
Bull. Malays. Math. Sci. Soc. (2019) 42:1485–1506
https://doi.org/10.1007/s40840-017-0561-1

On Resonant Robin Problems with General Potential

Nikiforos Mimikos-Stamatopoulos1 ·
Nikolaos S. Papageorgiou1

Received: 8 June 2017 / Revised: 19 September 2017 / Published online: 26 October 2017
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract We consider a semilinear Robin problem with indefinite and unbounded
potential and a reaction term which asymptotically at ±∞ is resonant with respect to
any nonprincipal, nonnegative eigenvalue of the differential operator. Using critical
point theory, Morse theory (critical groups) and the reduction method, we show that
the problem has at least three nontrivial solutions.
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1 Introduction

Let � ⊂ R
N be a bounded domain with a C2− boundary ∂�. In this paper, we study

the following semilinear Robin problem

−�u(z) + ξ(z)u(z) = f (z, u(z)) in �

∂u

∂n
+ β(z)u = 0 on ∂�.

(1)
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In this problem, the potential function ξ ∈ Ls(�) s > N , is indefinite (that is, sign
changing). So, the differential operator in problem (1) is not coercive. The reaction
term f (z, x) is a measurable function defined on � × R and for a.a. z ∈ � f (z, ·) ∈
C1(R).We assume that asymptotically as x → ±∞ the function f (z, ·) exhibits linear
growth and can interact (resonance) with any nonprincipal, nonnegative eigenvalue of
the differential operator u → −�u + ξ(z)u with Robin boundary condition. In the
boundary condition, ∂u

∂n denotes the usual normal derivative of u, defined by extension
of the linear map

C1(�) � u → ∂u

∂n
= (Du, n)RN ,

with n(·) being the outward unit normal on ∂�. The boundary coefficient β(z) satisfies
β ∈ W 1,∞(∂�) andβ(z) ≥ 0 for all z ∈ ∂�.Whenβ ≡ 0,wehave the usualNeumann
problem.

In this paper, using variational methods based on the critical point theory, together
with Morse theory (critical groups) and the reduction technique of Amann [2] and
Castro and Lazer [3], we prove a multiplicity theorem for problem (1), producing at
least three nontrivial smooth solutions, two of which have constant sign (one positive
and the other negative).

Recently, semilinear problems with an indefinite potential were studied by Kyristi
and Papageorgiou [8], Li and Wang [9], Papageorgiou and Papalini [13], Qin et al.
[19], Zhang and Liu [22] (Dirichlet problems), Papageorgiou and Radulescu [14],
Papageorgiou and Smyrlis [17] (Neumann problems) and D’Agui et al. [5], Papageor-
giou and Radulescu [16], Papageorgiou et al. [18], Shi and Li [20] (Robin problems).
In D’Agui et al. [5], the reaction term is asymmetric, Papageorgiou and Radulescu
[16] assume that the reaction f (z, ·) has z-dependent zeros of constant sign, and arbi-
trary growth, Papageorgiou et al. [18] allow for double resonance to occur and prove
only existence of nontrivial solutions, and finally Shi and Li [20] assume a superlinear
reaction term satisfying the Ambrosetti–Rabinowitz condition.

2 Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉, we denote the duality
brackets for the pair (X∗, X). If ϕ ∈ C1(X,R), then we say that ϕ satisfies the
“Cerami condition” (the “C-condition” for short), if the following property holds:
“Every sequence {un}n≥1 ⊂ X such that {ϕ(un)}n≥1 ⊂ R is bounded and

(1 + ‖un‖)ϕ′(un) → 0 in X∗,

admits a strongly convergent subsequence.”
This compactness-type condition on ϕ leads to a deformation theorem from which

one can derive the minimax theory of the critical values of ϕ. One of the main results
in that theory is the so-called mountain pass theorem which we recall here.
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Theorem 1 If ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, ‖u1 −u0‖ > ρ >

0

max{ϕ(u0), ϕ(u1)} < inf
[
ϕ(u) : ‖u − u0‖ = ρ

]
= mρ

and c = inf
γ∈


max
0≤t≤1

ϕ(γ (t)) with 
 := {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1},
then c ≥ mρ and c is a critical value of ϕ

In the study of problem (1), we will use the following spaces:

• The Sobolev space H1(�).

• The Banach space C1(�).

• The boundary Lebesgue spaces L p(∂�) (1 ≤ p ≤ ∞).

We know that H1(�) is a Hilbert space with inner product

(u, h)H1(�) =
∫

�

uhdz +
∫

�

(Du, Dh)RN dz for all u, h ∈ H1(�)

and corresponding norm

‖u‖ =
[
‖u‖22 + ‖Du‖22

] 1
2

for all u ∈ H1(�).

The Banach space C1(�) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1(�) : u(z) ≥ 0 for all z ∈ �}.

This cone has a nonempty interior which contains the set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.

On ∂�, we consider the (N−1)−dimensionalHausdorff (surface)measure denoted
by σ(·). Using this measure, we can define in the usual way the Lebesgue spaces
L p(∂�) (1 ≤ p ≤ ∞). The theory of Sobolev spaces gives us a unique continuous
linear map γ0 : H1(�) → L2(∂�), known as the “trace map,” such that

γ0(u) = u|∂� for all u ∈ H1(�) ∩ C(�).

Hence, the trace map defines “boundary values” for an arbitrary Sobolev function
u ∈ H1(�). We know that

kerγ0 = H1
0 (�) and imγ0 = H

1
2 ,2(∂�).

The trace map is compact into L p(∂�) for all p ∈
[
1, 2(N−1)

N−2

)
when N ≥ 3 and

into L p(∂�) for all p ∈ [1,∞) when N = 1, 2. In what follows, for the sake of
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notational simplicity we drop the use of the trace map γ0. All restrictions of Sobolev
functions on ∂� are understood in the sense of traces.

For every x ∈ R, we set x+ = max{x, 0} and x− = max{−x, 0}. Then, given
u ∈ H1(�) we define u±(·) = u(·)± and we have

u = u+ − u− , |u| = u+ + u− , u± ∈ H1(�).

Given g : � × R → R a measurable function, by Ng(·) we denote the Nemytski
operator corresponding to g(·, ·), that is,

Ng(u)(·) = g(·, u(·)) for all u ∈ H1(�)

Evidently z → Ng(u)(z) is measurable. Also A ∈ L(H1(�), H1(�)∗) is defined
by

〈A(u), h〉 =
∫

�

(Du, Dh)RN dz for all u, h ∈ H1(�).

We introduce our hypotheses on the potential function ξ(·) and the boundary coef-
ficient β(·)

H(ξ) : ξ ∈ Ls(�) s > N and ξ+ ∈ L∞(�).
H(β) : β ∈ W 1,∞(∂�) and β(z) ≥ 0 for all z ∈ ∂�.

Remark We can have β ≡ 0, in which case we recover the usual Neumann problem.

Let γ : H1(�) → R be the C2−functional defined by

γ (u) := ‖Du‖22 +
∫

�

ξ(z)u2dz +
∫

∂�

β(z)u2dσ for all u ∈ H1(�).

From D’Agui et al. [5], we know that there exists μ > 0 such that

γ (u) + μ‖u‖22 ≥ c0‖u‖2 for some c0 > 0, all u ∈ H1(�). (2)

We consider the following linear eigenvalue problem

−�u(z) + ξ(z)u(z) = λ̂u(z) in �,

∂u

∂n
+ β(z)u = 0 on ∂�.

(3)

Using (2) and the spectral theorem for compact self-adjoint operators, we show
that problem (3) admits a sequence {λ̂k}k≥1 ⊂ R of distinct eigenvalues such that
λ̂k → +∞. We know that the first eigenvalue λ̂1 is simple and the corresponding
eigenfunctions do not change sign. Moreover, it admits the following variational char-
acterization

λ̂1 = inf

[
γ (u)

‖u‖22
: u ∈ H1(�), u �= 0

]
. (4)
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The infimum in (4) is realized on the corresponding one dimensional eigenspace
(recall that λ̂1 is simple). By û1, we denote the L2−normalized (that is, ‖û1‖2 = 1)
positive eigenfunction corresponding to λ̂1. We know that û1 ∈ C+\{0} and in fact
hypothesis H(ξ) and the strong maximum principle imply that û1 ∈ D+. Note that

• λ̂1 = 0 if ξ ≡ 0, β ≡ 0 (Neumann eigenvalue problem).
• λ̂1 > 0 if ξ(z) ≥ 0 for a.a. z ∈ �, ξ �≡ 0 or if ξ ≡ 0, β ≥ 0, β �≡ 0.

By E(λ̂k), k ∈ N, we denote the eigenspace corresponding to the eigenvalue λ̂n .
We have the following variational characterizations for the other eigenvalues:

λ̂k = inf

⎡
⎣γ (u)

‖u‖22
: u ∈

⊕
n≥k

E(λ̂n), u �= 0

⎤
⎦

= sup

[
γ (u)

‖u‖22
: u ∈

k⊕
n=1

E(λ̂n), u �= 0

]
, k ≥ 2.

(5)

In (5), both the infimumand the supremumare realized on E(λ̂k).We have E(λ̂k) ⊂
C1(�) for all k ∈ N, and that for every k ≥ 2, the elements of E(λ̂k) are nodal
(that is, sign changing). Moreover, each eigenspace E(λ̂k), k ∈ N, has the “unique
continuation property” which says that if u ∈ E(λ̂k) and vanishes on a set of positive
measure, then u ≡ 0. For details, we refer to D’Agui et al. [5].

The properties outlined above lead to the following useful lemma (see Papageorgiou
and Radulescu [16]).

Lemma 2 (a) If ξ ∈ Ls(�) s > N, hypothesis H(β) hold and θ ∈ L∞(�) satisfies

θ(z) ≤ λ̂m for a.a z ∈ �, θ �≡ λ̂m

then there exists c1 > 0 such that

γ (u) −
∫

�

θ(z)u2dz ≥ c1‖u‖2 for all u ∈
⊕
k≥m

E(λ̂k)

(b) If ξ ∈ Ls(�) s > N, hypothesis H(β) hold and θ ∈ L∞(�) satisfies

θ(z) ≥ λ̂m for a.a z ∈ �, θ �≡ λ̂m

then there exists ĉ1 > 0 such that

γ (u) −
∫

�

θ(z)u2dz ≤ −ĉ1‖u‖2 for all u ∈
m⊕

k=1

E(λ̂k).

123



1490 N. Mimikos-Stamatopoulos, N. S. Papageorgiou

In a similar way, we can analyze the following weighted version of the eigenvalue
problem (3)

−�u(z) + ξ(z)u(z) = λ̃η(z)u(z) in �,

∂u

∂n
+ β(z)u = 0 on ∂�.

(6)

In this problem, η ∈ L∞(�), η �≡ 0, η(z) ≥ 0 for a.a. z ∈ �. Again we have
a whole sequence {λ̃k(η)}k≥1 ⊂ R of distinct eigenvalues such that λ̃k(η) → +∞
as k → +∞. These eigenvalues exhibit the same properties as those of problem
(3), and in their variational characterization the Rayleigh quotient is γ (u)∫

� ηu2dz
for all

u ∈ H1(�), u �= 0. The unique continuation property leads to the following strict
monotonicity property for the map η → λ̂k(η).

Lemma 3 If ξ ∈ Ls(�) with s > N, hypothesis H(β) holds and η, η̂ ∈ L∞(�)

satisfy

η(z) ≤ η̂(z) for a.a. z ∈ �, η �= η̂,

then for all k ∈ N we have

λ̃k(η̂) < λ̃k(η).

Next let X be a Banach space and ϕ ∈ C1(X,R). We introduce the following sets.

ϕc = {u ∈ X : ϕ(u) ≤ c} for all c ∈ R,

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : φ(u) = c} for all c ∈ R.

Let (Y1,Y2) be a topological pair such that Y2 ⊂ Y1 ⊂ X . For every k ∈ N, by
Hk(Y1,Y2) we denote the kth relative singular homology group for the pair (Y1,Y2)
with integer coefficients (recall that if k ∈ −N, then Hk(Y1,Y2) = 0). If u ∈ Kc

ϕ is
isolated, then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩U, ϕc ∩U\{u}) for all k ∈ N0.

HereU is a neighborhood of u such that Kϕ ∩ϕc ∩U = {u}. The excision property
of singular homology implies that the above definition is independent of the choice of
the neighborhood U.

Finally, we will introduce our hypotheses on the reaction term f (z, x). We set

m0 = min{k ∈ N : λ̂k ≥ 0}

Then, λ̂m0 is the first nonnegative eigenvalue. Note that

• If ξ ≡ 0, β ≡ 0 (classical Neumann problem), then m0 = 1 and λ̂m0 = 0
• If ξ ≥ 0, then m0 = 1
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The hypotheses on the reaction term f (z, x) are the following:
H( f ) : f : � × R → R is a measurable function such that for a.a. z ∈ �

f (z, 0) = 0, f (z, ·) ∈ C1(R) and

(i) There exists m ≥ m0,m �= 1 such that

λ̂m ≤ lim inf
x→±∞

f (z, x)

x
uniformly for a.a. z ∈ �;

(ii) There exists a function η ∈ L∞(�) such that

η(z) ≤ λ̂m+1 for a.a. z ∈ �, η �≡ λ̂m+1

f ′
x (z, x) ≤ η(z) for a.a. z ∈ �, all x ∈ R;

(iii) If F(z, x) = ∫ x
0 f (z, s)ds,

then f (z, x)x − 2F(z, x) → −∞ uniformly for a.a. z ∈ � as x → ±∞;
(iv) There exists θ ∈ L∞(�) such that

θ(z) ≤ λ̂1 for a.a. z ∈ �, θ �≡ λ̂1,

lim sup
x→0

f (z, x)

x
≤ θ(z) uniformly for a.a. z ∈ �;

(v) For every ρ > 0, there exist ξ̂ρ > 0 and αρ ∈ L∞(�)

f (z, x)x + ξ̂ρx
2 ≥ 0 and | f (z, x)| ≤ αρ(z) for a.a. z ∈ �, all |x | ≤ ρ.

Remarks Hypothesis H( f )(i) implies that at±∞we can have resonancewith respect
to any nonprincipal nonnegative eigenvalue of the differential operator. Hypothesis
H( f )(i i) and the mean value theorem imply that

( f (z, x) − f (z, y)) ≤ η(z)(x − y)2 for a.a. z ∈ �, all x, y ∈ R (7)

Example 1 The following function satisfies hypotheses H( f ). For the sake of sim-
plicity, we drop the z-dependence

f (x) =
{

θx + c|x |x if |x | ≤ 1

λ̂mx + |x |q−2x if |x | > 1

with θ < λ̂1, m ≥ m0, m �= 1, 1 < q < 2 and c = λ̂m + 1 − θ
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3 Solutions of Constant Sign

In this section, we produce two nonsmooth solutions of constant sign. To this end, we
introduce the following truncations–perturbations of f (z, ·):

f̂+(z, x) =
{
0 if x ≤ 0

f (z, x) + μx if 0 < x

f̂−(z, x) =
{
f (z, x) + μx if x < 0

0 if 0 ≤ x
(8)

Here μ > 0 is as in (2). Both f̂±(z, x) are Caratheodory functions (that is, for
all x ∈ R z → f̂±(z, x) are measurable and for a.a. z ∈ �, x → f̂±(z, x) are
continuous). We set F̂±(z, x) = ∫ x

0 f̂±(z, s)ds and consider the C1−functionals ϕ̂± :
H1(�) → R defined by

ϕ̂±(u) = 1

2
γ (u) + μ

2
‖u‖22 −

∫

�

F̂±(z, u)dz for all u ∈ H1(�)

Proposition 4 If hypotheses H(ξ), H(β), H( f ) hold, then the functional ϕ̂± satisfy
the C-condition

Proof We do the proof for the functional ϕ̂+, the proof for ϕ̂− being similar.
Let {un}n≥1 ⊂ H1(�) be a sequence such that

|ϕ̂+(un)| ≤ M1 for some M1 > 0, all n ∈ N, (9)

(1 + ‖un‖)ϕ̂′+(un) → 0 in H1(�)∗ as n → ∞ (10)

From (10), we have

|〈ϕ̂′+(un), h〉| ≤ εn‖h‖
1 + ‖un‖ for all h ∈ H1(�) with εn → 0+,

�⇒ |〈A(un), h〉 +
∫

�

(ξ(z) + μ)unhdz +
∫

∂�

β(z)unhdσ

−
∫

�

f̂+(z, un)hdz| ≤ εn‖h‖
1 + ‖un‖ for all h ∈ H1(�)

(11)

In (11), we choose h = −u−
n ∈ H1(�) and we obtain

γ (u−
n ) + μ‖u−

n ‖22 ≤ εn for all n ∈ N (see (8)),

�⇒ c0‖u−
n ‖2 ≤ εn for all n ∈ N (see (2)),

�⇒ u−
n → 0 in H1(�) as n → ∞. (12)
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From (9) and (12), it follows that

γ (u+
n ) −

∫

�

2F
(
z, u+

n

)
dz ≥ −M2 for some M2 > 0, all n ∈ N (13)

In (11), we choose h = u+
n ∈ H1(�) and have

− γ (u+
n ) +

∫

�

f
(
z, u+

n

)
u+
n dz ≥ −εn for all n ∈ N (14)

Adding (13) and (14), we obtain

∫

�

[
f
(
z, u+

n

)
u+
n − 2F

(
z, u+

n

)]
dz ≥ −M3 for some M3 > 0, all n ∈ N. (15)

We will show that {u+
n }n≥1 ⊂ H1(�) is bounded. Arguing by contradiction, suppose

that
‖u+

n ‖ → +∞ (16)

We set yn = u+
n

‖u+
n ‖ , n ∈ N. By passing to a suitable subsequence if necessary, we may

assume that

yn
w−→ y in H1(�) and yn → y in L

2s
s−1 (�) and in L2(∂�) (17)

From (11) and (12), we have

|〈A(yn), h〉 +
∫

�

ξ(z)ynhdz +
∫

∂�

β(z)ynhdσ −
∫

�

N f (u+
n )

‖u+
n ‖ hdz| ≤ ε′

n‖h‖
for all h ∈ H1(�) with ε′

n → 0+
(18)

Here N f (y)(·) = f (·, y(·)) for all y ∈ H1(�) (the Nemitsky map corresponding to
f). From (7) and hypothesis H( f )(i), it follows that

λ̂m ≤ lim inf
x→±∞

f (z, x)

x
≤ lim sup

x→±∞
f (z, x)

x
≤ η(z) uniformly for a.a. z ∈ � (19)

From (19) and hypothesis H(f)(v), we see that

{N f (u+
n )

‖u+
n ‖

}
n≥1

⊂ L2(�) is bounded

Passing to a subsequence if necessaty and using (16) and (19), we have

N f (u+
n )

‖u+
n ‖

w−→ k(z)y in L2(�) with λ̂m ≤ k(z) ≤ η(z) for a.a. z ∈ � (20)
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(see Aizicovici et al. [1], proof of Proposition 30). We return to (18), pass to the limit
as n → ∞ and use (17) and (20). Then,

〈A(y), h〉+
∫

�

ξ(z)yhdz +
∫

∂�

β(z)yhdσ =
∫

�

k(z)yhdz for all h ∈ H1(�),

�⇒ −�y(z) + ξ(z)y(z) = k(z)y(z) for a.a. z ∈ �

∂y

∂n
+ β(z)y = 0 on ∂�

(see Papageorgiou and Radulescu [15]).
(21)

If k �≡ λ̂m (see (20)), then using Lemma 3 we have

1 = λ̃m(λm) > λ̃(k) and λ̃m+1(k) ≥ λ̃m+1(η) > λ̃m+1(λ̂m+1) = 1 (22)

From (21) and (22), it follows that
y = 0 (23)

On the other hand, if in (18) we choose h = yn − y ∈ H1(�), pass to the limit as
n → ∞ and use (17) and (20), then

lim
n→∞〈A(yn), yn − y〉 = 0,

�⇒ ‖Dyn‖2 → ‖Dy‖2,
�⇒ yn → y in H1(�)

(by the Kadec-Klee property of Hilbert spaces, see (17)),

�⇒ ‖y‖ = 1.

(24)

Comparing (23) and (24), we have a contradiction.
Next suppose that k(z) = λ̂m for a.a. z ∈ �. From (21) and (24), we have that

y ∈ E(λ̂m)\{0}
�⇒ y(z) �= 0 for a.a. z ∈ �

(by the unique continuation property).

This implies that

u+
n (z) → +∞ for a.a. z ∈ � (see (16)),

�⇒
∫

�

[
f
(
z, u+

n

)
u+
n − 2F

(
z, u+

n

)]
dz → −∞

(see hypothesis H(f)(iii) and use Fatous lemma)

(25)

Comparing (15) and (25), we have a contradiction.
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This proves that {u+
n }n≥1 ⊂ H1(�) is bounded; hence, using (12), we conclude

that

{un} ⊂ H1(�) is bounded

Therefore, we may assume that

un
w−→ u in H1(�) and un → u in L

2s
s−1 (�) and in L2(∂�). (26)

In (11), we choose h = un − u ∈ H1(�), pass to the limit as n → ∞ and use (26).
Then,

lim
n→∞〈A(un), un − u〉 = 0,

�⇒ un → u in H1(�) (as before via the Kadec-Klee property),

�⇒ ϕ̂+ satisfies the C-condition.

Similarly, we show that ϕ̂− satisfies the C-condition. ��
Proposition 5 If hypotheses H(ξ), H(β), H( f ) hold, then u ≡ 0 is a local minimizer
of the functionals ϕ̂±.
Proof Given r > 2 and ε > 0 and using hypothesis H(f)(iv), we see that we can find
c2 = c2(r, ε) > 0 such that

F(z, x) ≤ 1

2
(θ(z) + ε)x2 + c1|x |r for a.a. z ∈ �, all x ∈ R. (27)

For all u ∈ H1(�), we have

ϕ̂+(u) = 1

2
γ (u) + μ

2
‖u‖2 −

∫

�

F̂+(z, u)dz

≥ 1

2
γ (u) + μ

2
‖u‖2 − 1

2

∫

�

θ(z)(u+)2dz − ε

2
‖u+‖2

− c3‖u‖r
for some c3 > 0 (see (27) and (8))

≥ 1

2
γ (u−) + μ

2
‖u−‖22 + 1

2

[
γ (u+) −

∫

�

θ(z)(u+)2dz
]

− ε

2
‖u+‖2 − c3‖u‖r

≥ c0
2

‖u−‖2 + c4 − ε

2
‖u+‖2 − c3‖u‖r for some c4 > 0

(see (2) and Lemma 2)

Choosing ε ∈ (0, c4), we infer that

ϕ̂+(u) ≥ c5‖u‖2 − c3‖u‖r for some c5 > 0. (28)
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Since r > 2, from (28) we see that by choosing ρ ∈ (0, 1) small we have

ϕ̂+(u) > 0 for all u ∈ H1(�) with 0 < ‖u‖ ≤ ρ,

�⇒ u = 0 is a (strict) local minimizer of ϕ̂+.

Similarly for the functional ϕ̂−. ��
Recall that û1 ∈ D+ (see Sect. 2) and that m �= 1. So, using hypothesis H(f)(i) we

have:

Proposition 6 If hypotheses H( f ), H(β), H(g) hold, then ϕ̂±(t û1) → −∞ as t →
±∞.

Now we are ready to produce the two constant sign smooth solutions.

Proposition 7 If hypotheses H(ξ), H(β), H( f ) hold, then problem (1) has two non-
trivial solutions of constant sign

u0 ∈ D+ and v0 ∈ −D+

Proof Propositions 4, 5 and 6 permit the use of themountain pass theorem (Theorem1)
for the functional ϕ̂+. So, we can find u0 ∈ H1(�) such that

u0 ∈ Kϕ̂+ , u0 �= 0.

We have

ϕ̂′+(u0) = 0 in H1(�)∗,

�⇒ 〈A(u0), h〉+
∫

�

(ξ(z) + μ)u0hdz +
∫

∂�

β(z)u0hdσ =
∫

�

f̂+(z, u0)hdz

for all h ∈ H1(�).

(29)
In (29), we choose h = −u−

0 ∈ H1(�) and obtain

γ (u−
0 ) + μ‖u−

0 ‖22 = 0 (see (8)),

�⇒ c0‖u−
0 ‖2 ≤ 0 (see (2),

�⇒ u0 ≥ 0, u0 �= 0.

Then, from (8) and (29), we have

〈A(u0), h〉 +
∫

�

ξ(z)u0hdz +
∫

∂�

β(z)u0hdσ =
∫

�

f (z, u0)hdz

for all h ∈ H1(�),

�⇒ −�u0(z) + ξ(z)u0(z) = f (z, u0(z)) for a.a. z ∈ �,

∂u0
∂n

+ β(z)u0 = 0 on ∂�

(see Papageorgiou and Radulescu [15])

(30)
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Hypotheses H( f ) imply that

| f (z, x)| ≤ c6|x | for a.a. z ∈ �, all x ∈ R and some c6 > 0. (31)

We set

g(z) :=
{

f (z,u0(z))
u0(z)

if u0(z) �= 0

0 if u0(z) = 0.

Evidently g ∈ L∞(�) (see (31)). From (30), we have

{
−�u0(z) = (g(z) − ξ(z))u0(z) for a.a. z ∈ �,
∂u0
∂n + β(z)u0 = 0 on ∂�.

(32)

Note that g − ξ ∈ Ls(�) (see hypothesis H(ξ)). Then, from (32) and Lemma 5.1 of
Wang [21], we have that

u0 ∈ L∞(�)

Then, from the Calderon–Zygmund estimates (see Lemma 5.2 of Wang [21]), we
have

u0 ∈ W 2,s(�),

�⇒ u0 ∈ C1,α(�) with α = 1 − N

s
> 0

(by the Sobolev embedding theorem)

Let ρ = ‖u0‖∞ and let ξ̂ρ > 0 as postulated by hypothesis H(f)(v). From (30), we
have

− �u0(z) + (ξ(z) + ξ̂ρ)u0(z) = f (z, u0(z)) + ξ̂ρu0(z) ≥ 0 for a.a. z ∈ �,

�⇒ �u0(z) ≤ (‖ξ+‖∞ + ξ̂ρ)u0(z) for a.a. z ∈ �,

�⇒ u0 ∈ D+ (by the strong maximum principle).

Similarly working with the functional ϕ̂−, we obtain another constant sign solution
v0 ∈ −D+ which is a critical point of ϕ̂− of mountain pass type. ��

Let ϕ : H1(�) → R be the energy (Euler) functional for problem (1) defined by

ϕ(u) = 1

2
γ (u) −

∫

�

F(z, u)dz for all u ∈ H1(�).

We have ϕ ∈ C2(H1(�)). We will compute the critical groups of ϕ at the two constant
sign solutions u0 ∈ D+, v0 ∈ −D+.

Proposition 8 If hypothesis H(ξ), H(β), H( f ) hold, then Ck(ϕ, u0) = Ck(ϕ, v0) =
δk,1Z for all k ∈ N0.

123



1498 N. Mimikos-Stamatopoulos, N. S. Papageorgiou

Proof From the proof of Proposition 7, we know that

u0 ∈ D+ is a critical point of ϕ̂+ of mountain pass type,

v0 ∈ −D+ is a critical point of ϕ̂− of mountain pass type.

Hence, we have
C1(ϕ̂+, u0) �= 0 , C1(ϕ̂−, v0) �= 0 (33)

(see Motreanu et al. [11], Corollary 6.81, p. 168).
Note that

ϕ̂+
∣∣∣
C+

= ϕ

∣∣∣
C+

and ϕ̂−
∣∣∣−C+

= ϕ

∣∣∣−C+
(see (8)).

Since u0 ∈ D+ and v0 ∈ −D+, we have that

Ck(ϕ

∣∣∣
C1(�)

, u0) = Ck(ϕ̂+
∣∣∣
C1(�)

, u0) for all k ∈ N0, (34)

Ck(ϕ

∣∣∣
C1(�)

, v0) = Ck(ϕ̂−
∣∣∣
C1(�)

, v0) for all k ∈ N0. (35)

But from Palais [12] (see also Chang [4] (p. 14)), we know that

Ck(ϕ

∣∣∣
C1(�)

, u0) = Ck(ϕ, u0) for all k ∈ N0,

Ck(ϕ

∣∣∣
C1(�)

, v0) = Ck(ϕ, v0) for all k ∈ N0,

Ck(ϕ̂+
∣∣∣
C1(�)

, u0) = Ck(ϕ̂+, u0) for all k ∈ N0,

Ck(ϕ̂−
∣∣∣
C1(�)

, v0) = Ck(ϕ̂−, v0) for all k ∈ N0.

Combining these facts with (33), (34), (35), we obtain

C1(ϕ, u0) �= 0 and C1(ϕ, v0) �= 0. (36)

Since ϕ ∈ C2(H1(�)), from (36) and Corollary 6.102, p. 177 of Motreanu et al. [11],
we conclude that

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

��

4 Three Nontrivial Solutions

In this section, we produce a third nontrivial smooth solution, using the reduction
method.
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So, let

Y =
m⊕
i=1

E(λ̂i ) and V = Y⊥ =
⊕

i≥m+1

E(λ̂i )

We have the following orthogonal direct sum decomposition

H1(�) = Y ⊕ V

So, every u ∈ H1(�) admits a unique sum decomposition of the form

u = y + v with y ∈ Y, v ∈ V . (37)

Proposition 9 If hypothesis H(ξ), H(β), H( f ) hold, then there exists a continuous
map τ̂ : Y → V such that

ϕ(y + τ̂ (y)) = inf[ϕ(y + v) : v ∈ V ]

Proof We fix y ∈ Y and consider the C2−functional ϕy : H1(�) → R defined by

ϕy(u) = ϕ(y + u) for all u ∈ H1(�).

Let iV : V → H1(�) be the embedding map and set

ϕ̃y = ϕy ◦ iV : V → R.

From the chain rule, we have
ϕ̃′
y = ρV ∗ϕ′

y, (38)

with ρV ∗ being the orthogonal projection of H1(�)∗ onto V ∗. In what follows, by
〈·, ·〉V we denote the duality brackets for the pair (V ∗, V ). For v1, v2 ∈ V , we have

〈ϕ̃′
y(v1) − ϕ̃′

y(v2), v1 − v2〉V
= 〈ϕ′

y(v1) − ϕ′
y(v2), v1 − v2〉 (see (38)

= γ (v1 − v2) −
∫

�

( f (z, y + v1) − f (z, y + v2))(v1 − v2)dz

≥ γ (v1 − v2) −
∫

�

η(z)(v1 − v2)
2dz (see (7)

≥ c7‖v1 − v2‖2 for some c7 > 0 (see Lemma 2).

(39)

Therefore,
ϕ̃′
y is strongly monotone hence ϕ̃y is strictly convex. (40)
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For every v ∈ V , we have

〈ϕ̃′
y(v), v〉V = 〈ϕ′

y(v), v〉 (see 38))
= 〈ϕ′

y(v) − ϕ′
y(0), v〉 + 〈ϕ′

y(0), v〉
≥ c7‖v‖2 − c8‖v‖ for some c8 > 0 (see 39)), (41)

�⇒ ϕ̃′
y is coercive. (42)

Since ϕ̃′
y is continuous and strongly monotone (see (40)), it is maximal monotone.

This fact and (42) imply that ϕ̃′
y is surjective (see Gasinski and Papageorgiou [6] (p.

319)). So, we can find v0 ∈ V such that

ϕ̃′
y(v0) = 0 in V ∗. (43)

The strong monotonicity of ϕ̃′
y implies that v0 ∈ V is unique. In fact, v0 ∈ V is the

unique minimizer of the stricly convex function ϕ̃y (see (40)).
Let τ̂ : Y → V be the map which to each y ∈ Y assigns this unique minimizer.

Then, from (38) and (43) we have

ρV ∗ϕ′(y + τ̂ (y)) = 0 and ϕ(y + τ̂ (y)) = inf[ϕ(y + v) : v ∈ V ]. (44)

Next we show the continuity of the map τ̂ : Y → V . To this end, let yn → y in Y.
From (43), we have

0 = 〈ϕ̃′
yn (τ̂ (yn)), τ̂ (yn)〉V ≥ c7‖τ̂ (yn)‖2 − c8‖τ̂ (yn)‖ for all n ∈ N (see (41)),

�⇒ {τ̂ (yn)}n≥1 ⊆ V is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

τ̂ (yn)
w−→ v̂ ∈ V in H1(�) (45)

Note that the Sobolev embedding theorem and the compactness of the trace map imply
that the functional ϕ is sequentially weakly lower semicontinuous. So, using (45), we
have

ϕ(y + v̂) ≤ lim inf
n→∞ ϕ(yn + τ̂ (yn)) ≤ lim inf

n→∞ ϕ(yn + v) for all v ∈ V,

�⇒ ϕ(y + v̂) ≤ ϕ(y + v) for all v ∈ V,

�⇒ v̂ = τ̂ (y) (see ((44))).

From the Uryshon criterion for convergence of sequences (see Gasinski and Papa-
georgiou [7] (p. 33)), for the original sequence we have

τ̂ (yn)
w−→ τ̂ (y) in H1(�) and τ̂ (yn) → τ̂ (y) in L

2s
s−1 (�) and in L2(∂�). (46)
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We have
0 = 〈ϕ̃′

yn (τ̂ (yn)), h〉V
= 〈ϕ′(yn + τ̂ (yn)), h〉 for all h ∈ V, all n ∈ N.

Choosing h = τ̂ (yn) − τ̂ (y) ∈ V and using (46) and (31), we obtain

lim
n→∞〈A(yn + τ̂ (yn)), τ̂ (yn) − τ̂ (y)〉 = 0,

�⇒ ‖D(yn + τ̂ (yn))‖22 → ‖D(y + τ̂ (y))‖22,
�⇒ yn + τ̂ (yn) → y + τ̂ (y) in H1(�)

(by the Kadec–Klee property, see (46)),

�⇒ τ̂ (yn) → τ̂ (y) in H1(�),

�⇒ τ̂ is continuous.

��
We define

ϕ̂(y) = ϕ(y + τ̂ (y)) for all y ∈ Y. (47)

Proposition 10 If hypotheses H(ξ), H(β), H( f ) hold, then ϕ̂ ∈ C1(Y,R) and
ϕ̂′(y) = ρY ∗ϕ′(y + τ̂ (y)) for all y ∈ Y .

Proof Let y, w ∈ Y and t > 0. From the definition of ϕ̂ (see (47))

1

t

[
ϕ̂(y + tw) − ϕ̂(y)

]

≤ 1

t

[
ϕ(y + tw + τ̂ (y)) − ϕ(y + τ̂ (y))

]
(see Proposition 9),

�⇒ lim sup
t→0+

1

t

[
ϕ̂(y + tw) − ϕ̂(y)

]
≤ 〈ϕ′(y + τ̂ (y)), w〉.

(48)

Also, we have

1

t

[
ϕ̂(y + tw) − ϕ̂(y)

]

≥ 1

t

[
ϕ(y + tw + τ̂ (y + tw)) − ϕ(y + τ̂ (y + tw))

]
(see Proposition 9),

�⇒ lim inf
t→0+

1

t

[
ϕ̂(y + tw) − ϕ̂(y)

]
≥ 〈ϕ′(y + τ̂ (y)), w〉

(recall that ϕ ∈ C2(H1(�),R) and τ̂ (·) is continuous).

(49)

For (48),(49), we infer that

lim
t→0+

1

t

[
ϕ̂(y + tw) − ϕ̂(y)

]
= 〈ϕ′(y + τ̂ (y)), w〉 for w ∈ Y. (50)
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In a similar fashion, we show that

lim
t→0−

1

t

[
ϕ̂(y + tw) − ϕ̂(y)

]
= 〈ϕ′(y + τ̂ (y)), w〉 for w ∈ Y. (51)

From (50) and (51), we conclude that

ϕ̂ ∈ C1(Y,R) and ϕ̂′(y) = ρY ∗ ϕ̂′(y + τ̂ (y)) for all y ∈ Y.

��
The next proposition is an easy observation about the critical points of ϕ̂.

Proposition 11 If hypotheses H(ξ), H(β), H( f ) hold, then y ∈ Kϕ̂ if and only if
y + τ̂ (y) ∈ Kϕ.

Proof �⇒ Let y ∈ Kϕ̂ . We have

ϕ̂′(y) = 0,

�⇒ ρY ∗ϕ′(y + τ̂ (y)) = 0 (see Proposition 10),

�⇒ ϕ′(y + τ̂ (y)) ∈ V ∗ (recall that H1(�)∗ = Y ∗ ⊕ V ∗).
(52)

Also, from (44) we have
ρV ∗ϕ′(y + τ̂ (y)) = 0,

�⇒ ϕ′(y + τ̂ (y)) ∈ Y ∗.
(53)

Recall that Y ∗ ∩ V ∗ = {0}. So, from (52) and (53) it follows that

ϕ′(y + τ̂ (y)) = 0,

�⇒ y + τ̂ (y) ∈ Kϕ.

⇐� Suppose that y + τ̂ (y) ∈ Kϕ . Then

ϕ′(y + τ̂ (y)) = 0,

⇒ ρY ∗ϕ′(y + τ̂ (y)) = 0,

⇒ ϕ̂′(y) = 0 (see Proposition 10),

⇒ y ∈ Kϕ̂ .

��
Proposition 12 If hypotheses H(ξ), H(β), H( f ), then the functional ϕ̂ is anticoer-
cive (that is, ϕ̂(y) → −∞ if ‖y‖ → ∞).

Proof We argue by contradiction. So suppose that the proposition is not true. Then,
we can find {yn}n≥1 ⊆ Y such that

‖yn‖ → ∞ and ϕ̂(yn) ≥ −c9 for some c9 > 0, all n ∈ N. (54)
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From (54) and Proposition 9, we have

− c9 ≤ ϕ̂(yn) ≤ ϕ(yn) = 1

2
γ (yn) −

∫

�

F(z, yn)dz for all n ∈ N. (55)

Let wn = yn
‖yn‖ , n ∈ N. Then, ‖wn‖ = 1, wn ∈ Y for all n ∈ N. Since Y is finite

dimensional, we may assume that

wn → w in H1(�) , ‖w‖ = 1 (56)

From (55), we have

− c9
‖yn‖2 ≤ 1

2
γ (wn) −

∫

�

F(z, yn)

‖yn‖2 dz for all n ∈ N. (57)

From (31), we have

|F(z, yn(z))| ≤ c10yn(z)
2 for a.a. z ∈ �, all n ∈ N, some c10 > 0,

�⇒ |F(z, yn(z))|
‖yn‖2 ≤ c10wn(z)

2 for a.a. z ∈ �, all n ∈ N,

�⇒
{ F(·, yn(·))

‖yn‖2
}
n≥1

⊆ L1(�) is uniformly integrable (see (56)).

So, from the Dunford–Pettis theorem and (19), we have

F(·, yn(·))
‖yn‖2

w−→ 1

2
η0(z)w

2 in L1(�), λ̂m ≤ η0(z) ≤ η(z) for a.a. z ∈ � (58)

(see Aizicovici et al. [1], proof of Proposition 30). So, if in (57) we pass to the limit
as n → ∞ and we use (54), (56), (58), then

0 ≤ 1

2
γ (w) − 1

2

∫

�

η0(z)w
2dz. (59)

First suppose that η0 �= λ̂m (see (58)). Then, from (59) and Lemma 2, we have

0 ≤ −ĉ1‖w‖2,
�⇒ w = 0, a contradiction to (56).

Next assume that η0(z) = λ̂m for a.a. z ∈ �. From (59) and since w ∈ Y , we have

γ (w) = λ̂m‖w‖22 (see (5)),

�⇒ w ∈ E(λ̂m)\{0} (see (56)),

�⇒ w(z) �= 0 for a.a. z ∈ � (by the unique continuation property),

�⇒ |yn(z)| → +∞ for a.a. z ∈ � as n → ∞.

(60)
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Hypothesis H(f)(iii) implies that given any r > 0, we can find M4 = M4(r) > 0 such
that

f (z, x)x − 2F(z, x) ≤ −r for a.a. z ∈ �, all |x | ≥ M4.

Then, for a.a. z ∈ � , we have

d

dx

( F(z, x)

x2

)
= f (z, x)x2 − 2xF(z, x)

x4

= f (z, x)x − 2F(z, x)

|x |2x

=
{

≤ − r
x3

if x ≥ M4

≥ r
|x |3 if x ≤ −M4,

�⇒ F(z, v)

v2
− F(z, u)

u2
≤ r

2

[ 1

v2
− 1

u2

]
for a.a. z ∈ �, all |v| ≥ |u| ≥ M4.

(61)
From (19), it follows that

λ̂m

2
≤ lim inf

x→±∞
F(z, x)

x2
≤ lim sup

x→±∞
F(z, x)

x2
≤ 1

2
η(z) uniformly for a.a. z ∈ � (62)

So, if in (61) we let |v| → ∞ and use (62), then

λ̂mu
2 − 2F(z, u) ≤ −r for a.a. z ∈ �, all |v| ≥ M4,

�⇒ λ̂mu
2 − 2F(z, u) → −∞ uniformly for a.a. z ∈ �, as u → ±∞.

(63)

From (55), we have

− 2c9 ≤ γ (yn) −
∫

�

2F(z, yn)dz for all n ∈ N,

�⇒ −2c9 ≤
∫

�

[
λ̂m y

2
n − 2F(z, yn)

]
dz for all n ∈ N

(recall yn ∈ Y and see (5)).

(64)

From (60), (63) and Fatou’s lemma, we have that

∫

�

[
λ̂m y

2
n − 2F(z, yn)

]
dz → −∞ as n → ∞. (65)

Comparing (64) and (65), we reach an contradiction.
So, (54) cannot occur and we conclude that ϕ̂ is anticoercive. ��
Now we can produce a third nontrivial smooth solution distinct from u0 ∈ D+ and

from v0 ∈ −D+.

Proposition 13 If hypotheses H(ξ), H(β), H( f ) hold, then problem (1) has a third
solution y0 ∈ C1(�).

123



On Resonant Robin Problems with General Potential 1505

Proof Let u0 ∈ D+ and v0 ∈ −D+ be the two constant sign solutions from Proposi-
tion 7. From Proposition 8, we know that

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0. (66)

Since Y is finite dimensional and ϕ̂ is anticoercive (see Proposition 12), we can
find ŷ ∈ Y such that

ϕ̂(ŷ) = max
[
ϕ̂(y) : y ∈ Y

]
.

Then fromMotreanu-Motreanu-Papageorgiou [11] (Example 6.45(b), p. 153),we have

Ck(ϕ̂, ŷ) = δk,dmZ for all k ∈ N0, with dm = dimY ≥ 2. (67)

From Lemma 2.3 of Liu [10], we have

Ck(ϕ̂, ŷ) = Ck(ϕ, ŷ + τ̂ (ŷ)) for all k ∈ N0,

�⇒ Ck(ϕ, y0) = δk,dmZ for all k ∈ N0, with y0 = ŷ + τ̂ (ŷ) (see (67)).

(68)

Reasoning as in the proof of Proposition 5, we show that

u = 0 is a local minimizer of ϕ,

�⇒ Ck(ϕ, 0) = δk,0Z for all k ∈ N0.
(69)

Form (66), (68), (69) and Proposition 11, we have

y0 ∈ Kϕ, y0 /∈ {0, u0, v0},
�⇒ y0 is a third nontrivial solution of (1)

As before (see the proof of Proposition 7), using the regularity theory of Wang [21]
we have that y0 ∈ C1(�). ��

So we can state the following multiplicity theorem for problem (1).

Theorem 14 If hypotheses H(ξ), H(β), H( f ) hold, then problem (1) has at least
three nontrivial smooth solutions

u0 ∈ D+, v0 ∈ −D+ and y0 ∈ C1(�)

Remark It is an open question if we can have that y0 is nodal (sign changing).

Acknowledgements The authors wish to thank the referee for his/her corrections and remarks.
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