11. The Conway group Co3 has 41 non-identity conjugacy classes as the vertices of
�(Co3) which are

2A 2B 3A 3B 3C 4A 4B 5A 5B 6A
6B 6C 6D 6E 7A 8A 8B 8C 9A 9B
10A 10B 11A 12A 12B 12C 14A 15A 15B 18A
20A 20B 21A 22A 22B 23A 23B 24A 24B 30A

By Lemma 4.1(3), Co3 is (pX, qY, 23Z)-generated for the primes p ≤ q and
pX �= qY , if and only if (pX, qY ) /∈ {(2A, 3A), (2A, 3B), (2B, 3A)}, then we
should obtain the adjacency of these pairs. Since for each conjugacy class t Z ,
�(2A, 3A, t Z) < |CCo3(t Z)|, then 2A − 3A /∈ E(�(Co3)). For two classes 2A
and 4A and each class t Z , we have �(2A, 4A, t Z) ≥ |CCo3(t Z)|, but there is a
maximal subgroup McL : 2 which is of order divisible by 8 such that

�(2A, 4A, 8B) − 	McL:2(2A, 4A, 8B) = 260 − 164 < |CCo3(8B)|,
�(2A, 4A, 10B) − 	McL:2(2A, 4A, 10B) = 30 − 25 < |CCo3(10B)|,
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�(2A, 4A, 24A) − 	McL:2(2A, 4A, 24A) = 24 − 24 < |CCo3(24A)|.

Then, 2A − 4A /∈ E(�(Co3)). For the vertices 2A and 3B, �(2A, 3B, 7A) =
63 > |CCo3(7A)| = 42, but for the maximal subgroup McL : 2 we have
	McL:2(2a, 3a, 7a) = 49, then

�∗ < �(2A, 3B, 7A) − 	McL:2(2a, 3a, 7a) = 63 − 49 < |CCo3(7A)| = 42

and 2A − 3B /∈ E(�(Co3)). Also for the conjugacy classes 2B and 3A, since
�(2B, 3A, 10B) = |CCo3(10B)| = 20 and 	McL:2(2b, 3a, 10b) = 10,

�∗ < �(2B, 3A, 10B) − 	McL:2(2b, 3a, 10b) = 20 − 10 < |CCo3(10B)| = 20,

whichmeans that�∗ = 0 and 2B−3A /∈ E(�(Co3)). Our calculations with GAP
show that for each x ∈ 2A and y ∈ 4B, 〈x, y〉 is a proper subgroup in Co3 and
so it is not a generating pair. Hence, 2A − 4B /∈ E(�(Co3)). Also, the Conway
group Co3 is 3C-complementary generated, deg(3C) = 40 and similarly for all
nX , n > 4, deg(nX) = 40. As a result, we can see that �(Co3) ∼= K41 − H11.

12. The Suzuki group Suz has 42 non-identity conjugacy classes in which there are
two classes of involutions that are not adjacent in Q-generating graph �(Suz).
The vertices are listed as follows

2A 2B 3A 3B 3C 4A 4B 4C 4D 5A 5B
6A · · · 6E 7A 8A 8B 8C 9A 9B 10A 10B
11A 12A · · · 12E 13A 13B 14A 15A 15B 15C 18A
18B 18B 20A 21A 21B 24A

By Lemma 4.2(10), since Suz is 3C-complementary generated, deg(3C) = 41.
Also for n ≥ 4, deg(nX) = 41 except when nX = 4A or 6A. For each conjugacy
class t Z , we have that

�(2A, 3A, t Z) < |CSuz(t Z)|, �(2A, 4A, t Z) < |CSuz(t Z)|,
�(3A, 3B, t Z) < |CSuz(t Z)|, �(3A, 4A, t Z) < |CSuz(t Z)|.

Then, {2A − 3A, 2A − 4A, 3A − 3B, 3A − 4A} � E(�(Suz)) and for the pair
(3A, 6A), our calculations show that

�(3A, 6A, 7A) − 	G2(4)(3A, 6A, 7A) = 112 − 63 < |CSuz(7A)| = 84,

where G2(4) is the maximal subgroup of Suz which contains this triple. Hence,
�∗ = 0 and 3A − 6A /∈ E(�(Suz)). Thus �(Suz) ∼= K42 − H12.

13. TheHigman–Sims groupHS has 23 non-identity conjugacy classes as the vertices
of�(HS), where 2A−2B /∈ E(�(HS)) and based on Lemma 4.2(12),HS is nX -
complementary generated for nX = 4C or n ≥ 5, so for these vertices deg(nX) =
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22. But according to the computations by GAP and [26], we see that for every
conjugacy class t Z , �(2A, 3A, t Z) < |CHS(t Z)|, �(2A, 4A, t Z) < |CHS(t Z)|
and �(2A, 4B, t Z) < |CHS(t Z)|. For example

2A 2B 3A 4A 4B 4C 5A 5B 5C 6A
6B 7A 8A 8B 8C 10A 10B 11A 11B 12A
15A 20A 20B

�(2A, 4B, 6B) − 	M22(2A, 4B, 6B) = 48 − 36 < |CHS(6B)|,
�(2A, 4B, 8A) − 	M22(2A, 4B, 8A) = 46 − 44 < |CHS(8A)|,

�(2A, 4B, 11X) − 	M22(2A, 4B, 11X) = 22 − 22 < |CHS(11X)|,
�(2A, 4B, 12A) − 	S8(2A, 4B, 12A) = 18 − 18 < |CHS(12A)|,
�(2A, 4B, 15A) − 	S8(2A, 4B, 15A) = 15 − 15 < |CHS(15A)|,

and for the triple (2A, 4B, 7A), the maximal subgroup M22 has two conjugacy
classes with non-empty intersection with these three classes, saym1 andm2. Then,
we have

�∗ < � − (	m1 + 	m2 − 	m1∩m2)(2A, 4B, 7A) = 7 − (28 − 21) = 0.

Then, {2A − 3A, 2A − 4A, 2A − 4B} � E(�(HS)). The only conjugacy class
which has a non-empty intersection with 2B and 4A is 7A and �(2B, 4A, 7A) =
7 = |CHS(7A)|. The maximal subgroupU3(5) ·2 has non-empty intersection with
the classes of 2B, 4A and 7A such that

�(2B, 4A, 7A) − 	U3(5)·2(2B, 4A, 7A) = 7 − 7 < |CHS(7A)|,

then 2B − 4A /∈ E(�(HS)) . Hence �(HS) ∼= K23 − H13.

This completes our argument. �


We end this paper with the following theorem that its proof is similar to those cases
given in Theorem 4.3 and so omitted.

Theorem 4.4 If G is one of the following groups, then �(G) is obtained by removing
an edge from a complete graph and we have that

1. �(M11) ∼= K9 − {2A − 3A},
2. �(M22) ∼= K11 − {2A − 3A},
3. �(M23) ∼= K16 − {2A − 3A},
4. �(Ru) ∼= K35 − {2A − 2B},
5. �(J4) ∼= K61 − {2A − 2B},
6. �(Ly) ∼= K52 − {2A − 3A}.
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