

The Embedding of Annihilating-Ideal Graphs Associated to Lattices in the Projective Plane

A. Parsapour¹ · K. Ahmad Javaheri¹

Received: 16 February 2017 / Revised: 30 October 2017 / Published online: 21 November 2017 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract Let (L, \wedge, \vee) be a lattice with a least element 0. The annihilating-ideal graph of L , denoted by $\mathbb{AG}(L)$, is a graph whose vertex set is the set of all non-trivial ideals of *L* and, for every two distinct vertices *I* and *J* , *I* is adjacent to *J* if and only if $I \wedge J = \{0\}$. In this paper, we completely determine all finite lattices L with projective annihilating-ideal graphs AG*(L)*.

Keywords Annihilating-ideal graph · Lattice · Projective graph

Mathematics Subject Classification 05C10 · 06A07 · 06B10

1 Introduction

Recently, there has been considerable researches done on associating graphs with algebraic structures. For example, see $[2,4,11-13]$ $[2,4,11-13]$ $[2,4,11-13]$ $[2,4,11-13]$. The concept of a annihilating-ideal graph of a commutative ring R , denoted by $\mathbb{AG}(R)$, was introduced by Behboodi and Rakeei in [\[5](#page-12-2)] and [\[6](#page-12-3)]. Let $\mathbb{A}(R)$ be the set of annihilating-ideals of *R*, where a nonzero ideal *I* of *R* is called an annihilating-ideal, if there exists a nonzero ideal *J* of *R* such that $IJ = 0$. The annihilating-ideal graph of *R* is a simple graph with vertex set $\mathbb{A}(R)$, and two distinct vertices *I* and *J* are adjacent if and only if $IJ = 0$. The annihilating-

Communicated by Sanming Zhou.

B A. Parsapour a.parsapour2000@yahoo.com K. Ahmad Javaheri javaheri1158kh@yahoo.com

¹ Department of Mathematics, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

ideal graph of a lattice L, denoted by $\mathbb{AG}(L)$, is defined by Khashyarmanesh et al in $[1]$ $[1]$. $\mathbb{AG}(L)$ is a graph whose vertex set is the set of all non-trivial ideals of L and, for every two distinct vertices *I* and *J*, *I* is adjacent to *J*, if and only if $I \wedge J = 0$. In this work, we assume that *L* is a finite lattice and $A(L) = \{a_1, a_2, \ldots, a_n\}$ is the set of all atoms of *L*. In the second section of this paper, we completely characterize all finite lattices *L* with projective annihilating-ideal graphs $AG(L)$.

First, we recall some definitions and notations on lattices. For basis facts concerning lattice, we refer to [\[9](#page-12-5)]. Recall that a *lattice* is an algebra $L = (L, \wedge, \vee)$ with two binary operations ∧ and ∨, satisfying the following conditions: for all $a, b, c \in L$,

1. $a \wedge a = a$, $a \vee a = a$, 2. $a \wedge b = b \wedge a$, $a \vee b = b \vee a$, 3. $(a \wedge b) \wedge c = a \wedge (b \wedge c)$, $a \vee (b \vee c) = (a \vee b) \vee c$, and 4. $a \lor (a \land b) = a \land (a \lor b) = a$.

By [\[15](#page-13-2), Theorem 2.1], one can define an order \leq on *L* as follows: for any $a, b \in L$, we set $a < b$ if and only if $a \wedge b = a$. Then $(L, <)$ is an ordered set in which every pair of elements has a greatest lower bound *(*g*.*l*.*b*.)* and a least upper bound *(*l*.*u*.*b*.)*. Conversely, let *P* be an ordered set such that, for every pair $a, b \in P$, g.l.b. (a, b) and l.u.b.(*a*, *b*) belong to *P*. For each *a* and *b* in *P*, we define $a \wedge b := g.l.b.(a, b)$ and $a \lor b := 1$ *.u.b.(a, b).* Then (P, \land, \lor) is a lattice. A lattice *L* is said to be *bounded* if there are elements 0 and 1 in *L* such that $0 \wedge a = 0$ and $a \vee 1 = 1$, for all $a \in L$. Clearly, every finite lattice is bounded. Let (L, \wedge, \vee) be a lattice with a least element 0 and *I* be a non-empty subset of *L*. We say that *I* is an *ideal* of *L*, denoted by $I \trianglelefteq L$, if

- (i) For all $a, b \in I$, $a \vee b \in I$.
- (ii) If $0 \le a \le b$ and $b \in I$, then $a \in I$.

For two distinct ideals *I* and *J* of a lattice *L*, we put $I \wedge J := \{x \wedge y : x \in I, y \in J\}$. In a lattice (L, \wedge, \vee) with a least element 0, an element *a* is called an *atom* if $a \neq 0$ and, for an element *x* in *L*, the relation $0 \le x \le a$ implies that either $x = 0$ or $x = a$. We denote the set of all atoms of L by $A(L)$. Also, for an ideal I of L , $A(I)$ denotes the set of all atoms contained in *I*.

Now we recall some definitions and notations on graphs. We use the standard terminology of graphs following [\[7\]](#page-12-6). In a graph *G*, for two distinct vertices *a* and *b* in *G*, the notation $a - b$ means that *a* and *b* are adjacent. For a positive integer *r*, an *r*-*partite graph* is one whose vertex set can be partitioned into *r* subsets so that no edge has both ends in any one subset. A *complete r*-*partite graph* is one in which each vertex is joined to every vertex that is not in the same subset. The *complete bipartite graph* (2-partite graph) with part sizes *m* and *n* is denoted by $K_{m,n}$. A graph is said to be *planar* if it can be drawn in the plane so that its edges intersect only at their ends. A graph *G* is said to be *contracted* to a graph *H* if there exists a sequence of elementary contractions which transforms *G* into *H*, where an *elementary contraction* consists of deletion of a vertex or an edge or the identification of two adjacent vertices. A *subdivision* of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [\[7,](#page-12-6) p.153]). By a surface, we mean a connected compact two-dimensional manifold without boundary. If a disc is cut from a sphere and it is closed by a Möbius band, then the obtained surface is called *projective plane*. The projective plane can also be obtained by identifying every point of an open disc with its antipodal points. A graph *G* is *embeddable* in a surface *S* if the vertices of *G* are assigned to distinct points in *S* such that every edge of *G* is a simple arc in *S* connecting the two vertices which are joined in *G*. If *G* can not be embedded in *S*, then *G* has at least two edges intersecting at a point which is not a vertex of *G*. We say a graph *G* is *irreducible* for a surface *S* if *G* does not embed in *S*, but any proper subgraph of *G* embeds in *S*. The set of 103 irreducible graphs for the projective plane has been found by Glover et al. in [\[10\]](#page-12-7), and Archdeacon in [\[3](#page-12-8)] proved that this list is complete. This list also has been checked by Myrvold and Roth in [\[14](#page-13-3)]. Hence a graph embeds in the projective plane, which is called a *projective graph*, if and only if it contains no subdivision of 103 graphs in $[3]$ $[3]$. Note that a complete graph K_n is projective if $n = 5$ or 6, and the only projective complete bipartite graphs are $K_{3,3}$ and $K_{3,4}$ (see [\[8](#page-12-9)]). Note that a planar graph is not considered as a projective graph.

The canonical representation of a projective plane

2 Projective Annihilating-Ideal Graphs of Lattices

In this section, we study the projectivity of the annihilating-ideal graph $\mathbb{AG}(L)$. We begin this section with the following notation, which is needed in the rest of the paper.

Notation 2.1 *Let* i_1, i_2, \ldots, i_n *be integers with* $1 \leq i_1 < i_2 < \cdots < i_k \leq n$. The *notation* $U_{i_1 i_2 \ldots i_k}$ *stands for the following set:*

$$
\left\{I\leq L;\ \{a_{i_1},a_{i_2},\ldots,a_{i_k}\}\subseteq I\ \text{and}\ \ a_j\notin I, \text{for}\ \ j\in\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\}\right\}.
$$

Note that no two distinct elements in $U_{i_1 i_2 \dots i_k}$ are adjacent in $\mathbb{AG}(L)$. Also if the index sets $\{i_1, i_2, ..., i_k\}$ and $\{j_1, j_2, ..., j_{k'}\}$ of $U_{i_1 i_2 ... i_k}$ and $U_{j_1 j_2 ... j_{k'}}$, respectively, are distinct, then one can easily check that $U_{i_1 i_2 \dots i_k} \cap U_{j_1 j_2 \dots j_{k'}} = \emptyset$. Moreover, $V(\mathbb{AG}(L)) = \bigcup U_{i_1 i_2 \dots i_k}$, for all $1 \leq i_1 < i_2 < \cdots < i_k \leq n$. Suppose that *L* has *n* atoms. Note that *U*12*...ⁿ* consist of isolated vertices. Clearly, the isolated points do not affect projectivity. Hence, we ignore the set $U_{12...n}$ from the vertex set of $\mathbb{AG}(L)$, and so we do not show these points in our figures.

In the following lemma, we determine an upper bound for the number of atoms of lattice *L* such that the graph $AG(L)$ is projective.

Lemma 2.2 *If* $\mathbb{AG}(L)$ *is a projective graph, then* $2 \leq |A(L)| \leq 6$ *.*

Proof Suppose on the contrary that $|A(L)| = 1$ or $|A(L)| > 6$. In the first situation, $AG(L)$ is a totally disconnected graph, and so it is planar. Hence it is not a projective graph. In the second situation, since the induced subgraph of $\mathbb{AG}(L)$ on vertex set $\{\{0, a_i\}\}\$, for $1 \le i \le 7$, is a complete graph, one can find a subgraph isomorphic to K_7 . Therefore, the graph $\mathbb{AG}(L)$ is not projective. Hence we have $2 \leq |A(L)| < 6$. $\leq 6.$

By Theorem [2.6](#page-4-0) in [\[1\]](#page-12-4), the graph $\mathbb{AG}(L)$ is complete bipartite if and only if $|A(L)| =$ 2. In the following theorem, we state a necessary and sufficient condition for the projectivity of $\mathbb{AG}(L)$, when $|A(L)| = 2$.

Theorem 2.3 *Suppose that* $|A(L)| = 2$ *. Then* $\mathbb{AG}(L)$ *is a projective graph if and only* $if |U_2| = 3$ *, or* 4 *whenever* $|U_1| = 3$ *.*

Proof Let the graph $\mathbb{AG}(L)$ be projective. Assume to the contrary that $|U_1| \leq 2$ or $|U_2| \leq 2$. By [\[16](#page-13-4), Proposition 2.3], the graph $\mathbb{AG}(L)$ is planar, which is a contradiction. Also if $|U_1| > 3$ and $|U_2| > 3$, then the graph $\mathbb{AG}(L)$ contains a copy of $K_{4,4}$. And if $|U_1| = 3$ and $|U_2| > 4$, then the graph $\mathbb{AG}(L)$ contains a subgraph isomorphic to $K_{3,5}$. Hence $\mathbb{AG}(L)$ is not a projective graph. Therefore, we have $|U_2| = 3$, or 4 whenever $|U_1| = 3$.

The converse statement is clear. 

Now, we investigate the projectivity of $\mathbb{AG}(L)$, when $|A(L)| = 3$. In the following four cases, we probe the projectivity of $\mathbb{AG}(L)$ in the case that $|\bigcup_{i=1}^{3} U_i| \geq 5$. Additionally, in the rest of work, we do not consider the cases that $\mathbb{AG}(L)$ is planar. For planar cases see [\[16](#page-13-4)].

Case 1 $|\bigcup_{i=1}^{3} U_i| = 5$.

Without loss of generality, we may assume that $|U_1| = 1$ whenever U_{12} and U_{13} are non-empty. It is clear that $\mathbb{AG}(L)$ is projective. Also if $|U_1| = 3$ and $0 < |U_{23}| \leq 2$, then one can easily check that $AG(L)$ is projective. In addition, if $|U_1| = 3$ and $|U_{23}| \geq 3$, then the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{3,5}$. So the graph $AG(L)$ is not projective.

Case 2 $|\bigcup_{i=1}^{3} U_i| = 6.$

Without loss of generality, we may assume that $|U_1|=|U_2|=|U_3|=2$ whenever U_{12} , U_{13} and U_{23} are non-empty. Then it is not hard to see the graph $\mathbb{AG}(L)$ is projective. Also if $|U_1| = 3$ and $|U_{23}| \le 1$, then we observe that $\mathbb{AG}(L)$ is projective. And we may assume that $|U_1| = 4$ and $|U_{23}| = 1$. Clearly, the graph $\mathbb{AG}(L)$ is projective. Finally, if $|U_1| = 3$ or 4 whenever $|U_{23}| \ge 2$, then we can find a copy of $K_{3,5}$ or $K_{4,4}$ in the structure of the contraction of $\mathbb{AG}(L)$, respectively. Hence $\mathbb{AG}(L)$ is not projective.

Case $3 | \bigcup_{i=1}^{3} U_i | = 7.$

Without loss of generality, we may assume that $|U_1| \in \{3, 4\}$ and $U_{23} = \emptyset$. Then one can easily see that the graph $\mathbb{AG}(L)$ is projective. Otherwise, if U_{23} is non-empty, then the contraction of $AG(L)$ contains a copy of $K_{3,5}$ or $K_{4,4}$. So the graph $AG(L)$ is not projective. Also if $|U_1|=|U_2|=3$ and $U_{13}=U_{23}=\emptyset$, then it is not hard to see that the graph $AG(L)$ is projective. Otherwise, if U_{13} or U_{23} is non-empty, then we have a subgraph isomorphic to $K_{3,5}$ in the contraction of $\mathbb{AG}(L)$. Hence the

$$
\qquad \qquad \Box
$$

graph $\mathbb{AG}(L)$ is not projective. Additionally, if $|U_1| = 5$ and $U_{23} = \emptyset$, then $\mathbb{AG}(L)$ is planar, which is not projective. And if $U_{23} \neq \emptyset$, then we can find a copy of $K_{3,5}$ in the structure of $\mathbb{AG}(L)$. So the graph $\mathbb{AG}(L)$ is not projective.

Case 4 $|\bigcup_{i=1}^{3} U_i| \geq 8$.

Without loss of generality, we may assume that $|U_1| = |\bigcup_{i=1}^3 U_i|\rangle 2$ and $U_{23} = \emptyset$. Then $AG(L)$ is planar, which is not projective. And if $U_{23} \neq \emptyset$, then we can find a copy of $K_{3,5}$ in the structure of the contraction of $\mathbb{AG}(L)$. So the graph $\mathbb{AG}(L)$ is not projective. Also if none of the U_i 's has $|\bigcup_{i=1}^3 U_i|\rangle$ 2 elements, then the contraction of $AG(L)$ contains a subgraph isomorphic to K_3 *s* or K_4 *a*. Therefore, the graph $AG(L)$ is not projective.

Now, by the above discussion, one can easily see that the following theorem holds.

Theorem 2.4 *Let* $|A(L)| = 3$ *. Then* $\mathbb{AG}(L)$ *is a projective graph if and only if one of the following conditions holds:*

- *(i)* $|\bigcup_{i=1}^{3} U_i| = 5$ *and one of the following cases is satisfied:*
	- *(a) There is U_i with* $|U_i| = 3$ *and* $0 < |U_{ik}| \leq 2$, *for* $1 \leq i \neq j \neq k \leq 3$.
	- *(b)* There is a unique U_i with $|U_i| = 1$ whenever U_{ii} and U_{ik} are non-empty sets, *for* $1 \leq i \neq j \neq k \leq 3$ *.*
- (iii) $|\bigcup_{i=1}^{3} U_i| = 6$ *and one of the following cases is satisfied:*
	- *(a) There exists i with* $1 \leq i \leq 3$ *, such that* $|U_i| = 4$ *and* $|U_{ik}| = 1$ *, for* $1 \leq i \neq j \neq k \leq 3$.
	- *(b)* There exists i with $1 \le i \le 3$, such that $|U_i| = 3$ and $|U_{ik}| \le 1$, for $1 \leq i \neq j \neq k \leq 3$.
	- *(c)* $|U_i| = 2$, for all *i* with $1 \le i \le 3$, and $U_{ik} \ne \emptyset$, for all $1 \le j \ne k \le 3$.

(*iii*) $|\bigcup_{i=1}^{3} U_i| = 7$ *and one of the following cases is satisfied:*

- *(a)* $|U_i|$ ∈ {3, 4}*, for some unique integer i with* $1 ≤ i ≤ 3$ *, such that and* U_{jk} *is empty, for* $1 \leq i \neq j \neq k \leq 3$.
- *(b)* $|U_i| = |U_j| = 3$, for some integers i and j, with $1 \le i \ne j \le 3$ *whenever* U_{ik} *and* U_{jk} *are empty, for* $1 \leq i \neq j \neq k \leq 3$ *.*

In the sequel, we investigate the projectivity of $\mathbb{AG}(L)$, when $|A(L)| = 4$. Suppose that $|\bigcup_{i=1}^{4} U_i| \geq 8$. Then it is easy to see that $\mathbb{AG}(L)$ is not projective, because one can see that the contraction of $AG(L)$ contains a copy of $K_{3,5}$ or $K_{4,4}$. And so it is not projective.

As a result of the above note, we have the following lemma.

Lemma 2.5 *If* $\mathbb{AG}(L)$ *is projective, then* $|\bigcup_{i=1}^{4} U_i| \leq 7$ *.*

Theorem 2.6 *Suppose that* $|A(L)| = 4$ *. Then* $\mathbb{AG}(L)$ *is projective if and only if one of the following statements holds:*

- *(i)* $|\bigcup_{i=1}^{4} U_i| = 5$ *and* $|U_i| = 2$ *, for some unique integer i with* $1 \le i \le 4$ *. If* $U_{jk} =$ \emptyset *, then* $|U_{jkl}| ≠ ∅$ *, with i, j, k* ∉ {*i*}*. And if the size of U_{jk} <i>is* 1 *or* 2 *whenever at most one of the U_{jk}'s has exactly two elements, where* $1 \le i \ne j \ne k \le 4$ *.*
- (*ii*) $|\bigcup_{i=1}^{4} U_i| = 6$ *and one of the following cases holds:*
	- *(a)* $|U_i| = 3$ *, for some integer i with* $1 \le i \le 4$ *. If* $|U_{jkl}| = 1$ *, with* $1 \le i \ne j$ $j \neq k \neq l \leq 4$, then $U_{jk} = \emptyset$, for all $j, k \notin \{i\}$. Also if $U_{jkl} = \emptyset$, with

 $1 \leq i \neq j \neq k \neq l \leq 4$, then $|U_{ik}| \leq 1$ and at most one of the U_{ik} 's has *exactly one element, where* $j, k \notin \{i\}$ *.*

- *(b)* $|U_i| = |U_j| = 2$, for some integers i and j with $1 \le i \ne j \le 4$ when*ever* $|U_{kl}| \leq 1$ *, where* $1 \leq k < l \leq 4$ *and* $k, l \notin \{i, j\}$ *. Also* $U_{i'_1 i'_2} = \emptyset$ *whenever* $|U_{i_1 i_2}| = 1$ *, for all* $1 \leq i_1 \neq i'_1 \neq i_2 \neq i'_2 \leq 4$ *, with* $\{i'_1, i'_2\} = \{1, 2, 3, 4\} \setminus \{i_1, i_2\}$ *. Moreover, if* $|U_{ik}|$ *,* $|U_{il}| \leq 1$ *or* $|U_{jk}|$ *,* $|U_{jl}| \leq 1$ *,* t *hen* $|U_{kl}| \leq 1$ *. Also if* $|U_{ik}| = |U_{jk}| = 1$ *or* $|U_{il}| = |U_{jl}| = 1$ *, then* $U_{kl} = \emptyset$ *.*
- (*iii*) $|\bigcup_{i=1}^{4} U_i| = 7$ *and one of the following cases holds:*
	- *(a)* $|U_i| = 4$, for some integer i with $1 \le i \le 4$ and $U_{ikl} = U_{jk} = \emptyset$, where $1 \leq i \neq j \neq k \neq l \leq 4.$
	- *(b)* $|U_i| = 3$ *and* $|U_j| = 2$ *, for some integers i and j with* $1 \le i \ne j \le 4$ *and* $U_{jkl} = \emptyset$ *, where k, l* \notin {*i*, *j*} *whenever* $U_{ii_1} = U_{ji_1} = \emptyset$ *, where i*₁ \notin {*i*, *j*}*, with* $1 \leq i_1 \leq 4$ *, and* $U_{kl} = \emptyset$ *, where* $k, l \notin \{i, j\}$ *.*

Proof First, assume that $AG(L)$ is projective. Suppose on the contrary that none of the conditions (*i*), (*ii*) or (*iii*) holds. If $|\bigcup_{i=1}^{4} U_i| = 5$ and the statement (*i*) does not hold, then one of the U_i 's, $1 \le i \le 4$, say U_1 , has two elements whenever U_{234} , U_{23} , U_{24} and U_{34} are empty. So $\mathbb{AG}(L)$ is planar, which is not projective. Additionally, if $|U_{23}|$, $|U_{24}|$ or $|U_{34}|$ is at least three, then the contraction of $\mathbb{AG}(L)$ contains a copy of the subdivision of $K_{3,5}$. Now, we may assume that at least two of the sets U_{23} , U_{24} or U_{34} have two elements, say U_{24} and U_{34} . Then a subgraph of $\mathbb{AG}(L)$ is isomorphic to E_5 , one of the listed graphs in $[10]$ $[10]$, as shown in Fig. [1.](#page-5-0) In this figure, we have $\{0, a_1\}, I_1 \in U_1, \{0, a_2\} \in U_2, \{0, a_3\} \in U_3, \{0, a_4\} \in U_4, I_{24}, I'_{24} \in U_{24}$ and I_{34} , $I'_{34} \in U_{34}$.

If $|\bigcup_{i=1}^{4} U_i| = 6$ and the statement *(ii)* does not hold, then there is only one of the U_i 's, say U_1 , such that $|U_1| = 3$ whenever $|U_{234}| \ge 2$. Hence the contraction of $AG(L)$ contains a subgraph isomorphic to $K_{3,5}$. If $|U_{234}| = 1$ and at least one of the sets U_{23} , U_{24} or U_{34} , say U_{23} , has one element, then $AG(L)$ contains a copy of E_{18} , one of the listed graphs in $[10]$ $[10]$ (see Fig. [2\)](#page-6-0). In this figure, we have $\{0, a_1\}, I_1, J_1 \in U_1$, ${0, a_2}$ ∈ *U*₂, {0*, a*₃} ∈ *U*₃, {0*, a*₄} ∈ *U*₄, *I*₂₃ ∈ *U*₂₃ and *I*₂₃₄ ∈ *U*₂₃₄.

If at least one of the sets U_{23} , U_{24} or U_{34} have two elements, then we can see that the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{4,4}$. Additionally, we may assume that at least two of the sets U_{23} , U_{24} or U_{34} , say U_{23} and U_{24} , have one element. Then it is easy to find a copy of E_{18} , one of the listed graphs in [\[10](#page-12-7)], in the graph $AG(L)$. Now, suppose that $|\bigcup_{i=1}^{4} U_i| = 6$ and there exist distinct *i* and *j* such that $|U_i| = |U_j| = 2$.

Without loss of generality, we may assume that $|U_1|=|U_2|=2$. When $|U_{34}|\geq 2$, we can find a subdivision of $K_{4,4}$ in the structure of the contraction of $\mathbb{AG}(L)$. If $|U_{13}| = 2$, then the contraction of the sets $U_2 \cup U_4$ and $U_1 \cup U_3 \cup U_{13}$ induces a copy of $K_{3,5}$. Moreover, we may assume that $|U_{12}|=|U_{34}|=1$ or $|U_{14}|=|U_{23}|=1$. In this case, the contraction of the graph $\mathbb{AG}(L)$ contains a copy of E_3 or E_{18} , two of the listed graphs in [\[10](#page-12-7)], respectively. Finally, suppose that *U*13, *U*²³ and *U*³⁴ have one element. Consider the graph D_8 , one of the listed graphs in $[10]$, as shown in Fig. [3.](#page-6-1) In this figure, we have {0, a_1 }, $I_1 \in U_1$, {0, a_2 }, $I_2 \in U_2$, {0, a_3 } ∈ U_3 , {0, a_4 } ∈ U_4 , $I_{13} \in U_{13}$, $I_{23} \in U_{23}$ and $I_{34} \in U_{34}$.

Clearly, for the case that $|U_{14}|=|U_{24}|=|U_{34}|=1$, we have the similar result.

Suppose that $|\bigcup_{i=1}^{4} U_i| = 7$ and the statement *(iii)* does not hold. First, assume that there exists only one U_i , say U_1 , such that $|U_1| = 4$. If $U_{234} \neq \emptyset$, then the contraction of $AG(L)$ contains a copy of $K_{4,4}$. If one of the sets U_{23} , U_{24} or U_{34} is not empty, then $K_{4,4}$ is isomorphic to a subgraph of $\mathbb{AG}(L)$. Now, assume that there is a unique U_i , say U_1 , with $|U_1| = 3$. If $U_{234} \neq \emptyset$, then one can obtain a subdivision of $K_{3,5}$ in the structure of the contraction of $\mathbb{AG}(L)$. Also, we may assume that U_{13} or U_{14} is not empty. Then it is easy to see a copy of $K_{4,4}$ as a subgraph of $AG(L)$. Moreover, if at least one of the sets U_{23} , U_{24} or U_{34} is not empty, then the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{4,4}$ or $K_{3,5}$. Finally, assume that only one of the U_i 's, where $1 \le i \le 4$, has one element, exactly. Then A_2 , one of the listed graphs in [\[10](#page-12-7)], is isomorphic to a subgraph of $\mathbb{AG}(L)$, as shown in Fig. [4.](#page-7-0) In this figure, we have $\{0, a_1\}, I_1 \in U_1, \{0, a_2\}, I_2 \in U_2, \{0, a_3\}, I_3 \in U_3 \text{ and } \{0, a_4\} \in U_4.$

Therefore, in all of the above situations, we have that $\mathbb{AG}(L)$ is not projective, which is a contradiction.

Fig. 4 {0*, a*₁}*, I*₁ $\in U_1$ *,* {0*, a*2}*, I*² ∈ *U*2, {0*, a*3}*, I*³ ∈ *U*₃ and {0*, a*₄} ∈ *U*₄

Conversely, if one of the conditions (*i*), (*ii*) or (*iii*) holds, then one can easily check that the graph $\mathbb{AG}(L)$ embeds in a projective plane. So it is a projective graph and the proof is complete. \Box

In the rest of this paper, we need to consider the cases that $|A(L)| = 5$ and 6.

First, assume that $|A(L)| = 5$. If $|\bigcup_{i=1}^{5} U_i| \ge 8$, then one can easily realize that the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{4,4}$ or $K_{3,5}$, which is not projective. Therefore, we investigate the cases that $|\bigcup_{i=1}^{5} U_i| = 5, 6$, or 7.

We continue this discussion with the following theorem.

Theorem 2.7 *Let* $|\bigcup_{i=1}^{5} U_i| = 5$ *. Then* $\mathbb{AG}(L)$ *is a projective graph if and only if* $|U_{ii}| \leq 2$, for all $1 \leq i, j \leq 5$ and one of the following conditions holds:

- *(i) There is only one of the* U_{ij} *'s, such that* $|U_{ij}| = 2$ *whenever* $U_{i'j'} = \emptyset$ *, for* $\{i', j'\} = \{1, 2, \ldots, 5\} \setminus \{i, j\}$, and also, for some $k \in \{1, 2, \ldots, 5\} \setminus \{i, j\}$, the *number of such sets Uki and Ukj with exactly one element is at most two. Moreover, for the sets* U_{k_1i} *and* U_{k_2j} *with* $\{k_1, i\} \cap \{k_2, j\} = \emptyset$ *, we have* $U_{k_1i} = \emptyset$ *or* $U_{k_2 j} = \varnothing$.
- *(ii) There is no* U_{ij} *, such that* $|U_{ij}| = 2$ *, and there exist at most three distinct sets U*_{ij}, *U*_{ij'} and *U*_{ij'} with exactly one element, where $1 \le i$, *j*, *j'*, *j''* ≤ 5 whenever *at most there is one* U_{kl} *with* $|U_{kl}| \leq 1$ *, where* $1 \leq k, l \leq 5$ *and if* U_{kl} *has a vertex, then it is adjacent to at most one of the vertices in the sets* U_{ij} *,* U_{ij} *or* $U_{i i^{\prime \prime}}$.

Proof First, suppose that the graph $\mathbb{AG}(L)$ is projective and to the contrary that none of the conditions of theorem holds. Without loss of generality, assume that $|U_{12}| \geq 3$. Then the contraction of $AG(L)$ contains a subgraph isomorphic to $K_{3,5}$. If $|U_{12}| =$ $|U_{23}| = 2$, then the graph $AG(L)$ contains a subgraph isomorphic to subdivision of E_5 , one of the listed graphs in [\[10](#page-12-7)]. If $|U_{12}| = 2$ and $|U_{34}| = 1$, then the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{4,4}$. If $|U_{12}| = 2$ and $|U_{13}| = |U_{24}| = 1$, then $\mathbb{AG}(L)$ contains a copy of F_1 , one of the listed graphs in $[10]$ (see Fig. [5\)](#page-8-0). In this figure, we have ${0, a₁} ∈ U₁, {0, a₂} ∈ U₂, {0, a₃} ∈ U₃, {0, a₄} ∈ U₄, {0, a₅} ∈ U₅, I₁₂, I'₁₂ ∈ U₁₂,$ $I_{13} \in U_{13}$ and $I_{24} \in U_{24}$.

If $|U_{13}| = |U_{24}| = 1$ and $|U_{14}| = |U_{23}| = 1$, then the graph $\mathbb{AG}(L)$ contains a copy of F_1 , one of the listed graphs in [\[10\]](#page-12-7). If $|U_{12}|=|U_{13}|=|U_{14}|=1$ and $|U_{25}| = 1$, then F_1 , one of the listed graphs in [\[10\]](#page-12-7), is isomorphic to subgraph of

 $\mathbb{A}\mathbb{G}(L)$. If $|U_{12}| = |U_{13}| = |U_{14}| = 1$ and $|U_{23}| = |U_{34}| = 1$, then the graph $\mathbb{A}\mathbb{G}(L)$ contains a copy of F_5 , one of the listed graphs in $[10]$ $[10]$ (see Fig. [6\)](#page-8-1). In this figure, we have $\{0, a_1\}$ ∈ U_1 , $\{0, a_2\}$ ∈ U_2 , $\{0, a_3\}$ ∈ U_3 , $\{0, a_4\}$ ∈ U_4 , $\{0, a_5\}$ ∈ U_5 , I_{12} ∈ U_{12} , $I_{13} \in U_{13}$, $I_{14} \in U_{14}$, $I_{23} \in U_{23}$ and $I_{34} \in U_{34}$.

If $|U_{12}|=|U_{13}|=|U_{14}|=|U_{15}|=1$, then $\mathbb{AG}(L)$ contains a copy of E_{22} , one of the listed graphs in [\[10\]](#page-12-7) (see Fig. [7\)](#page-8-2). In this figure, we have $\{0, a_1\} \in U_1$, {0*, a*2} ∈ *U*2, {0*, a*3} ∈ *U*3, {0*, a*4} ∈ *U*4, {0*, a*5} ∈ *U*5, *I*¹² ∈ *U*12, *I*¹³ ∈ *U*13, $I_{14} \in U_{14}$ and $I_{15} \in U_{15}$.

So, by the above situations, the graph $AG(L)$ is not projective, which is a contradiction.

Conversely, one can easily check that if one of the conditions (*i*) and (*ii*) holds, then $\mathbb{AG}(L)$ is a projective graph.

Now, suppose that $|\bigcup_{i=1}^{5} U_i| = 6$. Then there is only one of the *U_i*'s, say *U*₁, such that $|U_1| = 2$. It is clear that U_2 , U_3 , U_4 and U_5 have one element, exactly.

Theorem 2.8 *Suppose that* $|\bigcup_{i=1}^{5} U_i| = 6$ *and* $|U_1| = 2$ *whenever* $|U_{ijk}| \leq 1$, for $2 \leq i, j, k \leq 5$ and $|U_{ii}| \leq 1$, for $1 \leq i, j \leq 5$. Then $\mathbb{AG}(L)$ is a projective graph if *and only if one of the following conditions holds:*

- *(i)* There exist at most two distinct sets U_{1i} and U_{1i} , where $2 \leq i, j \leq 5$, such that $|U_{1i}|=|U_{1i}|=|U_{ii}|=1.$
- *(ii) There exist at most two distinct sets with exactly one element* U_{ijk} *,* $U_{i'j'k'}$ *, where* $2 \leq i, i', j, j', k, k' \leq 5$. Moreover, we have at most two sets U_{1j_1}, U_{1j_2} with *exactly one element such that* $j_1, j_2 \in \{i, j, k\} \cap \{i', j', k'\}$.

Proof Suppose that the graph $AG(L)$ is projective and on the contrary that none of the conditions of theorem holds. Without loss of generality, assume that $|U_{12}| = 2$, then the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{3,5}$. If $|U_{23}| = 2$, then the contraction of $AG(L)$ contains a copy of $K_{4,4}$. If $|U_{13}| = |U_{24}| = 1$, then E_3 , one of the listed graphs in [\[10\]](#page-12-7), is isomorphic to a subgraph of $AG(L)$ (see Fig. [8\)](#page-9-0). In this figure, we have ${0, a}$, I_1 ∈ U_1 , ${0, a_2}$ ∈ U_2 , ${0, a_3}$ ∈ U_3 , ${0, a_4}$ ∈ U_4 , ${0, a_5}$ ∈ U_5 , I_{13} ∈ U_{13} and $I_{24} \in U_{24}.$

If $|U_{23}| = |U_{24}| = 1$, then the graph AG(*L*) contains a subgraph isomorphic to E_3 , one of the listed graphs in [\[10\]](#page-12-7). If $|U_{12}| = |U_{13}| = |U_{14}| = 1$, then the graph $\mathbb{AG}(L)$ contains a copy of E_{22} , one of the listed graphs in $[10]$ (see Fig. [9\)](#page-10-0). In this figure, we have $\{0, a_1\}, I_1 \in U_1$, $\{0, a_2\} \in U_2$, $\{0, a_3\} \in U_3$, $\{0, a_4\} \in U_4$, $\{0, a_5\} \in U_5$, $I_{12} \in U_{12}$, $I_{13} \in U_{13}$ and $I_{14} \in U_{14}$.

If $|U_{234}| = 2$, then the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{3,5}$.

If $|U_{234}|=|U_{235}|=|U_{245}|=1$, then the graph $\mathbb{AG}(L)$ contains a copy of E_{20} , one of the listed graphs in [\[10](#page-12-7)] (see Fig. [10\)](#page-10-1). In this figure, we have $\{0, a\}$, $I_1 \in U_1$, ${0, a_2} ∈ U_2, {0, a_3} ∈ U_3, {0, a_4} ∈ U_4, {0, a_5} ∈ U_5, I_{234} ∈ U_{234}, I_{235} ∈ U_{235}$ and $I_{245} \in U_{245}$.

If $|U_{235}| = |U_{35}| = 1$ or $|U_{235}| = |U_{24}| = 1$, then the graph $AG(L)$ contains a copy of E_3 or D_3 , two of the listed graphs in [\[10](#page-12-7)]. The second case is pictured in Fig. [11.](#page-10-2) In this figure, we have $\{0, a\}$, $I_1 \in U_1$, $\{0, a_2\} \in U_2$, $\{0, a_3\} \in U_3$, $\{0, a_4\} \in U_4$, $\{0, a_5\} \in U_5$, $I_{24} \in U_{24}$ and $I_{235} \in U_{235}$.

Obviously, we conclude that in each of the above statements, the graph $\mathbb{AG}(L)$ is not projective, which is a contradiction.

Conversely, it is not hard to see that if one of the conditions (*i*) and (*ii*) holds, then $AG(L)$ is a projective graph.

Now, assume that $|\bigcup_{i=1}^{5} U_i| = 7$. If $|U_i| = |U_j| = 2$, for some $1 \le i \ne j \le 5$, then the contraction of $\mathbb{AG}(L)$ is isomorphic to B_1 , one of the listed graphs in [\[10\]](#page-12-7) (see Fig. [12\)](#page-11-0). In this figure, we have $\{0, a_1\}$, $I_1 \in U_1$, $\{0, a_2\}$, $I_2 \in U_2$, $\{0, a_3\} \in U_3$, $\{0, a_4\} \in U_4$ and $\{0, a_5\} \in U_5$. In this situation, $\mathbb{AG}(L)$ is not projective.

Therefore, it is enough to consider the case that $|U_i| = 3$, for some $1 \le i \le 5$. Without loss of generality, we may assume that $|U_1| = 3$. Hence, we have the following theorem.

Theorem 2.9 *Suppose that* $|\bigcup_{i=1}^{5} U_i| = 7$ *and* $|U_1| = 3$ *. Then* $\mathbb{A}\mathbb{G}(L)$ *is a projective graph if and only if, for all* $2 \le i$, j , k , $l \le 5$, $U_{ijkl} = U_{ijk} = \emptyset$ *whenever* $U_{ij} = \emptyset$, *for* $1 \le i, j \le 5$ *.*

Proof First, assume that $AG(L)$ is a projective graph and to the contrary that $U_{ijkl} \neq$ \emptyset , $U_{ijk} \neq \emptyset$, for $2 \leq i, j, k, l \leq 5$ or $U_{ij} \neq \emptyset$, for $1 \leq i, j \leq 5$. If $U_{ijkl} \neq \emptyset$, for $2 \le i$, $j, k, l \le 5$, then the contraction of $\mathbb{AG}(L)$ contains a copy of $K_{3,5}$. Also if $U_{ijk} \neq \emptyset$, for $2 \leq i, j, k \leq 5$, then $K_{4,4}$ is isomorphic to a subgraph of the contraction of $\mathbb{AG}(L)$. Finally, if $U_{ii} \neq \emptyset$, for $1 \leq i, j \leq 5$, then the contraction of $AG(L)$ contains a copy of $K_{3,5}$. Therefore, it is not projective, which is a contradiction.

Conversely, assume that $U_{ijkl} = U_{ijk} = \emptyset$, for all $2 \le i, j, k, l \le 5$, and $U_{ij} = \emptyset$, for $1 \leq i, j \leq 5$. Then one can easily check that the graph $\mathbb{AG}(L)$ is isomorphic to Fig. [13,](#page-11-1) which is projective. In this figure, we have $\{0, a_1\}$, $I_1, J_1 \in U_1$, $\{0, a_2\} \in U_2$, {0*, a*₃} ∈ *U*₃, {0*, a*₄} ∈ *U*₄ and {0*, a*₅} ∈ *U*₅. The proof is complete.

Now, by Theorems [2.7,](#page-7-1) [2.8](#page-9-1) and [2.9,](#page-10-3) we completely characterized the projectivity of $\mathbb{AG}(L)$ in the case that $|A(L)| = 5$.

In order to complete the study of the projectivity of $AG(L)$, we assume that $|A(L)| = 6$. First, suppose that $|\bigcup_{i=1}^{6} U_i| \ge 7$. Then AG(*L*) contains a copy of *B*1, one of the listed graphs in [\[10\]](#page-12-7), and so it is not projective. Hence, we may assume that $|\bigcup_{i=1}^{6} U_i| = 6$. Clearly, for all $1 \le i \le 6$, we have $|U_i| = 1$.

Theorem 2.10 *Suppose that* $|\bigcup_{i=1}^{6} U_i| = 6$ *and* $|U_{ijk}| \le 1$ *whenever* $U_{ij} = \emptyset$ *, for all* $1 \leq i \neq j \neq k \leq 6$. Then $\mathbb{AG}(L)$ *is a projective graph if and only if one of the following conditions holds:*

- *(i) If* $|U_{ijk}| = 1$ *, then* $U_{i'j'k'} = \emptyset$ *, where* $\{i', j', k'\} = \{1, 2, ..., 6\} \{i, j, k\}.$
- *(ii) There exist at most two distinct sets* U_{ijk} *and* U_{ijk} *with one element, exactly, where* $1 \leq i \neq j \neq k \neq k' \leq 6$ *.*

(iii) There exist at most five distinct sets U_{ijk} *with one element, exactly, where* $1 \leq$ $i \neq j \neq k \leq 6$, such that the intersection of all the sets at their indices has one *element, exactly.*

Proof Suppose that the graph $\mathbb{AG}(L)$ is projective and on the contrary that none of the conditions of theorem holds. Without loss of generality, assume that $|U_{123}| \geq 2$. Then the contraction of $AG(L)$ contains a copy of $K_{3,5}$. Also if U_{12} is non-empty, then $\mathbb{AG}(L)$ contains a copy of B_1 , one of the listed graphs in [\[10\]](#page-12-7). In addition, if $|U_{156}|=|U_{234}|=1$, then E_{18} , one of the listed graphs in [\[10](#page-12-7)], is isomorphic to a subgraph of $\mathbb{AG}(L)$. Moreover, if $|U_{123}|=|U_{124}|=|U_{125}|=1$, then $\mathbb{AG}(L)$ contains a copy of E_{22} , one of the listed graphs in [\[10](#page-12-7)]. In each of the above situations, the graph $\mathbb{AG}(L)$ is not projective, which is a contradiction.

Conversely, by considering the embedding of the graph $\mathbb{AG}(L)$ in a projective plane in Fig. [14,](#page-12-10) we conclude that it is projective graph. In this figure, we have $\{0, a_1\} \in U_1$, {0*, a*₂} ∈ *U*₂, {0*, a*₃} ∈ *U*₃, {0*, a*₄} ∈ *U*₄, {0*, a*₅} ∈ *U*₅, {0*, a*₆} ∈ *U*₆, *I*₁₂₃ ∈ *U*₁₂₃,
*I*₁₅₆ ∈ *U*₁₃₆ ⊆ *U*₁₂₄ ∈ *U*₁₂₄ *I*₁₁₂₆ ∈ *U*₁₁₂₆ ∈ *U*₁₁₄₅ ∈ *U*₁₄₅ $I_{156} \in U_{156}$, $I_{134} \in U_{134}$, $I_{126} \in U_{126}$ and $I_{145} \in U_{145}$.

References

- 1. Afkhami, M., Bahrami, S., Khashyarmanesh, K., Shahsavar, F.: The annihilating-ideal graph of a lattice. Georgian Math. J. **23**, 1–8 (2015)
- 2. Anderson, D.F., Axtell, M.C., Stickles, J.A.: Zero-divisor graphs in commutative rings. In: Fontana, M., Kabbaj, S.E., Olberding, B., Swanson, I. (eds.) Commutative Algebra, Noetherian and Non-Noetherian Perspectives, pp. 23–45. Springer, New York (2011)
- 3. Archdeacon, D.: A Kuratowski theorem for the projective plane. J. Graph Theory **5**, 243–246 (1981)
- 4. Beck, I.: Coloring of commutative rings. J. Algebra **116**, 208–226 (1998)
- 5. Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings I. J. Algebra Appl. **10**, 727–739 (2011)
- 6. Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings II. J. Algebra Appl. **10**, 741–753 (2011)
- 7. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. American Elsevier, New York (1976)
- 8. Bouchet, A.: Orientable and nonorientable genus of the complete bipartite graph. J. Comb. Theory Ser. B **24**, 24–33 (1978)
- 9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)
- 10. Glover, H., Huneke, J.P., Wang, C.S.: 103 graphs that are irreducible for the projective plane. J. Comb. Theory Ser. B **27**, 332–370 (1979)
- 11. Kelarev, A.V., Quinn, S.J.: Directed graphs and combinatorial properties of semigroups. J. Algebra **251**, 16–26 (2002)
- 12. Kelarev, A.V., Ryan, J., Yearwood, J.: Cayley graphs as classifiers for data mining: the influence of asymmetries. Discrete Math. **309**, 5360–5369 (2009)
- 13. Khashyarmanesh, K., Khorsandi, M.R.: Projective total graphs of commutative rings. Rocky Mt. J. Math. **43**, 1207–1213 (2013)
- 14. Myrvold, W., Roth, J.: Simpler projective plane embedding. Ars Comb. **75**, 135–155 (2005)
- 15. Nation, J.B.: Notes on Lattice. Theory Cambridge Studies in Advanced Mathematics, vol. 60. Cambridge University Press, Cambridge (1998)
- 16. Shahsavar, F.: On the planar and outer planar annihilating-ideal graphs of a lattice. Algebras Groups Geom. **32**, 479–494 (2015)