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1 Introduction

In this paper we consider the following Kirchhoff-type problem

{−(a + b
∫
�

|∇u|2dx)�u = f (x, u), in �,

u = 0, on ∂�,
(1.1)

where � ⊂ R
N , N ≥ 3, is a bounded smooth domain. The problem (1.1) is related to

the stationary analogue of the equation

utt −
(

a + b
∫

�

|∇u|2dx

)
�u = f (x, u) (1.2)

proposed by Kirchhoff [8] as an existence of the classical D’Alembert’s wave equa-
tions for free vibration of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. Equation (1.2)
received much attention only after Lions [12] introduced an abstract framework to the
problem. In recent years, the Kirchhoff-type problem on a bounded domain � ⊂ R

N

or on RN has been studied by many authors, see [1–3,5–7,9–11,14,15,17,19,21–28]
and references therein. To obtain the existence of solution by applying the Moun-
tain Pass theorem or Morse theory, the authors have to impose a 4-superlinear or
4-asymptotically linear growth condition on the nonlinearity. For example, Perera and
Zhang [17] considered the case where f (x, ·) is asymptotically linear near zero and
asymptotically 4-linear at infinity; they obtained a nontrivial solution of the problem
by using the Yang index and critical group. For the cases when f (x, ·) is 4-sublinear,
4-superlinear and asymptotically 4-linear at infinity, Zhang and Perera [26] obtained
the existence ofmultiple and sign changing solutions by using variational methods and
invariant sets of descent flow. He and Zou [5,6] obtained infinitely many solutions by
using the local minimax methods and the fountain theorems under the 4-superlinear
condition. Sun and Liu [20] obtained nontrivial solutions via Morse theory when the
nonlinearity is superlinear near zero but asymptotically 4-linear at infinity, and the
nonlinearity is asymptotically linear near zero but 4-superlinear at infinity. Recently,
Li et al. [9] discussed the existence of positive solutions to the 2-superlinear Kirchhoff
problem in R

N , N ≥ 3; they obtained at least one positive radial solution by using
truncation technique, Pohozaev-type identity and variational methods. Later, Zhang
et al. [28] considered the 2-superlinear Kirchhoff problem in a smooth bounded con-
vex domain; they established the existence of one positive solution using iterative
technique, Pohozaev-type identity and variational methods.

Motivated by Li et al. [9] and Zhang et al. [28], in this paper we consider the
2-superlinear Kirchhoff problem in a bounded smooth domain but not necessarily
convex. By using the iterative technique proposed in Figuereido et al. [4] and the
Mountain Pass theorem, one positive solution and one negative solution for (1.1) will
be obtained. Moreover, we will get a sign changing solution by combining the iterative
technique and the Nehari method.
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Multiplicity of Solutions for Kirchhoff-Type Problem... 1659

We make the following assumptions:

(H0) f ∈ C1(� × R,R) and there exist a1 > 0, p ∈ (1, N+2
N−2 ) such that

f ′(x, t) ≤ a1(1 + |t |p−1),∀x ∈ �, t ∈ R,

where f ′ = ∂ f
∂t ;

(H1) limt→0
f (x,t)

t = 0 uniformly for x ∈ �;
(H2) There exist constant θ > 2 and t0 > 0 such that

0 < θ F(x, t) < t f (x, t),∀x ∈ �, |t | ≥ t0

where F(x, t) = ∫ t
0 f (x, s)ds;

(H3) f ′(x, t) >
f (x,t)

t for all t 
= 0, x ∈ �.

Our main result is the following theorem.

Theorem 1.1 Assume that (H0)–(H3) hold. Then, there exists a constant b0 > 0 such
that for any b ∈ [0, b0], the problem (1.1) has at least three nontrivial solutions;
among them, one is positive, one is negative, and one is sign changing.

The paper is organized as follows. In Sect. 2 we will prove the existence of positive
and negative solutions for (1.1) by using the Mountain Pass theorem and the iterative
technique. In Sect. 3, the existence of sign changing solution for (1.1) will be proved
via the Nehari method and the iterative technique, and we will prove Theorem 1.1.

2 Positive and Negative Solutions

The aim of this section is to prove the positive and negative solutions for (1.1). We
consider only the existence of positive solutions for (1.1), and the existence of negative
solutions can be done by a similar argument.

Let E = H1
0 (�) be the usual Sobolev space equipped with the following inner

product and norm,

〈u, v〉 =
∫

�

∇u · ∇vdx, ‖u‖ =
(∫

�

|∇u|2dx

) 1
2

.

Let

f+(x, t) =
{

f (x, t), if t ≥ 0,

0, if t < 0,

and

F+(x, t) =
∫ t

0
f+(x, s)ds,

then we can conclude easily that f+(x, t) also satisfies (H0), (H1), (H2) for t ≥ t0
and (H3) for t > 0.
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1660 G. Liu et al.

For any given w ∈ E , let us consider the following problem

{−(a + b
∫
�

|∇w|2dx)�u = f+(x, u), in �,

u = 0, on ∂�.
(2.1)

Define Iw+(u) by

Iw+(u) = 1

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx −
∫

�

F+(x, u)dx .

By (H0), Iw+ ∈ C2(E,R) is weakly lower semi-continuous, and it is clearly that the
weak solution of the problem (2.1) corresponds to the critical point of the functional
Iw+, see [18].

First, we prove that Iw+(u) satisfies the (PS) condition.

Lemma 2.1 Assume that (H0), (H2) hold, then Iw+(u) satisfies the (PS) condition.

Proof Let {un} be a sequence such that |Iw+(un)| ≤ M for some constant M > 0 and
I ′
w+(un) → 0 as n → ∞. By a standard argument (see [18]), it suffices to prove that

{un} is bounded. From (H0) and (H2), there exists C0 > 0 such that

M + o(‖un‖) ≥ Iw+(un) − 1

θ
(I ′

w+(un), un)

≥
(
1

2
− 1

θ

)
a

∫
�

|∇un|2dx +
∫

�

(
1

θ
f+(x, un)un − F+(x, un)

)
dx

≥
(
1

2
− 1

θ

)
a‖un‖2 +

∫
un>t0

(
1

θ
f+(x, un)un − F+(x, un)

)
dx − C0

≥
(
1

2
− 1

θ

)
a‖un‖2 − C0. (2.2)

This implies that {un} is bounded in E . ��

Next, we prove that Iw+ has the geometry of the Mountain Pass theorem.

Lemma 2.2 Assume that (H0), (H1) hold, then there exist ρ > 0 and α > 0, which
are independent of w, such that for any u ∈ E and ‖u‖ = ρ,

Iw+(u) ≥ α.

Proof By (H0) and (H1), for any ε > 0, there exists Cε > 0 such that

|F+(x, u(x))| ≤ ε

2
|u|2 + Cε|u|p+1.
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Choose ε small enough, by Sobolev inequality we have that

Iw+(u) ≥ a

2

∫
�

|∇u|2dx −
∫

�

F+(x, u)dx

≥ a

2

∫
�

|∇u|2dx − ε

2

∫
�

|u|2dx − Cε

∫
�

|u|p+1dx

≥ 1

2

(
a − ε

λ1

)
‖u‖2 − C

′
ε‖u‖p+1

≥
(a

4
− C

′
1‖u‖p−1

)
‖u‖2 (2.3)

where C
′
1 is a constant independent of w and λ1 is the first eigenvalue of −�. Since

p > 1, then we can choose ρ > 0 such that C
′
1ρ

p−1 ≤ a
8 . Let α = a

8ρ2, then by (2.3),
for all u ∈ ∂ Bρ(0), we have that Iw+(u) ≥ α. ��
Lemma 2.3 Assume that (H0), (H2) hold, then for any given positive function v0 ∈ E
with ‖v0‖ = 1, there exists T > 0 such that for all s ≥ T ,

Iw+(sv0) ≤ 0.

Proof By (H2), there exist positive constants C1, C2 such that

F+(x, t) ≥ C1|t |θ − C2.

Hence, for s ≥ 0 we have

Iw+(sv0) = 1

2

(
a + b

∫
�

|∇w|2dx

)
‖sv0‖2 −

∫
�

F+(x, sv0)dx

≤ 1

2

(
a + b

∫
�

|∇w|2dx

)
s2 − C1sθ

∫
�

|v0|θdx + C2|�|,

where |�| is the Lebesgue measure of �, combining with θ > 2, we conclude that
there exists T > 0 such that Iw+(sv0) < 0 for s ≥ T . ��
Theorem 2.1 Assume (H0)–(H2) hold, then there exists a constant b1 > 0 such that
for b ∈ [0, b1], (1.1) has at least one positive solution and one negative solution.

Proof The proof will be divided into three steps.

Step 1 For any givenw ∈ E , (2.1) has a positive solution uw with ‖uw‖ ≥ c1 for some
constant c1 > 0 independent of w and b.

Let
cw = inf

g∈

max

u∈g([0,1]) Iw+(u), (2.4)

where


 = {g ∈ C([0, 1], E) | g(0) = 0, g(1) = T v0}.
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1662 G. Liu et al.

By Lemmas 2.1, 2.2, 2.3 and the well-known Mountain Pass theorem [18], cw is a
critical value of Iw+, so there is a uw ∈ E such that Iw+(uw) = cw and I ′

w+(uw) = 0.
Hence, uw satisfies

{−(a + b
∫
�

|∇w|2dx)�uw = f+(x, uw), in �,

uw = 0, on ∂�.
(2.5)

Multiplying Eq. (2.5) by u−
w with u−

w = min{uw, 0} and integrating on �, we get

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u−
w|2dx =

∫
�

f+(x, uw)u−
w = 0,

so u−
w ≡ 0. This shows uw is a positive solution of (2.1).

On the other hand, by (H0) and (H1), given ε > 0, there exists a positive constant
Cε, such that

| f+(x, t)| ≤ ε|t | + Cε|t |p,

then using Eq. (2.5), by Sobolev inequality we obtain

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇uw|2dx =
∫

�

f+(x, uw)uwdx

≤ ε

∫
�

|uw|2dx + Cε

∫
�

|uw|p+1dx

≤ ε

λ1

∫
�

|∇uw|2dx + C ′
ε

(∫
�

|∇uw|2dx

) p+1
2 ;

thus,

(
a − ε

λ1

)
‖uw‖2 ≤ C ′

ε‖uw‖p+1,

which implies that there exists a positive constant c1, independent of w and b, such
that

‖uw‖ ≥ c1. (2.6)

Step 2 We construct a bounded positive functions sequence {un} in E such that
I ′
un−1+(un) = 0 for any n ≥ 2.

We fix a constant L > 0 throughout this paper. Let b(R) = L
R2 for R > 0, then

for any w ∈ E with ‖w‖ ≤ R, any positive function v0 ∈ E with ‖v0‖ = 1 and
b ∈ [0, b(R)], by (2.4) and (H2), we have

cw = Iw+(uw)

≤ max
t≥0

Iw+(tv0)
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≤ max
t≥0

{
1

2
(a + bR2)‖tv0‖2 − 1

2

∫
�

F+(tv0)dx

}

≤ max
t≥0

{
1

2
(a + L)t2 − 1

2

∫
�

(C1tθ |v0|θ − C2)dx

}

≤ C1(L),

where C1(L) is a constant independent of b, R and w. On the other hand, since
〈I ′

w+(uw), uw〉 = 0, by (H2),

cw = Iw+(uw) − 1

θ
〈I ′

w+(uw), uw〉

=
(
1

2
− 1

θ

) (
a + b

∫
�

|∇w|2dx

) ∫
�

|∇uw|2dx

+
∫

�

(
1

θ
f+(x, uw)uw − F+(x, uw)

)
dx

≥
(
1

2
− 1

θ

) (
a + b

∫
�

|∇w|2dx

) ∫
�

|∇uw|2dx − C0.

Hence,

∫
�

|∇uw|2dx ≤ cw + C0( 1
2 − 1

θ

) (
a + b

∫
�

|∇w|2dx
) ≤ 2θ(cw + C0)

(θ − 2)a
≤ 2θC ′

1(L)

(θ − 2)a
,

where C ′
1(L) = C1(L) + C0.

Set R1 =
√

2θC ′
1(L)

(θ−2)a and b1 = b(R1), then for any w ∈ E with ‖w‖ ≤ R1 and
b ∈ [0, b1], Iw+ has a critical point uw with uw > 0 and c1 ≤ ‖uw‖ ≤ R1. Let
w = u1 for some u1 ∈ E with u1 > 0 and ‖u1‖ ≤ R1, then Iu1+ has a critical point
u2 with u2 > 0 and c1 ≤ ‖u2‖ ≤ R1. Again, let w = u2, then Iu2+ has a critical
point u3 with u3 > 0 and c1 ≤ ‖u3‖ ≤ R1. By induction, we get a sequence {un}with
I ′
un−1+(un) = 0, un > 0 and c1 ≤ ‖un‖ ≤ R1.

Step 3 We prove that un → ū in E for some ū ∈ E up to a subsequence and ū is a
positive solution of (1.1).

Since ‖un‖ ≤ R1, then there exists ū ∈ E such that un ⇀ ū in E and un → ū in
L p+1(�) up to a subsequence. By (H0), we have

I ′
un−1+(ū)(un − ū) =

(
a + b

∫
�

|∇un−1|2dx

) ∫
�

∇ū · ∇(un − ū)dx

−
∫

�

f+(x, ū)(un − ū)dx

→ 0.
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Thus,

0 = lim
n→∞[I ′

un−1+(un)(un − ū) − I ′
un−1+(ū)(un − ū)]

= lim
n→∞

[(
a + b

∫
�

|∇un−1|2dx

) ∫
�

|∇(un − ū)|2dx

−
∫

�

( f+(x, un) − f+(x, ū))(un − ū)dx

]

= lim
n→∞

(
a + b

∫
�

|∇un−1|2dx

)
‖un − ū‖2,

which means that un → ū in E as n → ∞. Then, for any ϕ ∈ E , we have

0 = lim
n→∞ I ′

un−1+(un)ϕ

= lim
n→∞

(
a + b

∫
�

|∇un−1|2dx

) ∫
�

∇un · ∇ϕdx −
∫

�

f+(x, un)ϕdx

=
(

a + b
∫

�

|∇ū|2dx

) ∫
�

∇ū · ∇ϕ −
∫

�

f+(x, ū)ϕdx

= I ′̄
u+(ū)ϕ.

Hence, ū is a critical point of Iū+, and ū satisfies

{−(a + b
∫
�

|∇ū|2dx)�ū = f+(x, ū), in �,

ū = 0, on ∂�.
(2.7)

Again by multiplying equation (2.7) by ū− with ū− = min{ū, 0} and integrating on
�, we get

(
a + b

∫
�

|∇ū|2dx

) ∫
�

|∇ū−|2dx =
∫

�

f+(x, ū)ū−dx = 0,

which means that
ū− ≡ 0. (2.8)

On the other hand, since un → ū in E and ‖un‖ ≥ c1, we have ‖ū‖ ≥ c1. Combined
with (2.8) it proves that ū is a positive solution of (2.7). Since f+(x, ū) = f (x, ū), ū
is also a positive solution of (1.1).

By a similar argument, we can prove that for b ∈ [0, b1], (1.1) also has at least one
negative solution. ��

3 Sign Changing Solution

In this section, we first study the sign changing solution for (1.1) using the Nehari
method proposed by Nehari[16] and then give the proof of Theorem 1.1.
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For any w ∈ E , we consider the following problem

{−(a + b
∫
�

|∇w|2dx)�u = f (x, u), in �,

u = 0, on ∂�.
(3.1)

The associated functional corresponding to (3.1) is Iw : E → R,

Iw(u) = 1

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx −
∫

�

F(x, u)dx .

By (H0), Iw ∈ C2(E,R) is weakly lower semi-continuous and the weak solution of
the problem (3.1) corresponds to the critical point of the functional Iw, see [18].

Define

Gw(u) = 〈I
′
w(u), u〉 =

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx −
∫

�

f (x, u)udx,

Nw = {u ∈ H1
0 (�)\{0} | Gw(u) = 0},

Sw = {u ∈ Nw | u+ ∈ Nw, u− ∈ Nw},

where u+ = max{u, 0}, u− = min{u, 0}. The set Nw is called Nehari manifold.
Obviously, any sign changing solutions of (3.1) must be on Sw.

Lemma 3.1 Assume that (H0)–(H3) hold, then for each u ∈ E\{0} there exists unique
t = t (u) > 0 such that t (u)u ∈ Nw .

Proof Similar as Lemma 2.2, there exist α > 0 and δ > 0 such that Iw(u) > 0 for all
u ∈ Bδ(0)\{0} and Iw(u) ≥ α for all u ∈ ∂ Bδ(0).

Next we prove that for any u ∈ E\{0}, Iw(tu) → −∞, as t → ∞. By (H2),

Iw(tu) = t2

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx −
∫

�

F(x, tu)dx

≤ t2

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx − C1tθ
∫

�

|u|θdx + C2|�|.

Since θ > 2, we have Iw(tu) → −∞, as t → ∞.
For each fixed u ∈ E\{0}, let gw(t) = Iw(tu) for t > 0, then from the above

argument, gw(t) has at least one maximum point with maximum value greater than α.
We will prove that gw(t) has a unique critical point for t > 0. Noticed that

g
′
w(t) = (I

′
w(tu), u) =

(
a + b

∫
�

|∇w|2dx

) ∫
�

t |∇u|2dx −
∫

�

f (x, tu)udx,

g
′′
w(t) =

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx −
∫

�

f
′
(x, tu)u2dx,
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1666 G. Liu et al.

by (H3), for every critical point t of gw(t), we have

g
′′
w(t) =

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx −
∫

�

f
′
(x, tu)u2dx

=
∫

�

f (x, tu)u

t
dx −

∫
�

f
′
(x, tu)u2dx

= 1

t2

∫
�

f (x, tu)tu − f
′
(x, tu)(tu)2dx < 0.

This means that every critical point of gw(t) must be a strict local maximum; hence,
gw(t) has a unique critical point, which is denoted by t (u).

Finally, by

(I
′
w(t (u)u), t (u)u) = t (u)(I

′
w(t (u)u), u) = t (u)g

′
w(t (u)) = 0,

we obtain that t (u)u ∈ Nw. ��
Lemma 3.2 There exists a constant c2 > 0 independent of w such that ‖u‖ ≥ c2 for
all u ∈ Nw.

Proof It follows from u ∈ Nw that

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u|2dx =
∫

�

f (x, u)udx .

By (H0) and (H1), for given ε > 0, there exists Cε > 0 such that

| f (x, u)| ≤ ε|u| + Cε|u|p,

then we have
(

a + b
∫

�

|∇w|2dx

) ∫
�

|∇u|2dx ≤ ε

∫
�

|u|2dx + Cε

∫
�

|u|p+1dx .

Using Sobolev inequality, we obtain

(
a − ε

λ1

)
‖u‖2 ≤ C

′
ε‖u‖p+1,

which implies that there exists a constant c2 > 0 independent ofw such that ‖u‖ ≥ c2
for all u ∈ Nw. ��

Define m1 = infSw
Iw, then it is clear that

m1 ≥ inf
∂ Bδ(0)

Iw ≥ α > 0.
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Lemma 3.3 m1 is achieved at some uw ∈ Sw.

Proof Let {un} be a minimizing sequence on Sw such that Iw(un) → m1, then

1

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇un|2dx −
∫

�

F(x, un)dx = m1 + o(1) ≤ C3,

(3.2)(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇un|2dx −
∫

�

f (x, un)undx = 0, (3.3)

where C3 > 0 is a constant. From (3.2), (3.3) and (H2) we have that

θ − 2

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇un|2dx ≤ C3

+
∫

�

(θ F(x, un) − f (x, un)un)dx ≤ C4;

thus, {un} is bounded in E . Then, up to a subsequence, un ⇀ u and u±
n ⇀ u± in E .

Now we claim that u+ 
≡ 0 and u− 
≡ 0. In fact, if u+ ≡ 0, then u+
n → 0 in

L p+1(�), so by u+
n ∈ Nw and (H0), we get

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇u+
n |2dx =

∫
�

f (x, u+
n )u+

n dx → 0,

this is a contradiction with Lemma 3.2. Similarly, we can prove that u− 
≡ 0.
By Lemma 3.1, there exist t, s > 0, such that tu+ ∈ Nw and su− ∈ Nw, and hence

tu+ + su− ∈ Sw. Furthermore, since Iw(u) is weakly lower semi-continuous, we get

m1 ≤ Iw(tu+ + su−) = Iw(tu+) + Iw(su−)

≤ lim inf
n→∞ Iw(tu+

n ) + lim inf
n→∞ Iw(su−)

≤ lim inf
n→∞ Iw(u+

n ) + lim inf
n→∞ Iw(u−

n )

≤ lim inf
n→∞ (Iw(u+

n ) + Iw(u−
n ))

= lim inf
n→∞ (Iw(un)) = m1.

Let uw = tu+ + su−, then Iw(uw) = m1. ��
In what follows we prove that the minimizer uw of Iw on Sw is a critical point of

Iw, here we use an argument similar as [13].

Lemma 3.4 If Iw(uw) = m1 for some uw ∈ Sw, then uw is a critical point of Iw.

Proof If uw is not a critical point of Iw, then there exists ϕ ∈ C∞
0 (�) such that

〈I
′
w(uw), ϕ〉 ≤ −1;

123



1668 G. Liu et al.

thus, there exists ε0 > 0 such that for |t − 1| ≤ ε0, |s − 1| ≤ ε0, and |σ | ≤ ε0,

〈I
′
w(tu+

w + su−
w + σϕ), ϕ〉 ≤ −1

2
.

Let η = η(t, s) ≥ 0, (t, s) ∈ T = [ 12 , 3
2 ] × [ 12 , 3

2 ] be a cut-off function such that
η(t, s) = 1, if |t − 1| ≤ 1

2ε0 and |s − 1| ≤ 1
2ε0, η(t, s) = 0, if |t − 1| ≥ ε0 or

|s − 1| ≥ ε0. If |t − 1| ≤ ε0 and |s − 1| ≤ ε0, then

Iw(tu+
w + su−

w + ε0η(t, s)ϕ)

= Iw(tu+
w + su−

w) +
∫ 1

0
〈I

′
w(tu+

w + su−
w + με0η(t, s)ϕ), ε0η(t, s)ϕ〉dμ

≤ Iw(tu+
w + su−

w) − 1

2
ε0η(t, s). (3.4)

For |t − 1| ≥ ε0 or |s − 1| ≥ ε0, since η(t, s) = 0, the above estimate is trivial. Since
uw ∈ Sw, for (t, s) 
= (1, 1), we have Iw(tu+

w + su−
w) < Iw(uw). Then, by (3.4), for

(t, s) 
= (1, 1),

Iw(tu+
w + su−

w + ε0η(t, s)ϕ) ≤ Iw(tu+
w + su−

w) < Iw(uw),

for (t, s) = (1, 1),

Iw(u+
w + u−

w + ε0η(t, s)ϕ) ≤ Iw(uw) − 1

2
ε0η(1, 1) = Iw(uw) − 1

2
ε0.

Hence,

sup
(t,s)∈T

Iw(tu+
w + su−

w + ε0η(t, s)ϕ) < Iw(uw) = m1,

which implies that for all (t, s) ∈ T , tu+
w + su−

w + ε0η(t, s)ϕ /∈ Sw. We will show
that there must be (t0, s0) ∈ T such that t0u+

w + s0u−
w + ε0η(t0, s0)ϕ ∈ Sw, then this

gives a contradiction.
For 0 ≤ ε ≤ ε0, define hε : T → H1

0 (�) by

hε(t, s) = tu+
w + su−

w + εη(t, s)ϕ

and Hε : T → R
2 by

Hε(t, s) = (Gw(hε(t, s)+), Gw(hε(t, s)−)).

For all (t, s) ∈ ∂T , η(t, s) = 0, then hε(t, s) = tu+
w + su−

w ; thus, for all (t, s) ∈ ∂T
and 0 ≤ ε ≤ ε0,
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Hε(t, s) = (Gw((tu+
w + su−

w)+), Gw((tu+
w + su−

w)−))

= (Gw(tu+
w), Gw(su−

w))


= (0, 0).

Hence, by the homotopy invariance of Brouwer degree, we have

deg(Hε0(t, s), T, (0, 0)) = deg(H0(t, s), T, (0, 0)). (3.5)

Next we shall prove that

deg(H0(t, s), T, (0, 0)) = 1.

Notice that H0(t, s) = (Gw(tu+
w), Gw(su−

w)), and we denote

a(t) = Gw(tu+
w), b(s) = Gw(su−

w).

By u+
w ∈ Nw and (H3) we have

a
′
(1) = 〈G ′

w(u+
w), u+

w〉
=

(
a + b

∫
�

|∇w|2dx

) ∫
�

2|∇u+
w |2dx −

∫
�

[
f

′
(x, u+

w)(u+
w)2 + f (x, u+

w)u+
w

]
dx

=
∫

�

2 f (x, u+
w)u+

wdx −
∫

�

[
f

′
(x, u+

w)(u+
w)2 + f (x, u+

w)u+
w

]
dx

=
∫

�

[
f (x, u+

w)u+
w − f

′
(x, u+

w)(u+
w)2

]
dx < 0.

Similarly, b
′
(1) < 0. By Lemma 3.1, (t, s) = (1, 1) is the unique solution of

H0(t, s) = (a(t), b(s)) = (0, 0). Then, by the definition of Brouwer degree, clearly
we have

deg(H0(t, s), T, (0, 0)) = 1.

Thus, by (3.5) we have

deg(Hε0(t, s), T, 0) = 1 
= 0.

Therefore, there must exists (t0, s0) ∈ T such that

Hε0(t0, s0) = (Gw((t0u+
w + s0u−

w + ε0η(t0, s0)ϕ)+),

Gw((t0u+
w + s0u−

w + ε0η(t0, s0)ϕ)−))

= (0, 0),

which means that (t0u+
w + s0u−

w + ε0η(t0, s0)ϕ ∈ Sw. ��
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Now we can state and prove the existence of sign changing solution for (1.1).

Theorem 3.1 Assume (H0)–(H3) hold, then there exists a constant b2 > 0 such that
for any b ∈ [0, b2], (1.1) has at least one sign changing solution.

Proof First we fix a function v ∈ E with v+ 
= 0 and v− 
= 0. Thanks to Lemma 3.3
and Lemma 3.4, we get a minimizer uw of Iw on Sw and I ′

w(uw) = 0. For the fixed
constant L > 0 as in the proof of Theorem 2.1, recall that b(R) = L

R2 for R > 0.
By Lemma 3.1, (H2), and notice that uw is a minimizer of Iw on Sw, for w ∈ E with
‖w‖ ≤ R and b ∈ [0, b(R)], clearly we have

Iw(uw) ≤ sup
t,s>0

Iw(tv+ + sv−)

≤ sup
t>0

(
t2

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇v+|2dx − C1tθ
∫

�

|v+|θ + C2|�|
)

+ sup
s>0

(
s2

2

(
a+b

∫
�

|∇w|2dx

) ∫
�

|∇v−|2dx−C1sθ

∫
�

|v−|θ +C2|�|
)

≤ sup
t>0

(
t2

2
(a + L)

∫
�

|∇v+|2dx − C1tθ
∫

�

|v+|θ + C2|�|
)

+ sup
s>0

(
s2

2
(a + L)

∫
�

|∇v−|2dx − C1sθ

∫
�

|v−|θ + C2|�|
)

≤ C2(L),

where C2(L) > 0 is a constant independent of b, R and w, and the last inequality
follows from θ > 2. Since uw is a critical point of Iw, by (H2) we have

1

2

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇uw|2dx

= Iw(uw) +
∫

�

F(x, uw)dx

≤ C2(L) +
∫

�

F(x, uw)dx

≤ C2(L) + 1

θ

∫
�

f (x, uw)uwdx + C0

= C ′
2(L) + 1

θ

(
a + b

∫
�

|∇w|2dx

) ∫
�

|∇uw|2dx,

where C ′
2(L) = C2(L) + C0, then

‖uw‖2 ≤ C ′
2(L)( 1

2 − 1
θ

) (
a + b

∫
�

|∇w|2dx
) ≤ 2θC ′

2(L)

(θ − 2)a
. (3.6)

Set R2 =
√

2θC ′
2(L)

(θ−2)a and b2 = b(R2). For any w ∈ E with ‖w‖ ≤ R2 and
0 ≤ b ≤ b2, by Lemma 3.4 and (3.6), Iw has a critical point uw ∈ Sw with ‖uw‖ ≤ R2.
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Let w = u1 for some u1 ∈ E with ‖u1‖ ≤ R2, then Iu1 has a critical point u2 with
u2 ∈ Su1 and ‖u2‖ ≤ R2. Again, let w = u2, then Iu2 has a critical point u3 ∈ Su2
with ‖u3‖ ≤ R2. By induction, we get a sequence {un}with I ′

un−1
(un) = 0, un ∈ Sun−1

and ‖un‖ ≤ R2.
Since ‖un‖ ≤ R2, we have un ⇀ ũ in E and un → ũ in L p+1(�) up to a

subsequence. Then, by (H0), we have

I ′
un−1

(ũ)(un − ũ) =
(

a + b
∫

�

|∇un−1|2dx

) ∫
�

∇ũ · ∇(un − ũ)dx

−
∫

�

f (x, ũ)(un − ũ)dx

→ 0.

Thus,

0 = lim
n→∞[I ′

un−1
(un)(un − ũ) − I ′

un−1
(ũ)(un − ũ)]

= lim
n→∞

[
(a + b

∫
�

|∇un−1|2dx)

∫
�

|∇(un − ũ)|2dx

−
∫

�

( f (x, un) − f (x, ũ))(un − ũ)dx

]

= lim
n→∞

(
a + b

∫
�

|∇un−1|2dx

)
‖un − ũ‖2,

which means that un → ũ in E as n → ∞. Then, for any ϕ ∈ E , we have

0 = lim
n→∞ I ′

un−1
(un)ϕ

= lim
n→∞

(
a + b

∫
�

|∇un−1|2dx

) ∫
�

∇un · ∇ϕ −
∫

�

( f (x, un)ϕ

=
(

a + b
∫

�

|∇ũ|2dx

) ∫
�

∇ũ · ∇ϕ −
∫

�

( f (x, ũ)ϕ

= I ′
ũ(ũ)ϕ,

so ũ is a critical point of Iũ , and ũ satisfies (1.1). Since un ∈ Sun−1 , we have u+
n ∈ Nun−1

and u−
n ∈ Nun−1 . By Lemma 3.2, ‖u+

n ‖ ≥ c2 and ‖u−
n ‖ ≥ c2; hence, ‖ũ+‖ ≥ c2 and

‖ũ−‖ ≥ c2. Therefore, ũ is a sign changing solution of (1.1). ��

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Let b0 = min{b1, b2}, then by Theorems 2.1 and 3.1, for any
b ∈ [0, b0], the problem (1.1) has at least three nontrivial solutions; among them, one
is positive, one is negative, and one is sign changing. ��
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