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Abstract In this paper, we discuss the existence and uniqueness of solutions of a
boundary value problem for a fractional differential equation of order α ∈ (2, 3),
involving a general form of fractional derivative. First, we prove an equivalence
between the Cauchy problem and the Volterra equation. Then, two results on the
existence of solutions are proven, and we end with some illustrative examples.
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1 Introduction

The aim of this paper is to investigate the existence and uniqueness of solutions for
a nonlinear fractional differential equation (FDE) involving the Caputo fractional
derivative of a function x with respect to another function ψ :
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1688 R. Almeida

⎧
⎪⎪⎨

⎪⎪⎩

C Dα,ψ
a+ x(t) = f (t, x(t)), t ∈ [a, b]

x(a) = xa
x ′(a) = x1a
x(b) = K I α,ψ

a+ x(v),

(1)

where α ∈ (2, 3), xa, x1a , K , v ∈ R with v ∈ (a, b], x ∈ C2[a, b], C Dα,ψ
a+ x is the

ψ-Caputo fractional derivative of x (see (3)) and f : [a, b] ×R → R is a continuous
function. We assume that the restriction

N := 2K

�(3 + α)
(ψ(v) − ψ(a))2+α − (ψ(b) − ψ(a))2 �= 0 (2)

is satisfied.
Fractional calculus can be seen as a generalization of ordinary calculus, in the sense

that derivatives and integrals of arbitrary real or complex order are defined [13,17,19].
Given a function x with domain [a, b], the Riemann–Liouville fractional integral of
x of order α > 0 is given by the formula

I α
a+x(t) := 1

�(α)

∫ t

a
(t − τ)α−1x(τ ) dτ.

When α is an integer number, the fractional integral is simply an n−tuple integral.
With respect to differentiation, two of the most common definitions are the Riemann–
Liouville fractional derivative

Dα
a+x(t) :=

(
d

dt

)n

I n−α
a+ x(t)

and the Caputo fractional derivative

C Dα
a+x(t) := Dα

a+

[

x(t) −
n−1∑

k=0

x (k)(a)

k! (t − a)k

]

,

where n = [α] + 1. If α ∈ N, then Dα
a+x(t) = C Dα

a+x(t) = x (n)(t).
However, these are not the only definitions, and we can find many more in the

literature. To overcome this problem, one solution is to present general definitions
and then study some of their properties. This can be done, e.g., considering fractional
derivatives and fractional integrals with respect to another function ψ [13, Section
2.5], and for particular choices of ψ , we recover, e.g., the Riemann–Liouville, the
Hadamard, and the Erdélyi–Kober fractional derivatives and fractional integrals. In
[5], a Caputo-type fractional derivative of a function with respect to another func-
tion is presented, and some of its main properties were studied. FDE is a branch of
mathematics, where in the differential equations, ordinary derivatives are replaced by
fractional operators (see the seminal papers [1,8,14]). Since there are several defini-
tions for fractional derivatives, we find in the literature several papers dealings with
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Fractional Differential Equations with Mixed Boundary… 1689

similar subjects for different operators: the Riemann–Liouville [3,7,23], the Caputo
[2,18,22], the Hadamard [15,21], the Erdelyi–Kober [6,20], etc. Fractional differen-
tial equations have been used to model more efficiently some real-life phenomena like
viscoelasticity [12], electrical circuits [16], electromagnetism [10], in chemistry [9],
and sound propagation [11] and has attracted the attention of numerous researchers.

In this paper, we continue the work started in [5], by considering a FDE of order
α ∈ (2, 3), withmixed boundary conditions. The paper is organized as follows. Section
2 presents the notions that we will need, as well as some basic properties of the
operators, and Sect. 3 presents the two results on the existence of solution for the FDE
(1), using the Banach and the Leray–Schauder fixed-point theorems.

2 Review on Fractional Calculus

We deal with fractional derivatives and fractional integrals with respect to another
function. To fix terminology, a real α > 0 is the order of the fractional operators,
x : [a, b] → R is an integrable function, and ψ : [a, b] → R is an increasing
differentiable function such that ψ ′(t) �= 0, for all t ∈ [a, b].

The ψ-Riemann–Liouville fractional integral of x is given by

I α,ψ
a+ x(t) := 1

�(α)

∫ t

a
ψ ′(τ )(ψ(t) − ψ(τ))α−1x(τ ) dτ,

and the ψ-Riemann–Liouville fractional derivative of x by

Dα,ψ
a+ x(t) :=

(
1

ψ ′(t)
d

dt

)n

I n−α,ψ
a+ x(t)

= 1

�(n − α)

(
1

ψ ′(t)
d

dt

)n ∫ t

a
ψ ′(τ )(ψ(t) − ψ(τ))n−α−1x(τ ) dτ,

where n = [α] + 1. The semigroup law is valid for fractional integrals, that is,

I α,ψ
a+ I β,ψ

a+ x(t) = I α+β,ψ
a+ x(t), ∀α, β > 0.

The fractional derivative that we will deal in our work is a Caputo-type operator, and
it is defined by the expression

C Dα,ψ
a+ x(t) := Dα,ψ

a+

[

x(t) −
n−1∑

k=0

x [k]
ψ (a)

k! (ψ(t) − ψ(a))k

]

, (3)

where x ∈ Cn−1[a, b], n = [α] + 1 for α /∈ N, n = α for α ∈ N, and

x [k]
ψ (t) :=

(
1

ψ ′(t)
d

dt

)k

x(t).
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1690 R. Almeida

If x is of class Cn , then the ψ-Caputo fractional derivative of x is given by (cf. [5,
Theorem 3])

C Dα,ψ
a+ x(t) = I n−α,ψ

a+
(

1

ψ ′(t)
d

dt

)n

x(t).

Thus, if α = m ∈ N, we have

C Dα,ψ
a+ x(t) = x [m]

ψ (t),

and for α /∈ N, we have

C Dα,ψ
a+ x(t) = 1

�(n − α)

∫ t

a
ψ ′(τ )(ψ(t) − ψ(τ))n−α−1x [n]

ψ (τ) dτ.

One important function in fractional calculus is the Mittag–Leffler function, which is
a generalization of the factorial function to real numbers, and it is given by

Eα(z) :=
∞∑

k=0

zk

�(kα + 1)
.

The derivative of a power function is given by

C Dα,ψ
a+ (ψ(t) − ψ(a))β−1 = �(β)

�(β − α)
(ψ(t) − ψ(a))β−α−1,

where β ∈ R with β > n, and for λ ∈ R, the derivative of the Mittag–Leffler function
is

C Dα,ψ
a+ Eα(λ(ψ(t) − ψ(a))α) = λEα(λ(ψ(t) − ψ(a))α).

The relation between fractional integrals and fractional derivatives is given next.

Theorem 1 [4] Let x : [a, b] → R be a function.

1. If x is continuous, then

C Dα,ψ
a+ I α,ψ

a+ x(t) = x(t).

2. If x is of class Cn−1, then

I α,ψ
a+ C Dα,ψ

a+ x(t) = x(t) −
n−1∑

k=0

x [k]
ψ (a)

k! (ψ(t) − ψ(a))k .

We also refer to [5], where Theorem 1 is formulated for another class of functions.
For our work, we need the following result.
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Fractional Differential Equations with Mixed Boundary… 1691

Theorem 2 For β > 0 and λ ∈ R \ {0}, we have the following two formulas:

I α,ψ
a+ (ψ(t) − ψ(a))β−1 = �(β)

�(β + α)
(ψ(t) − ψ(a))β+α−1

and

I α,ψ
a+ Eα(λ(ψ(t) − ψ(a))α) = 1

λ

(
Eα(λ(ψ(t) − ψ(a))α) − 1

)
.

Proof Direct computations lead to

I α,ψ
a+ (ψ(t) − ψ(a))β−1

= 1

�(α)

∫ t

a
ψ ′(τ )(ψ(t) − ψ(τ))α−1(ψ(τ) − ψ(a))β−1 dτ

= 1

�(α)
(ψ(t) − ψ(a))α−1

∫ t

a
ψ ′(τ )

(

1 − ψ(τ) − ψ(a)

ψ(t) − ψ(a)

)α−1

(ψ(τ)

− ψ(a))β−1 dτ

= 1

�(α)
(ψ(t) − ψ(a))β+α−1

∫ 1

0
(1 − u)α−1uβ−1 du

= 1

�(α)
(ψ(t) − ψ(a))β+α−1�(β)�(α)

�(β + α)
= �(β)

�(β + α)
(ψ(t) − ψ(a))β+α−1.

For the second formula,

I α,ψ
a+ Eα(λ(ψ(t) − ψ(a))α) =

∞∑

k=0

λk

�(kα + 1)
I α,ψ
a+ (ψ(t) − ψ(a))kα

=
∞∑

k=0

λk

�(kα + α + 1)
(ψ(t) − ψ(a))kα+α

= 1

λ

∞∑

k=1

λk

�(kα + 1)
(ψ(t) − ψ(a))kα

= 1

λ

(
Eα(λ(ψ(t) − ψ(a))α) − 1

)
.

�	

3 Main Results

Our next result establishes an equivalence between problem (1) and a Volterra integral
equation.
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1692 R. Almeida

Theorem 3 Problem (1) is equivalent to the integral equation

x(t) = I α,ψ
a+ f (t, x(t))+ xa + x1a

ψ ′(a)
(ψ(t)−ψ(a))+γx (ψ(t)−ψ(a))2, t ∈ [a, b],

(4)
where

γx : =
[
I α,ψ
a+ f (b, x(b)) − K I 2α,ψ

a+ f (v, x(v)) + xa
(
1 − K

�(1 + α)
(ψ(v) − ψ(a))α

)

+ x1a
ψ ′(a)

(
ψ(b) − ψ(a) − K

�(2 + α)
(ψ(v) − ψ(a))1+α

)]
/N . (5)

Proof Since C Dα,ψ
a+ x(t) = f (t, x(t)), applying the fractional integral to both sides of

the equation and using Theorem 1, we arrive at the relation

x(t) = I α,ψ
a+ f (t, x(t)) + γ0 + γ1(ψ(t) − ψ(a)) + γ2(ψ(t) − ψ(a))2,

for some constants γ0, γ1, γ2. Since x(a) = xa and x ′(a) = x1a , we deduce that
γ0 = xa and γ1 = x1a/ψ

′(a). To determine γ2, first observe that

I α,ψ
a+ x(t) = I α,ψ

a+
(
I α,ψ
a+ f (t, x(t)) + xa + x1a

ψ ′(a)
(ψ(t) − ψ(a))+γ2(ψ(t) − ψ(a))2

)

= I 2α,ψ
a+ f (t, x(t)) + xa

�(1 + α)
(ψ(t) − ψ(a))α + x1a

ψ ′(a)�(2 + α)
(ψ(t)

− ψ(a))1+α + 2γ2
�(3 + α)

(ψ(t) − ψ(a))2+α.

Since x(b) = K I α,ψ
a+ x(v), we determine the value of γ2, thus ending the first part of

the proof. For the converse, if x satisfies equation (4), applying the fractional derivative
to both sides of the equation and attending that

C Dα,ψ
a+ xa = C Dα,ψ

a+ (ψ(t) − ψ(a)) = C Dα,ψ
a+ (ψ(t) − ψ(a))2 = 0,

we obtain that C Dα,ψ
a+ x(t) = f (t, x(t)). �	

Motivated by Theorem 3, we define the functional F by

F(x)(t) := I α,ψ
a+ f (t, x(t)) + xa + x1a

ψ ′(a)
(ψ(t) − ψ(a)) + γx (ψ(t) − ψ(a))2, (6)

where γx is given by (5). In the following, given a function y : [c, d] → R, we
consider the usual norm ‖y‖ := supt∈[c,d] |y(t)|.
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Theorem 4 If there exists an integrable function L : [a, b] → R
+
0 such that

| f (t, x1) − f (t, x2)| ≤ L(t)|x1 − x2|, ∀t ∈ [a, b], ∀x1, x2 ∈ R,

there exists then a real h > 0 (with h ≤ b − a) for which the FDE (1) has a unique
solution in [a, a + h].
Proof Let h > 0 be such that

sup
t∈[a,a+h]

{

I α,ψ
a+ L(t) +

[
I α,ψ
a+ L(b) + K I 2α,ψ

a+ L(v)
] (ψ(t) − ψ(a))2

N

}

< 1, (7)

and U the set

U := {x ∈ C2[a, a + h] : C Dα,ψ
a+ x(t) exists and is continous in [a, a + h]}.

It is enough to prove that F : U → U is a contraction. Let us see that F is well defined,
that is, F(U ) ⊆ U . Given a function x ∈ U , we have that the map t 
→ F(x)(t) is of
class C2 and

C Dα,ψ
a+ F(x)(t) = f (t, x(t))

is continuous. Now, let x1, x2 ∈ U be arbitrary. Then,

‖F(x1) − F(x2)‖ ≤ sup
t∈[a,a+h]

{
I α,ψ
a+ | f (t, x1(t)) − f (t, x2(t))| +

[
I α,ψ
a+ | f (b, x1(b))

− f (b, x2(b))|

+ K I 2α,ψ
a+ | f (v, x1(v)) − f (v, x2(v))|

] (ψ(t) − ψ(a))2

N

}

≤ sup
t∈[a,a+h]

{
I α,ψ
a+ L(t) +

[
I α,ψ
a+ L(b)

+ K I 2α,ψ
a+ L(v)

] (ψ(t) − ψ(a))2

N

}
‖x1 − x2‖,

which proves that F is a contraction. Using the Banach fixed-point theorem, problem
(1) has a unique solution. �	

Recall that a family of functions ϒ is equicontinuous if for every ε > 0, there
exists some δ > 0 such that d(x(t1), x(t2)) < ε for all x ∈ ϒ and all t1, t2 such that
d(t1, t2) < δ.

Theorem 5 Suppose that there exist

1. Two continuous functions F1, F2 : [a, b] → R and a nondecreasing function
� : R+

0 → R
+
0 such that, for all t ∈ [a, b] and x ∈ R, we have

| f (t, x)| ≤ F1(t)�(|x |) + F2(t),
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1694 R. Almeida

2. A real R > 0 such that

ω1�(R) + ω2 + |xa | + |x1a |
ψ ′(a)

(ψ(b) − ψ(a))

+
∣
∣
∣xa

[

1 − K

�(1 + α)
(ψ(v) − ψ(a))α

]

+ x1a
ψ ′(a)

[
ψ(b) − ψ(a) − K

�(2 + α)
(ψ(v)

−ψ(a))1+α
]∣
∣
∣
(ψ(b) − ψ(a))2

N
≤ R,

where

wi : = sup
t∈[a,b]

I α,ψ
a+ |Fi (t)| + (I α,ψ

a+ |Fi (b)| + K I 2α,ψ
a+ |Fi (v)|) (ψ(b) − ψ(a))2

N
,

i = 1, 2.

Then, the Cauchy problem (1) has at least one solution in [a, b].
Proof Let F be the functional given by the expression (6) and consider the closed ball

BR :=
{
x ∈ C2[a, b] : ‖x‖ ≤ R

}
.

Step 1: F(BR) ⊆ BR .
Given x ∈ BR , we have the following

‖F(x)‖ ≤ sup
t∈[a,b]

{
I α,ψ
a+ | f (t, x(t))| + |xa | + |x1a |

ψ ′(a)
(ψ(t) − ψ(a)) + |γx |(ψ(t)

− ψ(a))2
}

≤ sup
t∈[a,b]

I α,ψ
a+ |F1(t)�(|x(t)|) + F2(t)| + |xa | + |x1a |

ψ ′(a)
(ψ(b) − ψ(a))

+
[
I α,ψ
a+ |F1(b)�(|x(b)|) + F2(b)|

+ K I 2α,ψ
a+ |F1(v)�(|x(v)|)+F2(v)|+

∣
∣
∣xa

[
1 − K

�(1 + α)
(ψ(v) − ψ(a))α

]

+ x1a
ψ ′(a)

[
ψ(b) − ψ(a) − K

�(2+α)
(ψ(v) − ψ(a))1+α

]∣∣
∣

] (ψ(b) − ψ(a))2

N

≤ ω1�(R) + ω2 + |xa | + |x1a |
ψ ′(a)

(ψ(b) − ψ(a))

+
∣
∣
∣xa

[
1 − K

�(1 + α)
(ψ(v) − ψ(a))α

]
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+ x1a
ψ ′(a)

[
ψ(b) − ψ(a) − K

�(2 + α)
(ψ(v)

− ψ(a))1+α
]∣
∣
∣
(ψ(b) − ψ(a))2

N
≤ R.

Step 2: F(BR) is equicontinuous.
Let t1, t2 ∈ [a, b] with t1 > t2 and

M := max
(t,x)∈[a,b]×BR

| f (t, x)|.

Then,

|F(x)(t1) − F(x)(t2)| ≤ M

�(α + 1)

[
(ψ(t1) − ψ(a))α − (ψ(t2) − ψ(a))α

]

+ |x1a |
ψ ′(a)

(ψ(t1) − ψ(t2))

+ |γx |
[
(ψ(t1) − ψ(a))2 − (ψ(t2) − ψ(a))2

]

which converges to zero as t1 → t2. By the Ascoli–Arzela Theorem, F(BR) is con-
tained in a compact set. Finally, we now prove that there are no x ∈ ∂BR and λ ∈ (0, 1)
such that x = λF(x). For that purpose, suppose that such x and λ exist. In this case,

R = ‖x‖ < ‖F(x)‖ ≤ R,

as we have seen before, which proves our claim. In conclusion, by the Leray–Schauder
alternative, we prove the existence of a fixed point to F .

4 Examples

Example 1 Fix a kernel ψ : [0, 1] → R and the fractional order α = 2.5. Consider
the FDE

⎧
⎪⎪⎨

⎪⎪⎩

C D2.5,ψ
0+ x(t) = �(4.5)(ψ(t) − ψ(0)), t ∈ [0, 1]

x(0) = 0
x ′(0) = 0

x(1) = K I 2.5,ψ0+ x(0.5),

where

K = 6!(ψ(1) − ψ(0))3.5

�(4.5)(ψ(0.5) − ψ(0))6
.
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1696 R. Almeida

It is easy to check that the solution to this problem is the function x(t) = (ψ(t) −
ψ(0))3.5. We can apply Theorem 4, by considering L(t) = 0, for all t , and conclude
about the existence and uniqueness of the solution in the interval [0, 1].
Example 2 For our second example, consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

C D2.5,ψ
0+ x(t) = x(t), t ∈ [0, 1]

x(0) = 1
x ′(0) = 0

x(1) = K I 2.5,ψ0+ x(0.5),

where

K = E2.5((ψ(1) − ψ(0))2.5)

E2.5((ψ(0.5) − ψ(0))2.5) − 1
.

We assume that condition (2) is satisfied. The solution is the function x(t) =
E2.5((ψ(t) − ψ(0))2.5). We can apply Theorem 4, by considering L(t) = 1. Alterna-
tively, applying Theorem 5 with F1(t) = 1, F2(t) = 0, and �(x) = x , we conclude
about the existence of the solution on the interval [0,1].

5 Conclusion

In this paper, we deal with fractional differential equations of order α ∈ (2, 3), with
initial and end-point conditions. First, we prove an equivalent problem by rewritten the
FDE as a Volterra integral equation. Then, using some known fixed-point theorems,
we prove the existence and uniqueness of solution. Using the techniques exemplified
in this paper, other fixed-point theorems could be applied.
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