
Bull. Malays. Math. Sci. Soc. (2019) 42:1625–1638
https://doi.org/10.1007/s40840-017-0568-7

The Embedding of Annihilating-Ideal Graphs
Associated to Lattices in the Projective Plane

A. Parsapour1 · K. Ahmad Javaheri1

Received: 16 February 2017 / Revised: 30 October 2017 / Published online: 21 November 2017
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract Let (L ,∧,∨) be a lattice with a least element 0. The annihilating-ideal
graph of L , denoted by AG(L), is a graph whose vertex set is the set of all non-trivial
ideals of L and, for every two distinct vertices I and J , I is adjacent to J if and only if
I ∧ J = {0}. In this paper, we completely determine all finite lattices L with projective
annihilating-ideal graphs AG(L).
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1 Introduction

Recently, there has been considerable researches done on associating graphs with
algebraic structures. For example, see [2,4,11–13]. The concept of a annihilating-ideal
graph of a commutative ring R, denoted by AG(R), was introduced by Behboodi and
Rakeei in [5] and [6]. Let A(R) be the set of annihilating-ideals of R, where a nonzero
ideal I of R is called an annihilating-ideal, if there exists a nonzero ideal J of R such
that I J = 0. The annihilating-ideal graph of R is a simple graph with vertex setA(R),
and two distinct vertices I and J are adjacent if and only if I J = 0. The annihilating-
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ideal graph of a lattice L , denoted by AG(L), is defined by Khashyarmanesh et al in
[1]. AG(L) is a graph whose vertex set is the set of all non-trivial ideals of L and, for
every two distinct vertices I and J , I is adjacent to J , if and only if I ∧ J = 0. In this
work, we assume that L is a finite lattice and A(L) = {a1, a2, . . . , an} is the set of all
atoms of L . In the second section of this paper, we completely characterize all finite
lattices L with projective annihilating-ideal graphs AG(L).

First, we recall some definitions and notations on lattices. For basis facts concerning
lattice, we refer to [9]. Recall that a lattice is an algebra L = (L ,∧,∨)with two binary
operations ∧ and ∨, satisfying the following conditions: for all a, b, c ∈ L ,

1. a ∧ a = a, a ∨ a = a,
2. a ∧ b = b ∧ a, a ∨ b = b ∨ a,
3. (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and
4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

By [15, Theorem 2.1], one can define an order ≤ on L as follows: for any a, b ∈ L ,
we set a ≤ b if and only if a ∧ b = a. Then (L ,≤) is an ordered set in which every
pair of elements has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.).
Conversely, let P be an ordered set such that, for every pair a, b ∈ P , g.l.b.(a, b) and
l.u.b.(a, b) belong to P . For each a and b in P , we define a ∧ b := g.l.b.(a, b) and
a ∨ b := l.u.b.(a, b). Then (P,∧,∨) is a lattice. A lattice L is said to be bounded if
there are elements 0 and 1 in L such that 0 ∧ a = 0 and a ∨ 1 = 1, for all a ∈ L .
Clearly, every finite lattice is bounded. Let (L ,∧,∨) be a lattice with a least element
0 and I be a non-empty subset of L . We say that I is an ideal of L , denoted by I � L ,
if

(i) For all a, b ∈ I , a ∨ b ∈ I .
(ii) If 0 ≤ a ≤ b and b ∈ I , then a ∈ I .

For two distinct ideals I and J of a lattice L , we put I∧J := {x∧y ; x ∈ I, y ∈ J }.
In a lattice (L ,∧,∨) with a least element 0, an element a is called an atom if a �= 0
and, for an element x in L , the relation 0 ≤ x ≤ a implies that either x = 0 or x = a.
We denote the set of all atoms of L by A(L). Also, for an ideal I of L , A(I ) denotes
the set of all atoms contained in I .

Now we recall some definitions and notations on graphs. We use the standard
terminology of graphs following [7]. In a graph G, for two distinct vertices a and b
in G, the notation a − b means that a and b are adjacent. For a positive integer r , an
r -partite graph is one whose vertex set can be partitioned into r subsets so that no
edge has both ends in any one subset. A complete r -partite graph is one in which each
vertex is joined to every vertex that is not in the same subset. The complete bipartite
graph (2-partite graph) with part sizes m and n is denoted by Km,n . A graph is said
to be planar if it can be drawn in the plane so that its edges intersect only at their
ends. A graph G is said to be contracted to a graph H if there exists a sequence of
elementary contractions which transformsG into H , where an elementary contraction
consists of deletion of a vertex or an edge or the identification of two adjacent vertices.
A subdivision of a graph is any graph that can be obtained from the original graph by
replacing edges by paths. A remarkable simple characterization of the planar graphs
was given by Kuratowski in 1930. Kuratowski’s theorem says that a graph is planar if
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and only if it contains no subdivision of K5 or K3,3 (cf. [7, p.153]). By a surface, we
mean a connected compact two-dimensional manifold without boundary. If a disc is
cut from a sphere and it is closed by aMöbius band, then the obtained surface is called
projective plane. The projective plane can also be obtained by identifying every point
of an open disc with its antipodal points. A graph G is embeddable in a surface S if the
vertices of G are assigned to distinct points in S such that every edge of G is a simple
arc in S connecting the two vertices which are joined in G. If G can not be embedded
in S, then G has at least two edges intersecting at a point which is not a vertex of G.
We say a graph G is irreducible for a surface S if G does not embed in S, but any
proper subgraph ofG embeds in S. The set of 103 irreducible graphs for the projective
plane has been found by Glover et al. in [10], and Archdeacon in [3] proved that this
list is complete. This list also has been checked by Myrvold and Roth in [14]. Hence
a graph embeds in the projective plane, which is called a projective graph, if and only
if it contains no subdivision of 103 graphs in [3]. Note that a complete graph Kn is
projective if n = 5 or 6, and the only projective complete bipartite graphs are K3,3
and K3,4 (see [8]). Note that a planar graph is not considered as a projective graph.

A

BB

A

The canonical representation of a projective plane

2 Projective Annihilating-Ideal Graphs of Lattices

In this section, we study the projectivity of the annihilating-ideal graph AG(L). We
begin this section with the following notation, which is needed in the rest of the paper.

Notation 2.1 Let i1, i2, . . . , in be integers with 1 ≤ i1 < i2 < · · · < ik ≤ n. The
notation Ui1i2...ik stands for the following set:

{
I � L; {

ai1 , ai2 , . . . , aik
} ⊆ I and a j /∈ I, for j ∈ {1, . . . , n} \ {i1, . . . , ik}

}
.

Note that no two distinct elements in Ui1i2...ik are adjacent in AG(L). Also if the
index sets {i1, i2, . . . , ik} and { j1, j2, . . . , jk′ } of Ui1i2...ik and Uj1 j2... jk′ , respectively,
are distinct, then one can easily check that Ui1i2...ik ∩ Uj1 j2... jk′ = ∅. Moreover,
V (AG(L)) = ⋃

Ui1i2...ik , for all 1 ≤ i1 < i2 < · · · < ik ≤ n. Suppose that L
has n atoms. Note that U12...n consist of isolated vertices. Clearly, the isolated points
do not affect projectivity. Hence,we ignore the setU12...n from the vertex set ofAG(L),
and so we do not show these points in our figures.

In the following lemma, we determine an upper bound for the number of atoms of
lattice L such that the graph AG(L) is projective.

Lemma 2.2 If AG(L) is a projective graph, then 2 ≤ |A(L)| ≤ 6.
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Proof Suppose on the contrary that |A(L)| = 1 or |A(L)| > 6. In the first situation,
AG(L) is a totally disconnected graph, and so it is planar. Hence it is not a projective
graph. In the second situation, since the induced subgraph of AG(L) on vertex set
{{0, ai }}, for 1 ≤ i ≤ 7, is a complete graph, one can find a subgraph isomorphic
to K7. Therefore, the graph AG(L) is not projective. Hence we have 2 ≤ |A(L)|
≤ 6. ��

ByTheorem2.6 in [1], the graphAG(L) is complete bipartite if andonly if |A(L)| =
2. In the following theorem, we state a necessary and sufficient condition for the
projectivity of AG(L), when |A(L)| = 2.

Theorem 2.3 Suppose that |A(L)| = 2. ThenAG(L) is a projective graph if and only
if |U2| = 3, or 4 whenever |U1| = 3.

Proof Let the graph AG(L) be projective. Assume to the contrary that |U1| ≤ 2 or
|U2| ≤ 2.By [16, Proposition 2.3], the graphAG(L) is planar,which is a contradiction.
Also if |U1| > 3 and |U2| > 3, then the graph AG(L) contains a copy of K4,4. And
if |U1| = 3 and |U2| > 4, then the graph AG(L) contains a subgraph isomorphic
to K3,5. Hence AG(L) is not a projective graph. Therefore, we have |U2| = 3, or 4
whenever |U1| = 3.

The converse statement is clear. ��
Now, we investigate the projectivity of AG(L), when |A(L)| = 3. In the following

four cases, we probe the projectivity of AG(L) in the case that |⋃3
i=1Ui | ≥ 5.

Additionally, in the rest of work, we do not consider the cases that AG(L) is planar.
For planar cases see [16].

Case 1 | ⋃3
i=1Ui | = 5.

Without loss of generality, we may assume that |U1| = 1 wheneverU12 andU13 are
non-empty. It is clear that AG(L) is projective. Also if |U1| = 3 and 0 < |U23| ≤ 2,
then one can easily check that AG(L) is projective. In addition, if |U1| = 3 and
|U23| ≥ 3, then the contraction of AG(L) contains a copy of K3,5. So the graph
AG(L) is not projective.

Case 2 | ⋃3
i=1Ui | = 6.

Without loss of generality, we may assume that |U1| = |U2| = |U3| = 2 whenever
U12, U13 and U23 are non-empty. Then it is not hard to see the graph AG(L) is
projective. Also if |U1| = 3 and |U23| ≤ 1, then we observe that AG(L) is projective.
And we may assume that |U1| = 4 and |U23| = 1. Clearly, the graph AG(L) is
projective. Finally, if |U1| = 3 or 4 whenever |U23| ≥ 2, then we can find a copy of
K3,5 or K4,4 in the structure of the contraction of AG(L), respectively. Hence AG(L)
is not projective.

Case 3 | ⋃3
i=1Ui | = 7.

Without loss of generality, we may assume that |U1| ∈ {3, 4} and U23 = ∅. Then
one can easily see that the graph AG(L) is projective. Otherwise, ifU23 is non-empty,
then the contraction of AG(L) contains a copy of K3,5 or K4,4. So the graph AG(L)
is not projective. Also if |U1| = |U2| = 3 and U13 = U23 = ∅, then it is not hard
to see that the graph AG(L) is projective. Otherwise, if U13 or U23 is non-empty,
then we have a subgraph isomorphic to K3,5 in the contraction of AG(L). Hence the
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graph AG(L) is not projective. Additionally, if |U1| = 5 and U23 = ∅, then AG(L)
is planar, which is not projective. And if U23 �= ∅, then we can find a copy of K3,5 in
the structure of AG(L). So the graph AG(L) is not projective.

Case 4 | ⋃3
i=1Ui | ≥ 8.

Without loss of generality, we may assume that |U1| = | ⋃3
i=1Ui |\2 andU23 = ∅.

Then AG(L) is planar, which is not projective. And if U23 �= ∅, then we can find a
copy of K3,5 in the structure of the contraction of AG(L). So the graph AG(L) is not
projective. Also if none of theUi ’s has | ⋃3

i=1Ui |\2 elements, then the contraction of
AG(L) contains a subgraph isomorphic to K3,5 or K4,4. Therefore, the graph AG(L)
is not projective.

Now, by the above discussion, one can easily see that the following theorem holds.

Theorem 2.4 Let |A(L)| = 3. Then AG(L) is a projective graph if and only if one of
the following conditions holds:

(i) | ⋃3
i=1Ui | = 5 and one of the following cases is satisfied:

(a) There is Ui with |Ui | = 3 and 0 < |Ujk | ≤ 2, for 1 ≤ i �= j �= k ≤ 3.
(b) There is a unique Ui with |Ui | = 1 whenever Ui j and Uik are non-empty sets,

for 1 ≤ i �= j �= k ≤ 3.
(ii) | ⋃3

i=1Ui | = 6 and one of the following cases is satisfied:
(a) There exists i with 1 ≤ i ≤ 3, such that |Ui | = 4 and |Ujk | = 1, for

1 ≤ i �= j �= k ≤ 3.
(b) There exists i with 1 ≤ i ≤ 3, such that |Ui | = 3 and |Ujk | ≤ 1, for

1 ≤ i �= j �= k ≤ 3.
(c) |Ui | = 2, for all i with 1 ≤ i ≤ 3, and U jk �= ∅, for all 1 ≤ j �= k ≤ 3.

(iii) | ⋃3
i=1Ui | = 7 and one of the following cases is satisfied:

(a) |Ui | ∈ {3, 4}, for some unique integer i with 1 ≤ i ≤ 3, such that and U jk is
empty, for 1 ≤ i �= j �= k ≤ 3.

(b) |Ui | = |Uj | = 3, for some integers i and j , with 1 ≤ i �= j ≤ 3 whenever Uik

and U jk are empty, for 1 ≤ i �= j �= k ≤ 3.

In the sequel, we investigate the projectivity of AG(L), when |A(L)| = 4. Suppose
that | ⋃4

i=1Ui | ≥ 8. Then it is easy to see that AG(L) is not projective, because one
can see that the contraction of AG(L) contains a copy of K3,5 or K4,4. And so it is
not projective.

As a result of the above note, we have the following lemma.

Lemma 2.5 If AG(L) is projective, then |⋃4
i=1Ui | ≤ 7.

Theorem 2.6 Suppose that |A(L)| = 4. Then AG(L) is projective if and only if one
of the following statements holds:

(i) | ⋃4
i=1Ui | = 5 and |Ui | = 2, for some unique integer i with 1 ≤ i ≤ 4. If U jk =

∅, then |Ujkl | �= ∅, with i, j, k /∈ {i}. And if the size of U jk is 1 or 2 whenever
at most one of the U jk’s has exactly two elements, where 1 ≤ i �= j �= k ≤ 4.

(ii) | ⋃4
i=1Ui | = 6 and one of the following cases holds:

(a) |Ui | = 3, for some integer i with 1 ≤ i ≤ 4. If |Ujkl | = 1, with 1 ≤ i �=
j �= k �= l ≤ 4, then U jk = ∅, for all j, k /∈ {i}. Also if U jkl = ∅, with
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Fig. 1 {0, a1}, I1
∈ U1, {0, a2} ∈ U2,
{0, a3} ∈ U3, {0, a4} ∈ U4, I24,
I ′24 ∈ U242 and I34, I

′
34 ∈ U34

I24

{0, a1} I1

I34 I34

{0, a2}
I24

{0, a3}
{0, a4}

1 ≤ i �= j �= k �= l ≤ 4, then |Ujk | ≤ 1 and at most one of the U jk’s has
exactly one element, where j, k /∈ {i}.

(b) |Ui | = |Uj | = 2, for some integers i and j with 1 ≤ i �= j ≤ 4 when-
ever |Ukl | ≤ 1, where 1 ≤ k < l ≤ 4 and k, l /∈ {i, j}. Also Ui ′1i ′2 = ∅

whenever |Ui1i2 | = 1, for all 1 ≤ i1 �= i ′1 �= i2 �= i ′2 ≤ 4, with
{i ′1, i ′2} = {1, 2, 3, 4}\{i1, i2}.Moreover, if |Uik |, |Uil | ≤ 1 or |Ujk |, |Ujl | ≤ 1,
then |Ukl | ≤ 1. Also if |Uik | = |Ujk | = 1 or |Uil | = |Ujl | = 1, then Ukl = ∅.

(iii) | ⋃4
i=1Ui | = 7 and one of the following cases holds:

(a) |Ui | = 4, for some integer i with 1 ≤ i ≤ 4 and U jkl = Ujk = ∅, where
1 ≤ i �= j �= k �= l ≤ 4.

(b) |Ui | = 3 and |Uj | = 2, for some integers i and j with 1 ≤ i �= j ≤ 4 and
U jkl = ∅, where k, l /∈ {i, j} whenever Uii1 = Uji1 = ∅, where i1 /∈ {i, j},
with 1 ≤ i1 ≤ 4, and Ukl = ∅, where k, l /∈ {i, j}.

Proof First, assume that AG(L) is projective. Suppose on the contrary that none of
the conditions (i), (i i) or (i i i) holds. If |⋃4

i=1Ui | = 5 and the statement (i) does not
hold, then one of the Ui ’s, 1 ≤ i ≤ 4, say U1, has two elements whenever U234, U23,
U24 and U34 are empty. So AG(L) is planar, which is not projective. Additionally,
if |U23|, |U24| or |U34| is at least three, then the contraction of AG(L) contains a
copy of the subdivision of K3,5. Now, we may assume that at least two of the sets
U23, U24 or U34 have two elements, say U24 and U34. Then a subgraph of AG(L) is
isomorphic to E5, one of the listed graphs in [10], as shown in Fig. 1. In this figure,
we have {0, a1}, I1 ∈ U1, {0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, I24, I ′

24 ∈ U24
and I34, I ′

34 ∈ U34.
If | ⋃4

i=1Ui | = 6 and the statement (i i) does not hold, then there is only one of
the Ui ’s, say U1, such that |U1| = 3 whenever |U234| ≥ 2. Hence the contraction of
AG(L) contains a subgraph isomorphic to K3,5. If |U234| = 1 and at least one of the
sets U23,U24 or U34, say U23, has one element, then AG(L) contains a copy of E18,
one of the listed graphs in [10] (see Fig. 2). In this figure, we have {0, a1}, I1, J1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, I23 ∈ U23 and I234 ∈ U234.

If at least one of the sets U23, U24 or U34 have two elements, then we can see that
the contraction of AG(L) contains a copy of K4,4. Additionally, we may assume that
at least two of the setsU23,U24 orU34, sayU23 andU24, have one element. Then it is
easy to find a copy of E18, one of the listed graphs in [10], in the graph AG(L). Now,
suppose that |⋃4

i=1Ui | = 6 and there exist distinct i and j such that |Ui | = |Uj | = 2.
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Fig. 2 {0, a1}, I1, J1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, I23 ∈
U23 and I234 ∈ U234

{0, a1}
{0, a2}

{0, a3} {0, a4}

J1
I23I234

I1

Fig. 3 {0, a1}, I1 ∈ U1,
{0, a2}, I2 ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, I13 ∈ U13,
I23 ∈ U23 and I34 ∈ U34

I13
I2 {0, a2}

{0, a1} I34

I23
{0, a3}

0, a4
I1

Without loss of generality, we may assume that |U1| = |U2| = 2. When |U34| ≥ 2,
we can find a subdivision of K4,4 in the structure of the contraction of AG(L). If
|U13| = 2, then the contraction of the setsU2 ∪U4 andU1 ∪U3 ∪U13 induces a copy
of K3,5. Moreover, we may assume that |U12| = |U34| = 1 or |U14| = |U23| = 1. In
this case, the contraction of the graph AG(L) contains a copy of E3 or E18, two of the
listed graphs in [10], respectively. Finally, suppose that U13, U23 and U34 have one
element. Consider the graph D8, one of the listed graphs in [10], as shown in Fig. 3.
In this figure, we have {0, a1}, I1 ∈ U1, {0, a2}, I2 ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4,
I13 ∈ U13, I23 ∈ U23 and I34 ∈ U34.

Clearly, for the case that |U14| = |U24| = |U34| = 1, we have the similar result.
Suppose that |⋃4

i=1Ui | = 7 and the statement (i i i) does not hold. First, assume
that there exists only one Ui , say U1, such that |U1| = 4. If U234 �= ∅, then the
contraction of AG(L) contains a copy of K4,4. If one of the sets U23,U24 or U34 is
not empty, then K4,4 is isomorphic to a subgraph of AG(L). Now, assume that there
is a uniqueUi , sayU1, with |U1| = 3. IfU234 �= ∅, then one can obtain a subdivision
of K3,5 in the structure of the contraction of AG(L). Also, we may assume that U13
or U14 is not empty. Then it is easy to see a copy of K4,4 as a subgraph of AG(L).
Moreover, if at least one of the setsU23,U24 orU34 is not empty, then the contraction
of AG(L) contains a copy of K4,4 or K3,5. Finally, assume that only one of the Ui ’s,
where 1 ≤ i ≤ 4, has one element, exactly. Then A2, one of the listed graphs in [10],
is isomorphic to a subgraph of AG(L), as shown in Fig. 4. In this figure, we have
{0, a1}, I1 ∈ U1, {0, a2}, I2 ∈ U2, {0, a3}, I3 ∈ U3 and {0, a4} ∈ U4.

Therefore, in all of the above situations, we have that AG(L) is not projective,
which is a contradiction.
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Fig. 4 {0, a1}, I1 ∈ U1,
{0, a2}, I2 ∈ U2, {0, a3}, I3 ∈
U3 and {0, a4} ∈ U4

{0, a2}

I2{0, a1}

I1

{0, a4}

{0, a3}

I3

Conversely, if one of the conditions (i), (i i) or (i i i) holds, then one can easily check
that the graph AG(L) embeds in a projective plane. So it is a projective graph and the
proof is complete . ��

In the rest of this paper, we need to consider the cases that |A(L)| = 5 and 6.
First, assume that |A(L)| = 5. If |⋃5

i=1Ui | ≥ 8, then one can easily realize that
the contraction of AG(L) contains a copy of K4,4 or K3,5, which is not projective.
Therefore, we investigate the cases that |⋃5

i=1Ui | = 5, 6, or 7.
We continue this discussion with the following theorem.

Theorem 2.7 Let |⋃5
i=1Ui | = 5. Then AG(L) is a projective graph if and only if

|Ui j | ≤ 2, for all 1 ≤ i, j ≤ 5 and one of the following conditions holds:

(i) There is only one of the Ui j ’s, such that |Ui j | = 2 whenever Ui ′ j ′ = ∅, for
{i ′, j ′} = {1, 2, . . . , 5}\{i, j}, and also, for some k ∈ {1, 2, . . . , 5}\{i, j}, the
number of such setsUki andUkj with exactly one element is atmost two.Moreover,
for the sets Uk1i and Uk2 j with {k1, i} ∩ {k2, j} = ∅, we have Uk1i = ∅ or
Uk2 j = ∅.

(ii) There is no Ui j , such that |Ui j | = 2, and there exist at most three distinct sets
Ui j , Ui j ′ and Ui j ′′ with exactly one element, where 1 ≤ i, j, j ′, j ′′ ≤ 5 whenever
at most there is one Ukl with |Ukl | ≤ 1, where 1 ≤ k, l ≤ 5 and if Ukl has a
vertex, then it is adjacent to at most one of the vertices in the sets Ui j , Ui j ′ or
Ui j ′′ .

Proof First, suppose that the graph AG(L) is projective and to the contrary that none
of the conditions of theorem holds. Without loss of generality, assume that |U12| ≥ 3.
Then the contraction of AG(L) contains a subgraph isomorphic to K3,5. If |U12| =
|U23| = 2, then the graph AG(L) contains a subgraph isomorphic to subdivision of
E5, one of the listed graphs in [10]. If |U12| = 2 and |U34| = 1, then the contraction
of AG(L) contains a copy of K4,4. If |U12| = 2 and |U13| = |U24| = 1, then AG(L)
contains a copy of F1, one of the listed graphs in [10] (see Fig. 5). In this figure, we have
{0, a1} ∈ U1, {0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, {0, a5} ∈ U5, I12, I ′

12 ∈ U12,
I13 ∈ U13 and I24 ∈ U24.

If |U13| = |U24| = 1 and |U14| = |U23| = 1, then the graph AG(L) contains
a copy of F1, one of the listed graphs in [10]. If |U12| = |U13| = |U14| = 1 and
|U25| = 1, then F1, one of the listed graphs in [10], is isomorphic to subgraph of
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Fig. 5 {0, a1} ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
I12, I

′
12 ∈ U12,

I13 ∈ U13 and I24 ∈ U24

I12

{0, a1}

I24

{0, a5}

{0, a3}
I12 {0, a4}

I13
{0, a2}

Fig. 6 {0, a1} ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
I12 ∈ U12, I13 ∈ U13,
I14 ∈ U14, I23 ∈ U23
and I34 ∈ U34

I34

{0, a1}

I23

{0, a2}

{0, a4}
I13 {0, a5}

I14
{0, a3}

I12

Fig. 7 {0, a1} ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
I12 ∈ U12, I13 ∈ U13,
I14 ∈ U14 and I15 ∈ U15

I14

I15{0, a2}

{0, a3}

{0, a1}
I13

{0, a4}

I12
{0, a5}

AG(L). If |U12| = |U13| = |U14| = 1 and |U23| = |U34| = 1, then the graph AG(L)
contains a copy of F5, one of the listed graphs in [10] (see Fig. 6). In this figure, we
have {0, a1} ∈ U1, {0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, {0, a5} ∈ U5, I12 ∈ U12,
I13 ∈ U13, I14 ∈ U14, I23 ∈ U23 and I34 ∈ U34.

If |U12| = |U13| = |U14| = |U15| = 1, then AG(L) contains a copy of E22,
one of the listed graphs in [10] (see Fig. 7). In this figure, we have {0, a1} ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, {0, a5} ∈ U5, I12 ∈ U12, I13 ∈ U13,
I14 ∈ U14 and I15 ∈ U15.

So, by the above situations, the graph AG(L) is not projective, which is a contra-
diction.

Conversely, one can easily check that if one of the conditions (i) and (i i) holds,
then AG(L) is a projective graph. ��
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Fig. 8 {0, a}, I1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
I13 ∈ U13 and I24 ∈ U24

{0, a5}

I24

{0, a3}

I13

{0, a2}
{0, a1}

0, a4I1

Now, suppose that |⋃5
i=1Ui | = 6. Then there is only one of theUi ’s, sayU1, such

that |U1| = 2. It is clear that U2,U3,U4 and U5 have one element, exactly.

Theorem 2.8 Suppose that |⋃5
i=1Ui | = 6 and |U1| = 2 whenever |Ui jk | ≤ 1, for

2 ≤ i, j, k ≤ 5 and |Ui j | ≤ 1, for 1 ≤ i, j ≤ 5. Then AG(L) is a projective graph if
and only if one of the following conditions holds:

(i) There exist at most two distinct sets U1i and U1 j , where 2 ≤ i, j ≤ 5, such that
|U1i | = |U1 j | = |Ui j | = 1.

(ii) There exist at most two distinct sets with exactly one element Ui jk , Ui ′ j ′k′ , where
2 ≤ i, i ′, j, j ′, k, k′ ≤ 5. Moreover, we have at most two sets U1 j1,U1 j2 with
exactly one element such that j1, j2 ∈ {i, j, k} ∩ {i ′, j ′, k′}.

Proof Suppose that the graphAG(L) is projective and on the contrary that none of the
conditions of theorem holds. Without loss of generality, assume that |U12| = 2, then
the contraction ofAG(L) contains a copy of K3,5. If |U23| = 2, then the contraction of
AG(L) contains a copy of K4,4. If |U13| = |U24| = 1, then E3, one of the listed graphs
in [10], is isomorphic to a subgraph of AG(L) (see Fig. 8). In this figure, we have
{0, a}, I1 ∈ U1, {0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, {0, a5} ∈ U5, I13 ∈ U13 and
I24 ∈ U24.

If |U23| = |U24| = 1, then the graphAG(L) contains a subgraph isomorphic to E3,
one of the listed graphs in [10]. If |U12| = |U13| = |U14| = 1, then the graph AG(L)
contains a copy of E22, one of the listed graphs in [10] (see Fig. 9). In this figure,
we have {0, a1}, I1 ∈ U1, {0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, {0, a5} ∈ U5,
I12 ∈ U12, I13 ∈ U13 and I14 ∈ U14.

If |U234| = 2, then the contraction of AG(L) contains a copy of K3,5.
If |U234| = |U235| = |U245| = 1, then the graph AG(L) contains a copy of E20,

one of the listed graphs in [10] (see Fig. 10). In this figure, we have {0, a}, I1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, {0, a5} ∈ U5, I234 ∈ U234, I235 ∈ U235 and
I245 ∈ U245.

If |U235| = |U35| = 1 or |U235| = |U24| = 1, then the graphAG(L) contains a copy
of E3 or D3, two of the listed graphs in [10]. The second case is pictured in Fig. 11.
In this figure, we have {0, a}, I1 ∈ U1, {0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4,
{0, a5} ∈ U5, I24 ∈ U24 and I235 ∈ U235.

Obviously, we conclude that in each of the above statements, the graph AG(L) is
not projective, which is a contradiction.
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Fig. 9 {0, a1}, I1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
I12 ∈ U12, I13 ∈ U13 and I14 ∈
U14

I13

I12{0, a4}

0, a5

{0, a1}

I1 {0, a3}

I14{0, a2}

Fig. 10 {0, a}, I1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
I234 ∈ U234, I235 ∈
U235 and I245 ∈ U245

{0, a1}

I245I234

I1

{0, a2}

I235

{0, a4}
{0, a5} {0, a3}

Fig. 11 {0, a}, I1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
I24 ∈ U24 and I235 ∈ U235

{0, a2}
{0, a1} I1

{0, a5} I24

I235
{0, a4}

{0, a3}

Conversely, it is not hard to see that if one of the conditions (i) and (i i) holds, then
AG(L) is a projective graph. ��

Now, assume that |⋃5
i=1Ui | = 7. If |Ui | = |Uj | = 2, for some 1 ≤ i �= j ≤ 5,

then the contraction of AG(L) is isomorphic to B1, one of the listed graphs in [10]
(see Fig. 12). In this figure, we have {0, a1}, I1 ∈ U1, {0, a2}, I2 ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4 and {0, a5} ∈ U5. In this situation, AG(L) is not projective.

Therefore, it is enough to consider the case that |Ui | = 3, for some 1 ≤ i ≤ 5.
Without loss of generality,wemay assume that |U1| = 3.Hence,we have the following
theorem.

Theorem 2.9 Suppose that |⋃5
i=1Ui | = 7 and |U1| = 3. ThenAG(L) is a projective

graph if and only if, for all 2 ≤ i, j, k, l ≤ 5, Ui jkl = Ui jk = ∅ whenever Ui j = ∅,
for 1 ≤ i, j ≤ 5.
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Fig. 12 {0, a1}, I1 ∈ U1,
{0, a2}, I2 ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4 and {0, a5} ∈ U5

{0, a2}

I1{0, a1}

I2

{0, a4}

{0, a3}

{0, a5}

Fig. 13 {0, a1}, I1, J1 ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4 and {0, a5} ∈ U5

{0, a1} I1

{0, a1}I1

{0, a3}

{0, a3}
{0, a4}

{0, a5}

{0, a2}

{0, a2}
J1

Proof First, assume that AG(L) is a projective graph and to the contrary thatUi jkl �=
∅, Ui jk �= ∅, for 2 ≤ i, j, k, l ≤ 5 or Ui j �= ∅, for 1 ≤ i, j ≤ 5. If Ui jkl �= ∅,
for 2 ≤ i, j, k, l ≤ 5, then the contraction of AG(L) contains a copy of K3,5. Also
if Ui jk �= ∅, for 2 ≤ i, j, k ≤ 5, then K4,4 is isomorphic to a subgraph of the
contraction of AG(L). Finally, if Ui j �= ∅, for 1 ≤ i, j ≤ 5, then the contraction of
AG(L) contains a copy of K3,5. Therefore, it is not projective, which is a contradiction.

Conversely, assume thatUi jkl = Ui jk = ∅, for all 2 ≤ i, j, k, l ≤ 5, andUi j = ∅,
for 1 ≤ i, j ≤ 5. Then one can easily check that the graph AG(L) is isomorphic to
Fig. 13, which is projective. In this figure, we have {0, a1}, I1, J1 ∈ U1, {0, a2} ∈ U2,
{0, a3} ∈ U3, {0, a4} ∈ U4 and {0, a5} ∈ U5. The proof is complete. ��

Now, by Theorems 2.7, 2.8 and 2.9, we completely characterized the projectivity
of AG(L) in the case that |A(L)| = 5.

In order to complete the study of the projectivity of AG(L), we assume that
|A(L)| = 6. First, suppose that |⋃6

i=1Ui | ≥ 7. Then AG(L) contains a copy of
B1, one of the listed graphs in [10], and so it is not projective. Hence, we may assume
that | ⋃6

i=1Ui | = 6. Clearly, for all 1 ≤ i ≤ 6, we have |Ui | = 1.

Theorem 2.10 Suppose that |⋃6
i=1Ui | = 6 and |Ui jk | ≤ 1 whenever Ui j = ∅, for

all 1 ≤ i �= j �= k ≤ 6. Then AG(L) is a projective graph if and only if one of the
following conditions holds:

(i) If |Ui jk | = 1, then Ui ′ j ′k′ = ∅, where {i ′, j ′, k′} = {1, 2, . . . , 6}\{i, j, k}.
(ii) There exist at most two distinct sets Ui jk and Ui jk′ with one element, exactly,

where 1 ≤ i �= j �= k �= k′ ≤ 6.
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Fig. 14 {0, a1} ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3,
{0, a4} ∈ U4, {0, a5} ∈ U5,
{0, a6} ∈ U6, I123 ∈ U123,

I156 ∈ U156, I134 ∈ U134,
I126 ∈ U126 and I145 ∈ U145

{0, a1}

{0, a2}

0, a4

{0, a3}

{0, a4}

0, a2

{0, a5} {0, a6}

{0, a6} {0, a5}

I123

I156

I134
I126I145

(iii) There exist at most five distinct sets Ui jk with one element, exactly, where 1 ≤
i �= j �= k ≤ 6, such that the intersection of all the sets at their indices has one
element, exactly.

Proof Suppose that the graph AG(L) is projective and on the contrary that none of
the conditions of theorem holds. Without loss of generality, assume that |U123| ≥ 2.
Then the contraction of AG(L) contains a copy of K3,5. Also if U12 is non-empty,
then AG(L) contains a copy of B1, one of the listed graphs in [10]. In addition, if
|U156| = |U234| = 1, then E18, one of the listed graphs in [10], is isomorphic to
a subgraph of AG(L). Moreover, if |U123| = |U124| = |U125| = 1, then AG(L)
contains a copy of E22, one of the listed graphs in [10]. In each of the above situations,
the graph AG(L) is not projective, which is a contradiction.

Conversely, by considering the embedding of the graphAG(L) in a projective plane
in Fig. 14, we conclude that it is projective graph. In this figure, we have {0, a1} ∈ U1,
{0, a2} ∈ U2, {0, a3} ∈ U3, {0, a4} ∈ U4, {0, a5} ∈ U5, {0, a6} ∈ U6, I123 ∈ U123,
I156 ∈ U156, I134 ∈ U134, I126 ∈ U126 and I145 ∈ U145. ��
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