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Abstract In this paper, by applying the cone theory in ordered Banach spaces associ-
ated with the characters of increasing ϕ − (h, e)-concave operators, we investigate the
existence and uniqueness of nontrivial solutions for a nonlinear fractional q-difference
equation boundary value problem. Themain results show that we can construct an iter-
ative scheme approximating the unique nontrivial solution. Relying on an example,
we show the efficiency and applicability of the main result.
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1 Introduction

Fractional differential equation has been of great interest, and fruits from research into
it emerge continuously. For example, see [1–25,28] and references therein. Recently,
there have already appeared many extensive studies on fractional q-difference equa-
tion boundary value problems because of its popularity and importance applications
in many different professional situations, see, for instance, [1,7,8,13,16,19] and the
reference therein. The fractional q-difference equation boundary value problem has

Communicated by Shangjiang Guo.

B Chengbo Zhai
cbzhai@sxu.edu.cn

1 School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-017-0560-2&domain=pdf


1508 J. Ren, C. Zhai

been proved to be a very rich and promising field. Since Al-Salam [7] and Agarwal [1]
proposed the fractional q-calculus, related research interests including the extension of
the theory for fractional q-difference calculus, the existence and multiplicity of solu-
tions for fractional q-difference equation boundary value problems and the coupled
system of boundary value problems for fractional q-difference equations have been
considered by using various methods, see [2–6,8,10–18] and the reference therein.
For example, Ahmad et al. [3] obtained the existence and uniqueness of the solu-
tions for impulsive fractional q-integro-difference equations with separated boundary
conditions via fixed point theorems due to Krasnoselskii and O’Regan. In [24], Yang
considered the coupled integral boundary value problem for systems of fractional q-
difference equations by using the nonlinear alternative of Leray–Schauder-type and
Krasnoselskii’s fixed point theorems. Furthermore, Miao and Liang [18] obtained the
uniqueness of positive solutions for boundary value problem of fractional q-difference
equation with p-Laplacian operator by using a fixed point theorem in partially ordered
set. In [11], by applying a fixed point theorem in cones, Ferreira investigated the exis-
tence of positive solutions to the nonlinear fractional q-difference equation boundary
value problem

{
Dα
q y(x) = − f (x, y(x)), x ∈ (0, 1),

y(0) = Dq y(0), Dq y(1) = β ≥ 0.

From the literature, there are still few papers that reported the uniqueness of solutions
for nonlinear fractional q-difference equations. Different from the works [11,12,18],
we study the existence and uniqueness of nontrivial solutions for a nonlinear fractional
q-difference equation boundary value problem:

{
Dα
q u(t) + f (t, u(t)) = b, t ∈ (0, 1),

u(0) = Dqu(0), Dqu(1) = β ≥ 0,
(1.1)

where 0 < q < 1, 2 < α ≤ 3, b > 0 is a constant, f : [0, 1] × (−∞,+∞) →
(−∞,+∞) is continuous, and Dα

q denotes the Riemann–Liouville-type fractional
q-derivative of order α. Our method is a new fixed point theorem of ϕ − (h, e)-
concave operator. The related operator is a new concept defined on a new set Ph,e

(see [27]). Based on this new method, we will prove the uniqueness and existence of
nontrivial solutions for problem (1.1). Moreover, we can construct an iterative scheme
approximating the unique nontrivial solution. In the last section, we give an example
to show the efficiency and applicability of the main result.

2 Preliminaries and Previous Results

In this section, we present some necessary definitions and lemmas of fractional q-
calculus. These details can be found in the recent literature [1,7,8,13,19].
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Let q be a real number with 0 < q < 1, the definition of q-analog for α ∈ R is

[α]q = 1 − qα

1 − q
.

The q-gamma function Γq is defined by

Γq(α) = (1 − q)(α−1)

(1 − q)α−1 , α ∈ R\{0,−1,−2, . . .},

and we have

Γq(α + 1) = [α]qΓq(α), Γq(1) = 1, q ∈ (0, 1).

The q-analog of the power function (a − b)(α) is defined by

(a − b)(α) = aα
∞∏
n=0

1 − (b/a)qn

1 − (b/a)qn+α
, a, b, α ∈ R.

Then (a − b)(0) = 1, a(α) = aα, when b = 0 and (a(t − s))(α) = aα(t − s)(α).

The q-integral of a function f in the interval [0, b] is defined by

(Iq f )(t) =
∫ t

0
f (s)dqs = (1 − q)

∞∑
n=0

f (tqn)tqn, t ∈ [0, b].

For any t, s > 0, the q-beta function is defined by

Bq(t, s) =
∫ 1

0
u(t−1)(1 − qu)(s−1)dqu, q ∈ (0, 1),

where the expression of q-beta function in terms of the q-gamma function is

Bq(t, s) = Γq(t)Γq(s)

Γq(t + s)
.

Definition 2.1 (See [8]) Letα ≥ 0 and f be a function defined on [0, 1].The fractional
q-integral of Riemann–Liouville type is (I 0q f )(t) = f (t) and

(I α
q f )(t) = 1

Γq(α)

∫ t

0
(t − qs)(α−1) f (s)dqs, α > 0.

Note that (I α
q f )(t) = (Iq f )(t) when α = 1.

It is clear that f is q-integral on the closed interval [a, b] and one has

∫ b

a
f (t)dqt =

∫ c

a
f (t)dqt +

∫ b

c
f (t)dqt, c ∈ [a, b].
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Definition 2.2 (See [8]) The fractional q-derivative of Riemann–Liouville type of
order α ≥ 0 is defined by

(
Dα
q f

)
(t) =

(
D�α�
q I �α�−α

q f
)

(t), α > 0, t ∈ [0, 1],

where �α� is the smallest integer greater than or equal to α.
Evidently, (Dα

q f )(t) = Dq f (t), when α = 1. Further analysis showed that

(
I α
q D

p
q f

)
(t) =

(
Dp
q I

α
q f

)
(t) −

p−1∑
n=0

tα−p+n

Γq(α − p + n + 1)

(
Dn
q f

)
(0), p ∈ N.

Lemma 2.1 (See [25]) If f, g are continuous on the interval [0, s] and f (t) ≤ g(t),
for all t ∈ [0, s], the following properties are valid
(i)

∫ s
0 f (t)dqt ≤ ∫ s

0 g(t)dqt. Further, if α > 1, we have I α
q f (s) ≤ I α

q g(s), for
t ∈ [0, s];

(ii)
∣∣∫ s

0 f (t)dqt
∣∣ ≤ ∫ s

0 | f (t)|dqt, for t ∈ [0, s].
Remark 2.1 (See [16]) If α > 0 and a ≤ b ≤ t , then (t − a)(α) ≥ (t − b)(α).

Lemma 2.2 (See [19]) For λ ∈ (−1,∞) and α ≥ 0, we have the following equality

I α
q (t − a)(λ) = Γq(λ + 1)

Γq(α + λ + 1)
(t − a)(α+λ), 0 < a < t.

Particularly, for λ = 0, a = 0,we have Iα
q (1)(t) = tα

Γq (α+1) . In conclusion, we obtain

∫ t

0
(t − qs)(α−1)dqs = Γq(α)I α

q (1)(t) = 1

[α]q t
α. (2.1)

Lemma 2.3 Suppose that f (t) is a continuous function on [0, 1] and there exists
t0 ∈ (0, 1) such that f (t0) 	= 0. If f (t) ≥ 0, then we have

∫ 1

0
f (t)dqt > 0, t ∈ [0, 1],

where

∫ 1

0
f (t)dqt = (1 − q)

∞∑
n=0

qn f (qn), 0 < q < 1.

Proof Since f (t) ≥ 0 and f (t0) 	= 0, there exists n0 ∈ N such that t0 = qn0 , then
we have

f (qn0)qn0 > 0, 0 < q < 1.
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This implies

(1 − q)

∞∑
n=0

qn f (qn) ≥ (1 − q) f (qn0)qn0 = (1 − q) f (t0)t0 > 0.

Hence, we have
∫ 1
0 f (t)dqt > 0. The proof is completed. 
�

Next, we list some notations and properties that are already known in the literature
[25–28] and reference therein.

Let (E, ‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E .
For any x, y ∈ E , the notation x ∼ y means that there exist μ > 0 and ν > 0
such that μx ≤ y ≤ νx . Given h > θ(i.e., h ≥ θ and h 	= θ), we have the set
Ph = {x ∈ E | x ∼ h}. Clearly, Ph ⊂ P . Take e ∈ P with θ ≤ e ≤ h, we define
Ph,e = {x ∈ E |x + e ∈ Ph}, that is

Ph,e = {x ∈ E | there exist μ = μ(h, e, x) > 0, ν = ν(h, e, x) > 0 such that

μh ≤ x + e ≤ νh}.

Further, the following definition of ϕ − (h, e)-concave operators and fixed point the-
orem in partially ordered sets is fundamental to the proof of our main results.

Definition 2.3 (See [27]) Let A : Ph,e → E be a given operator. For any x ∈ Ph,e

and λ ∈ (0, 1), there exists ϕ(λ) > λ such that

A(λx + (λ − 1)e) ≥ ϕ(λ)Ax + (ϕ(λ) − 1)e. (2.2)

Then A is called a ϕ − (h, e)-concave operator.

Lemma 2.4 (See [27]) Let P be normal and A be an increasing ϕ − (h, e)-concave
operator with Ah ∈ Ph,e. Then A has a unique fixed point x∗ in Ph,e.Moreover, for any
w0 ∈ Ph,e, making the sequence wn = Awn−1, n = 1, 2, . . . , then ‖wn − x∗‖ → 0
as n → ∞.

Lemma 2.5 (See [26]) Let P be normal and A be an increasing ϕ − (h, θ)-concave
operator with Ah ∈ Ph . Then A has a unique fixed point x∗ in Ph. Moreover, for any
w0 ∈ Ph, making the sequence wn = Awn−1, n = 1, 2, . . . , we get ‖wn − x∗‖ → 0
as n → ∞.

3 Main Results

Lemma 3.1 (See [11]) Assume 2 < α ≤ 3 and g ∈ C[0, 1], and then the following
boundary value problem

{
Dα
q u(t) + g(t) = 0, 0 < t < 1,

u(0) = Dqu(0) = 0, Dqu(1) = β ≥ 0
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has a unique solution

u(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs)g(s)dqs,

where

G(t, s) = 1

Γq(α)

{
(1 − s)(α−2)tα−1 − (t − s)(α−1), 0 ≤ s ≤ t ≤ 1,
(1 − s)(α−2)tα−1, 0 ≤ t ≤ s ≤ 1.

Lemma 3.2 (See [11]) The function G(t, qs) has the following properties:

(i) G(t, qs) ≥ 0,G(t, qs) ≤ G(1, qs), 0 ≤ t, s ≤ 1;
(ii) G(t, qs) ≥ tα−1G(1, qs), 0 ≤ t, s ≤ 1;
(iii) G(t, qs) ≤ 1

Γq (α)
(1 − qs)(α−2)tα−1 ≤ 1

Γq (α)
, 0 ≤ t, s ≤ 1.

In our considerations, we work in the Banach space X = C[0, 1] endowed with
the norm ‖u‖ = sup{|u(t)| : t ∈ [0, 1]}. Define the cone P = {x ∈ C[0, 1]|x(t) ≥
0, t ∈ [0, 1]}, the standard cone. Set

h(t) = Htα−1 with H ≥ b

(1 − qα−1)2Γq(α − 1)
, (3.1)

e(t) = b(1 − q)2

Γq(α − 1)

[
tα−1

(1 − qα−1)2
− tα

(1 − qα)(1 − qα−1)

]
, t ∈ [0, 1]. (3.2)

Theorem 3.1 Boundary value problem (1.1) has a unique nontrivial solution u∗ in
Ph,e, if the following conditions are satisfied:

(H1) f : [0, 1] × [−ê,+∞) → (−∞,+∞) is continuous and increasing with
respect to the second variable, where ê = max{e(t) : t ∈ [0, 1]};
(H2) for any λ ∈ (0, 1), there exists 1 ≥ ϕ(λ) > λ such that

f (t, λx + (λ − 1)y) ≥ ϕ(λ) f (t, x),∀ t ∈ [0, 1], x ∈ (−∞,+∞), y ∈ [0, ê];

(H3) f (t, 0) ≥ 0 with f (t, 0) 	≡ 0 for t ∈ [0, 1].
Further, we can construct a sequence

vn(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, vn−1(s))dqs

− b(1 − q)2

(1 − qα−1)2Γq(α − 1)
tα−1

+ b(1 − q)2

(1 − qα)(1 − qα−1)Γq(α − 1)
tα, n = 1, 2, . . . ,

for any given v0 ∈ Ph,e, and one has vn(t) → u∗(t) as n → ∞.
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Proof For t ∈ [0, 1], one can see that

e(t) = b(1 − q)2

Γq(α − 1)

[
tα−1

(1 − qα−1)2
− tα

(1 − qα)(1 − qα−1)

]

= b(1 − q)2tα−1

Γq(α − 1)
· 1 − qα − t (1 − qα−1)

(1 − qα)(1 − qα−1)
2

≥ b(1 − q)2tα−1

Γq(α − 1)
· qα−1 − qα

(1 − qα)(1 − qα−1)
2 ≥ 0;

thus, we have e ∈ P. Moreover, for t ∈ [0, 1],

e(t) = b(1 − q)2

(1 − qα−1)2Γq(α − 1)
tα−1 − b(1 − q)2

(1 − qα)(1 − qα−1)Γq(α − 1)
tα

≤ b

(1 − qα−1)2Γq(α − 1)
tα−1 ≤ Htα−1 = h(t).

Hence, 0 ≤ e(t) ≤ h(t). Further, Ph,e = {u ∈ C[0, 1]|u + e ∈ Ph}.
In view of Lemmas 2.2 and 3.1, the solution u(t) of problem (1.1) can be expressed

as

u(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, u(s))dqs − b

∫ 1

0
G(t, qs)dqs

= β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, u(s))dqs

− b(1 − q)2

Γq(α − 1)

[
tα−1

(1 − qα−1)2
− tα

(1 − qα)(1 − qα−1)

]

= β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t).

After that, for any u ∈ Ph,e, we consider the following operator

Au(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t), t ∈ [0, 1].

So u(t) is the solution of problem (1.1) if and only if u is the fixed point of A.
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Now we first show that A : Ph,e → E is a ϕ − (h, e)-concave operator. By the
condition (H2), for any λ ∈ (0, 1), u ∈ Ph,e, we have

A (λu + (λ − 1)e) (t)

= β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, λu(s) + (λ − 1)e(s)) dqs − e(t)

≥ ϕ(λ)
β

[α − 1]q t
α−1 + ϕ(λ)

∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t)

= ϕ(λ)

[
β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t)

]
+ [ϕ(λ) − 1]e(t)

= ϕ(λ)Au(t) + [ϕ(λ) − 1]e(t).

Hence, we obtain

A(λu + (λ − 1)e) ≥ ϕ(λ)Au + [ϕ(λ) − 1]e, λ ∈ (0, 1), u ∈ Ph,e.

According to Definition 2.3, we know that A is a ϕ − (h, e)-concave operator.
In the following, we prove that A : Ph,e → E is increasing. For u ∈ Ph,e, we have

u + e ∈ Ph, so there exists μ > 0 such that u(t) + e(t) ≥ μh(t); thus, we obtain

u(t) ≥ μh(t) − e(t) ≥ −e(t) ≥ −ê, t ∈ [0, 1].

From (H1), we know A : Ph,e → E is increasing.
As follows, we prove that Ah ∈ Ph,e, so we need to prove Ah+e ∈ Ph .By Lemma

3.2 and (H1), we have

Ah(t) + e(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, h(s))dqs

= β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f

(
s, Hsα−1

)
dqs

≤ β(1 − q)

1 − qα−1 t
α−1 + 1

Γq(α)

∫ 1

0
(1 − qs)(α−2)tα−1 f (s, H)dqs

≤ β

1 − qα−1 t
α−1 + 1

Γq(α)

∫ 1

0
(1 − qs)(α−2) f (s, H)dqs · tα−1

= β

(1 − qα−1)H
· h(t) + 1

HΓq(α)

∫ 1

0
(1 − qs)(α−2) f (s, H)dqs · h(t)
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and

Ah(t) + e(t)

= β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f

(
s, Hsα−1

)
dqs

≥ β(1 − q)

1 − qα
tα−1 + 1

Γq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
tα−1 f (s, 0)dqs

= β(1 − q)

1 − qα
tα−1 + 1

Γq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0)dqs · tα−1

= β(1 − q)

(1 − qα)H
· h(t) + 1

HΓq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0)dqs · h(t).

Let

μ = β

(1 − qα−1)H
+ 1

HΓq(α)

∫ 1

0
(1 − qs)(α−2) f (s, H)dqs,

ν = β(1 − q)

(1 − qα)H
+ 1

HΓq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0)dqs.

Since β ≥ 0, Γq(α) > 0 and 1−q
1−qα < 1

1−qα−1 , and from (H1), (H3),

∫ 1

0
(1 − qs)(α−2) f (s, H)dqs ≥

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0)dqs > 0,

hence, we have μ ≥ ν > 0. It follows that Ah + e ∈ Ph .
In the last, by using Lemma 2.4, the operator A has a unique fixed point u∗ in Ph,e,

and

u∗(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, u∗(s))dqs − e(t), t ∈ [0, 1].

Evidently, u∗(t) 	≡ 0, t ∈ [0, 1]. Therefore, u∗(t) is a nontrivial solution. Moreover,
for any v0 ∈ Ph,e, the sequence vn = Avn−1, n = 1, 2, . . ., satisfies vn → u∗ as
n → ∞. That is,

vn(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, vn−1(s))dqs

− b(1 − q)2

(1 − qα−1)2Γq(α − 1)
tα−1

+ b(1 − q)2

(1 − qα)(1 − qα−1)Γq(α − 1)
tα, n = 1, 2, . . . ,
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and vn(t) → u∗(t) as n → ∞. 
�

Next we consider a special case of problem (1.1) with β = 0, that is, the following
boundary value problem

{
Dα
q u(t) + f (t, u(t)) = b, t ∈ (0, 1),

u(0) = Dqu(0) = Dqu(1) = 0.
(3.3)

Theorem 3.2 Assume (H1), (H3) hold and satisfy
(H2)

′ for any λ ∈ (0, 1), and there is ϕ(λ) > λ such that

f (t, λx + (λ − 1)y) ≥ ϕ(λ) f (t, x),∀ t ∈ [0, 1], x ∈ (−∞,+∞), y ∈ [0, ê];

then, problem (3.3) has a unique nontrivial solution u∗ in Ph,e, where h, e are given
as in (3.1), (3.2). Further, making a monotone iterative sequence

vn(t) =
∫ 1

0
G(t, qs) f (s, vn−1(s))dqs − b(1 − q)2

(1 − qα−1)2Γq(α − 1)
tα−1

+ b(1 − q)2

(1 − qα)(1 − qα−1)Γq(α − 1)
tα, n = 1, 2, . . . .

For any v0 ∈ Ph,e, we have vn(t) → u∗(t) as n → ∞.

Proof In view of Lemma 3.1, the solution u(t) of problem (3.3) can be expressed as

u(t) =
∫ 1

0
G(t, qs) f (s, u(s))dqs − b

∫ 1

0
G(t, qs)dqs

=
∫ 1

0
G(t, qs) f (s, u(s))dqs

− b(1 − q)2

Γq(α − 1)

[
tα−1

(1 − qα−1)2
− tα

(1 − qα)(1 − qα−1)

]

=
∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t).

For any u ∈ Ph,e, we consider the following operator

Au(t) =
∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t), t ∈ [0, 1].

So u(t) is the solution of problem (3.3) if and only if u is the fixed point of A.
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Firstly, we show that A : Ph,e → E is a ϕ − (h, e)-concave operator. By the
condition (H2)

′, for any u ∈ Ph,e, λ ∈ (0, 1), we obtain

A(λu + (λ − 1)e)(t) =
∫ 1

0
G(t, qs) f (s, λu(s) + (λ − 1)e(s))dqs − e(t)

≥ ϕ(λ)

∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t)

= ϕ(λ)

[∫ 1

0
G(t, qs) f (s, u(s))dqs − e(t)

]
+ [ϕ(λ) − 1]e(t)

= ϕ(λ)Au(t) + [ϕ(λ) − 1]e(t).

Hence, we have

A(λu + (λ − 1)e) ≥ ϕ(λ)Au + [ϕ(λ) − 1]e, λ ∈ (0, 1).

Therefore, A is ϕ−(h, e)-concave operator. In addition, it is known that A : Ph,e → E
is increasing.

Next, we prove that Ah ∈ Ph,e, so we only prove Ah + e ∈ Ph . From Lemma 3.2
and (H1), (H3),

Ah(t) + e(t) =
∫ 1

0
G(t, qs) f

(
s, Hsα−1

)
dqs

≤ 1

Γq(α)

∫ 1

0
(1 − qs)(α−2) f (s, H)dqs · tα−1

= 1

HΓq(α)

∫ 1

0
(1 − qs)(α−2) f (s, H)dqs · h(t)

= μ′ · h(t),

where

μ′ = 1

HΓq(α)

∫ 1

0
(1 − qs)(α−2) f (s, H)dqs.

In addition,

Ah(t) + e(t) =
∫ 1

0
G(t, qs) f

(
s, Hsα−1

)
dqs

≥ 1

Γq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0)dqs · tα−1

= 1

HΓq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0)dqs · h(t)

= ν′ · h(t),
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where

ν′ = 1

HΓq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0)dqs.

Since Γq(α) > 0, H > 0 and from (H1), (H3), we have μ′ ≥ ν′ > 0, and this
implies that Ah + e ∈ Ph .

In the last, by using Lemma 2.4, the operator A has a unique fixed point u∗ in Ph,e,
so

u∗(t) =
∫ 1

0
G(t, qs) f (s, u∗(s))dqs − e(t), t ∈ [0, 1].

Obviously, u∗(t) 	≡ 0, t ∈ [0, 1]. Therefore, u∗(t) is a nontrivial solution. Moreover,
for any v0 ∈ Ph,e, the sequence vn = Avn−1, n = 1, 2, . . ., satisfies vn → u∗ as
n → ∞. That is,

vn(t) =
∫ 1

0
G(t, qs) f (s, vn−1(s))dqs − b(1 − q)2

(1 − qα−1)2Γq(α − 1)
tα−1

+ b(1 − q)2

(1 − qα)(1 − qα−1)Γq(α − 1)
tα, n = 1, 2, . . . ,

and vn(t) → u∗(t) as n → ∞. 
�
If b = 0, we can get the uniqueness of positive solutions for problems (1.1) and

(3.3) by using Lemma 2.5. The proofs are similar to Theorems 3.1 and 3.2.

Corollary 3.3 Assume that

(H4) f : [0, 1] × [0,+∞) → [0,+∞) is continuous with f (t, 0) 	≡ 0;
(H5) for each t ∈ [0, 1], f (t, x) is increasing with respect to the second variable;
(H6) for any λ ∈ (0, 1), there exists ϕ(λ) ∈ (λ, 1) such that

f (t, λx) ≥ ϕ(λ) f (t, x), ∀t ∈ [0, 1], x ∈ [0,+∞).

Then the following fractional q-difference equation boundary value problem{
Dα
q u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = Dqu(0), Dqu(1) = β ≥ 0,

where 0 < q < 1, 2 < α ≤ 3, has a unique positive solution u∗ in Ph, where
h(t) = tα−1, t ∈ [0, 1]. Moreover, for any initial value v0 ∈ Ph, constructing the
sequence

vn(t) = β

[α − 1]q t
α−1 +

∫ 1

0
G(t, qs) f (s, vn−1(s))dqs, n = 1, 2, . . . ,

one has vn(t) → u∗(t) as n → ∞.
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Corollary 3.4 Assume that (H4)–(H6) hold. Then the following fractional q-
difference equation boundary value problem{

Dα
q u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = Dqu(0) = Dqu(1) = 0,

where 0 < q < 1, 2 < α ≤ 3, has a unique positive solution u∗ in Ph, where
h(t) = tα−1, t ∈ [0, 1]. Moreover, for any initial value v0 ∈ Ph, constructing the
sequence

vn(t) =
∫ 1

0
G(t, qs) f (s, vn−1(s))dqs, n = 1, 2, . . . ,

one has vn(t) → u∗(t) as n → ∞.

4 An Example

In this section, we give an example to illustrate our main results.

Example 4.1 Consider the following boundary value problem:{
D

5
2
q u(t) + f (t, u(t)) = 1, t ∈ (0, 1),

u(0) = Dqu(0) = 0, Dqu(1) = 2,
(4.1)

where

f (t, u) =
{(

u + 18 + 8
√
2

49Γq
( 3
2

)
)
t
3
2 −

(
45570 − 6076

√
2

47089
u + 68 + 24

√
2

217Γq
( 3
2

)
)
t
5
2

} 1
5

,

t ∈ [0, 1],
α = 5

2 , q = 1
2 , b = 1, β = 2. Set

e(t) = 18 + 8
√
2

49Γq
( 3
2

) t
3
2 − 68 + 24

√
2

217Γq
( 3
2

) t
5
2 , h(t) = Ht

3
2 with H ≥ 72 + 32

√
2

49Γq
( 3
2

) ,

t ∈ [0, 1].
Then we have

e(t) = t
3
2

Γq
( 3
2

)
(
18 + 8

√
2

49
− 68 + 24

√
2

217
t

)
≥ 82 + 80

√
2

1519Γq
( 3
2

) t 32 ≥ 0

and

e(t) ≤ 72 + 32
√
2

49Γq
( 3
2

) t
3
2 ≤ Ht

3
2 = h(t);
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further, ê(t)= 18+8
√
2

49Γq

(
3
2

) for t ∈ [0, 1].Onecan see that f : [0, 1]×
[
− 18+8

√
2

49Γq

(
3
2

) ,+∞
)

→
(−∞,+∞) is continuous and increasing with respect to the second variable,

f (t, 0) =
{
18 + 8

√
2

49Γq
( 3
2

) t
3
2 − 68 + 24

√
2

217Γq
( 3
2

) t
5
2

} 1
5

= [e(t)] 15 ≥ 0

with f (t, 0) 	≡ 0, and then the conditions (H1), (H3) are satisfied.

Clearly, it can be represented as f (t, u(t)) =
[
e(t)
ê u(t) + e(t)

] 1
5
and e(t)

ê = t
3
2 −

45570−6076
√
2

47089 t
5
2 < 1, for t ∈ [0, 1]. In view of the Remark 4 in [27], we have

f (t, λx + (λ − 1)y) ≥ ϕ(λ) f (t, x), for λ ∈ (0, 1), x ∈ (−∞,+∞), y ∈ [0, ê];

here ϕ(λ) = λ
1
5 > λ, λ ∈ (0, 1), and the condition (H2) is satisfied. Thence, Theorem

3.1 implies that problem (4.1) has a unique solution u∗ ∈ C[0, 1]. For u ∈ Ph,e, we
construct a sequence

vn(t) =
∫ 1

0
G(t, qs)

{(
vn−1(s) + 18 + 8

√
2

49Γq(
3
2 )

)
s
3
2

−
(
45570 − 6076

√
2

47089
vn−1(s) + 68 + 24

√
2

217Γq(
3
2 )

)
s
5
2

} 1
5

dqs

+
(
8 + √

2

7
− 18 + 8

√
2

49Γq(
3
2 )

)
t
3
2 + 68 + 24

√
2

217Γq(
3
2 )

t
5
2 , n = 1, 2, . . . ,

and we have lim
n→∞ vn = u∗.
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