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1 Introduction

Although finite volume (FV) methods are widely used in many computational fluid
dynamics (CFD) applications, but FV methods suffer from severe results degradation
on skewed grids [9,10,13] which is unavoidable in industrial CFD. On the other hand,
residual distribution (RD) methods are known to be less sensitive to mesh variations
[4,5,9]. RD methods are also more compact which allows a more efficient parallel
computation [15] and have a natural platform to incorporate multidimensional fluid
physics [7].

However, there is still lot to be done for RD methods. Most RD methods are devel-
oped from mainly steady-state inviscid equations. Most of these methods will be at
best first order accurate in space for unsteady calculations [2] even if they are high
order accurate for steady-state problems unless there is a costly implicit sub-iterative
process being applied at every time-step. To the authors’ best knowledge, there is
only one type of explicit second-order RD scheme for unsteady calculations [3,18].
In fact, most RD methods cannot even preserve second-order accuracy when solving
steady-state scalar advection-diffusion problems which is the prerequisite of solving
the steady-stateNavier–Stokes equations [16].Oneway to preserve second-order accu-
racy when solving advection-diffusion problems is the unified first-order hyperbolic
systems approach [17].

Ismail and Chizari [11] have developed a new class of RD methods which
ensures automatic conservation of the primary variables without any dependence on
cell-averaging for any well-posed equations and preserves the spatial second-order
accuracy on unsteady problems using any consistent explicit time integration scheme.
The approach has also been extended to solve advection-diffusion problemswithmuch
success [19]. Since these flux-differenceRDmethods are new, very little has been done
to understand the inherent properties of the scheme.

In this paper, our main intention is to provide a pure mathematical analysis to deter-
mine the mathematical properties of the newly developed flux-difference RD method
on triangular grids when solving the two-dimensional linear advection equation. The
analysis includes the determination of its positivity condition, stability analysis and
the study of the order-of-accuracy variations as a function of grid skewness.

2 Residual Distribution Methods

Consider the two-dimensional scalar advection equation,

ut + ∇ · F = 0, (1)

where u is the unknown quantity in temporal and two-dimensional space. The fluxes
are F = (au)î + (bu) ĵ = λu. The î and ĵ are the unique characteristic vector along x-
and y-direction. λ is the wavespeed that defines the speed and direction of advection
of u.

The main concept of the residual distribution method is finding the sub-residuals
(or signals) for each point from the total residual of a cell (element) as shown in Fig. 1.
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Fig. 1 Residual distributed over
triangular mesh
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By using Green’s theorem, the total cell residual (φT) of Eq. 1 would be

φT =
∫∫

utdA = −
∫∫

∇ · FdA = −
∮

F · n̂dS. (2)

In discrete form, the total residual over a triangular element using the trapezoidal
rule by using the three nodes p = (i, j, k) [11] is

φT = 1

2

∑
p

Fp · np − 1

2

∑
p

F∗ · np
︸ ︷︷ ︸

=0

= 1

2

∑
p

(
Fp − F∗) · np, (3)

where np are the inward normal to the side opposite of node p and F∗ is the degree of
freedom for the flux-difference RD method. The way φT is distributed locally to each
node φi will define each type of RD method.

2.1 Flux-Difference RD Methods

This newly developed RD method [11] has two components: isotropic signals and
artificial signals.

2.1.1 Isotropic Signals

This isotropic signals (φiso) distribution is a central-type flux difference scheme of
which the total residual of is equally distributed to each of the three nodes within an
element. The φiso also depends on F(u) rather than u, which is one of the key features
of this alternative RD method that is quite different from the ones currently available
in the literature. Similar to a FV approach, conservation of the primary variables (u)
is automatic for the isotropic signals integrated over each local element since the
summation of any F∗ would be zero within each element. F∗ is one of the degrees of
freedom for which we could impose certain physical conditions. For the time being
we choose an arithmetic average of three nodal values for F∗ within the element. F∗
will only affect the nodes of each element since overall update is on the nodes, where
each node p would have an equal amount of sub-residuals.

φiso
p = 1

2
(Fp − F∗) · np, p = i, j, k. (4)
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2.1.2 Artificial Signals

Since the isotropic signals is pure central approach, it requires some form of artificial
diffusion as an offset to achieve stability [11]. The idea is to add the artificial terms
to the isotropic signals such that the primary variable u is discretely conserved over a
local element (cell) but at the same time, will discretely augment u on each node.

Let us focus on a local element which has nodes i, j, k. Define

[·] j i = (·) j − (·)i

so for node i , the newly proposed sub-residuals are

φi = 1

2
(Fi − F∗) · ni︸ ︷︷ ︸

φiso
i

−α[u] j i − β[u]k j − γ [u]ik︸ ︷︷ ︸
φart
i

. (5)

Similarly, the sub-residuals to nodes j, k can also be determined as in [11]. α, β, γ

are additional degrees of freedom for the new RDmethod. It will be shown in the next
subsection that the flux-difference RD method can also be made upwind to account
for physical wave propagation by controlling the artificial signals.

2.2 Recovery of Classic RD Methods

There will be a unique signal distribution (φ̃i ) which will recover the classic RD
methods by solving Eq. 5 for α, β and γ . For each node i, j, k,

⎧⎨
⎩

φiso
i − α[u] j i − β[u]k j − γ [u]ik = φ̃i

φiso
j − α[u]k j − β[u]ik − γ [u] j i = φ̃ j

φiso
k − α[u]ik − β[u] j i − γ [u]k j = φ̃k .

(6)

Equation 6 is linearly dependent for α, β and γ , because the summation of both sides
will be the total cell residual(φT). This requires at least one parameter out of α, β and
γ to be specified. From [11], one of the conditions for entropy-stability is that γ = −α

and conservation requires that φ̃i = −φ̃ j − φ̃k . Thus, the first equation of Eq. (6) is
redundant since it can be rewritten in terms of φ̃ j , φ̃k . Overall, we will now have two
linearly independent equations that can be solved for α and β.

{
φiso
j − α

([u]k j − [u] j i
)− β[u]ik = φ̃ j

φiso
k − α

([u]ik − [u]k j
)− β[u] j i = φ̃k .

(7)
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Therefore,

α =
(
φiso
j − φ̃ j

)
[u]i j +

(
φiso
k − φ̃k

)
[u]ik(

[u]2i j + [u]2jk + [u]2ki
)

β =
(
φiso
j − φ̃ j

) ([u]ik − [u]k j
)− (φiso

k − φ̃k

) ([u]i j − [u] jk
)

(
[u]2i j + [u]2jk + [u]2ki

) .

(8)

Note that these α and β are well-posed since the denominator will be always positive
except for the trivial case for which the signals are all zero.

For the scalar linear advection, using ki = 1
2λ

∗ · ni will yield

φiso
i = ki (ui − ū) = 1

3ki ([u]i j − [u]ki )
φiso
j = k j (u j − ū) = 1

3k j ([u] jk − [u]i j )
φiso
k = kk(uk − ū) = 1

3kk([u]ki − [u] jk).
(9)

2.2.1 N-Scheme Recovery

The N-scheme is a classic first-order multidimensional upwind RD method. Essen-
tially, it has two upwind conditions: one target and two target cells [1].

Recall that the signals (subresiduals) of classic N scheme are

˜φN
i = k+

i

(
ui − û

)
, û =

(∑
p

k−
p

)−1∑
p

k−
p u p, p = i, j, k. (10)

ki is projection of the wavespeed λ onto the edge opposite node i within an element.
ui refers to the values of node i opposite of the edge i . And, the upwind conditions
are

k+
i =
{
ki ki ≥ 0
0 ki < 0

, k−
i =
{
0 ki ≥ 0
ki ki < 0.

(11)

By choosing the following,

αN = ([u] j i+[u]ki )φT
6
(
[u]2i j+[u]2jk+[u]2ki

)

βN = k j−kk
6 + k j [u]2ik−kk [u]2i j

[u]2i j+[u]2jk+[u]2ki
,

(12)

we shall recover the 2-target N-scheme as before.
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For one-target cell,

αOneTarget =
φT(4ui + u j + uk) − 3

(
kiu2i + k ju2j + kku2k

)

3
(
[u]2i j + [u]2jk + [u]2ki

)

βOneTarget =
(
k j − kk

6

)( 6[u]2jk
[u]2i j + [u]2jk + [u]2ki

− 1

)
. (13)

2.2.2 LDA Recovery

For two-target,

αLDA = − k j+kk
6 + 3φ2

T+2(k j+kk )[k] jk [u] jk([u]i j+[u]ik)
6(k j+kk )

(
[u]2i j+[u]2jk+[u]2ki

)

βLDA = − k j−kk
6 + φT(ki [u] jk+k j [u]ki+kk [u]i j)

(k j+kk )
(
[u]2i j+[u]2jk+[u]2ki

) + (k j+kk)[k] jk [u]2jk
(k j+kk )

(
[u]2i j+[u]2jk+[u]2ki

) .
(14)

Note that the one-target LDA is identical with one-target N scheme.

2.2.3 Lax–Friedrichs Method

The signal distribution for
Lax–Friedrichs using α and β,

αLxF = 2|k|max − k j − kk
6

+
([u]i j + [u]ik

) (
k j [u]ik + kk[u]i j

)
3
(
[u]2i j + [u]2jk + [u]2ki

)

βLxF = kk − k j
6

+ [u] jk
(
k j [u]ik + kk[u]i j

)
[u]2i j + [u]2jk + [u]2ki

. (15)

2.2.4 Lax–Wendroff Recovery

αLxW = −k j + kk
6

+ 6�tφ2
T + 2A

([u]i j + [u]ik
) (
2[k] jk[u] jk − 2φT

)
12A
(
[u]2i j + [u]2jk + [u]2ki

)

βLxW = −k j − kk
6

+ �tφT
(
ki [u] jk + k j [u]ki + kk[u]i j

)
2A
(
[u]2i j + [u]2jk + [u]2ki

)

+[u] jk
([k] jk[u] jk − φT

)
[u]2i j + [u]2jk + [u]2ki

, (16)

where A is the cell area.
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Fig. 2 Dual median area of a
point (Ap is the shaded area)
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The specific α, β, γ formulation for the newly developed flux-difference RD
method will be disclosed in the next section.

2.3 Time Integration Step

For each point, we could evaluate summation of the signals from neighboring cells as
shown in Fig. 2. The time evolution of the solution is computed as

um+1
p = ump − �t

Ap

∑
j

φ
j
p, (17)

where j shows the neighboring cells to the main node (point) p.

3 Properties of the Flux-Difference RD Methods

3.1 Positivity Condition

Hyperbolic-type PDEs such as the scalar advection may contain discontinuities such
as shockwaves. It is vital to capture a monotone shock profile, which can be mathe-
matically presented as positivity. The constraints of positivity are defined as

(
∂u

∂t

)
i
+
∑
e

cie(ui − ue) = 0, cie ≥ 0, ∀i, e, i �= e, (18)

which is identical to [12] LED (Local Extremum Diminishing) criterion. Recall that
the signal distribution for a flux-differencing RD method is,

⎧⎨
⎩

φ̃i = 1
3ki
([u]i j − [u]ki

)− α[u] j i − β[u]k j − γ [u]ik
φ̃ j = 1

3k j
([u] jk − [u]i j

)− α[u]k j − β[u]ik − γ [u] j i
φ̃k = 1

3kk
([u]ki − [u] jk

)− α[u]ik − β[u] j i − γ [u]k j .
(19)
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Simplifying the previous equation will reduce to

⎧⎨
⎩

φ̃i = ( 23ki + α − γ
)
ui + (− 1

3ki − α + β
)
u j + (− 1

3ki + γ − β
)
uk

φ̃ j = (− 1
3k j + γ − β

)
ui + ( 23k j + α − γ

)
u j + (− 1

3k j − α + β
)
uk

φ̃k = (− 1
3k j − α + β

)
ui + (− 1

3k j + γ − β
)
u j + ( 23k j + α − γ

)
uk .

(20)

To achieve the mathematical positivity condition (Eq. (18)) requires that

⎧⎨
⎩

α − γ > − 2
3ki

α − γ > − 2
3k j

α − γ > − 2
3kk

⇒ α − γ >
2

3
max(−ki ,−k j ,−kk) ⇒ α − γ > −2

3
kmin, (21)

with ⎧⎨
⎩

β < 1
3ki + α

β < 1
3k j + α

β < 1
3kk + α

⇒ β <
1

3
min(ki , k j , kk) + α ⇒ β <

1

3
kmin + α, (22)

and,

⎧⎨
⎩

β > − 1
3ki + γ

β > − 1
3k j + γ

β > − 1
3kk + γ

⇒ β >
1

3
max(−ki ,−k j ,−kk) + γ ⇒ β > −1

3
kmin + γ. (23)

Thus, the positivity condition will be

α − γ > −2

3
kmin, γ − 1

3
kmin < β < α + 1

3
kmin. (24)

Since − 2
3kmin is always positive then α > γ is a necessary condition to get positivity.

Combining α > γ with the entropy-stability condition [11],

γ = −α, β = 0, (25)

therefore, the inequalities reduce into

α > −1

3
kmin. (26)

But kmin ≥ 0 and the fact that larger α corresponds to increasing entropy generation
(hence increasing dissipation)[11], the best condition for positivity is

α = −1

3
kmin. (27)
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To make the dimensions correct for the artificial signals in Eq. (5), we could select
the following form for α based on the work of [11].

α =
(

h

L r

)q
|λ|h, (28)

where the L r is a reference length and, λ is the cell characteristic vector.

Lemma 1 The local positivity is satisfied if and only if,

q ≤
ln
(
−min(d·np)

3h

)

ln
(

h
Lr

) . (29)

Proof The condition of Eq. (26) will be,

(
h

L r

)q
|λ|h ≥ −1

3
kmin, (30)

hence, (
h

L r

)q
≥ −min(λ · np)

3|λ|h = −min(d̂ · np)

3h
, (31)

where d̂ is the unique characteristic vector defined in [2]. Consequently,

q ≤
ln

(
−min(d̂·np)

3h

)

ln
(

h
Lr

) , (32)

which is showing an approximation for q to satisfy local positivity. Note that ln
(

h
Lr

)
is negative because h

Lr
is considered very small therefore, the equality is reversed. �	

3.2 Truncation Error

Following the work of [4], the first step would be to determine general spatial update
equation prior to the TE analysis. The equation could be discretely written in the
following form.

un+1
i = uni − �t

Ai

⎛
⎝wi ui +

∑
j

w j u j

⎞
⎠

n

. (33)

Note that Ai is the median-dual cell area. Assume j denotes the neighboring nodes
and w j is the coefficient distribution of the residual to that node. It is also assumed for
this analysis that (a, b) > 0 and b

a < h2
h . The analysis for

b
a > h2

h follows the same
steps and will not be shown here for conciseness.
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Fig. 3 Right-running grid
topology. The characteristic line
is y = b
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In the limit of steady state, un+1
i → uni . Thus, the terms inside the parentheses in

Eq. 33 will be the truncation error (TE).

TE = wi ui +
∑
j

w j u j . (34)

Using the Taylor series expansion of the neighboring points about the main point
of interest (node 0) as shown in Fig. 3, the TE will be determined. For a right running
(RR) triangular grid, the Taylor series expansion of the neighboring points about the
main node 0 is given as the following [4].

u j =
∞∑
d=0

(
1

d!
d∑

k=0

d!
(d − k)!k!

∂du

∂td−k∂nk

(
l jt
)d−k (

l jn
)k)

, (35)

where l jt and l jn are the tangential to streamline and normal to streamline distances,

respectively, for node j from the main node of interest i . The ∂du
∂td−k∂nk

is the dth

order partial derivative with respect to tangential direction along the streamline, t and
normal, n.

3.3 Formal Order-of-Accuracy on Structured Triangular Grids

To establish the order-of-accuracy for the “flux-difference” approach, first we need to
determine its truncation error (TE) in general form with arbitrary (α, β, γ ). For this
case, ||λ|| = √

a2 + b2.
The structured triangular grids would have uniform grid length and height with

dimensions (h1, h2). For conciseness, we rewrite the grid length in terms of h and the
height in terms of a stretching factor (s) of the grid length.

h1 = h, h2 = hs. (36)

Note that the grid stretching parameter s is related to grid skewness by s = 2 tan
(

π
2 Q
)

[4] for a right triangle. For Q = 1, the stretching parameter is infinite.
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Recall that the “flux-difference” signal distribution

φi = 1

2
(Fi − F∗) · ni︸ ︷︷ ︸

φiso
i

−α[u] j i − β[u]k j − γ [u]ik︸ ︷︷ ︸
φart
i

. (37)

As it was mentioned before, (α, β, γ ) contain a length scale from the cell to ensure
consistent units as in Eq. 28. Thus, we define the dimensionless parameters (α̃, β̃, γ̃ )
as the following.

α = α̃ ||λ|| h, β = β̃ ||λ|| h, γ = γ̃ ||λ|| h. (38)

The TE analysis would depend on the isotropic and artificial signals about node 0
(Fig. 3).

3.3.1 Isotropic Signals

The isotropic signal truncation error is given as the following.

TEiso = 1

Ai

∑
e

φiso
e . (39)

We could expand the signals coming from each element in terms of u. For instance,
the signals from elements 012, 023 and 032 are written as follows.

φiso
012 = −ahs

2

(
u0 − 1

3
(u0 + u1 + u2)

)
(40)

φiso
023 = −bh

2

(
u0 − 1

3
(u0 + u2 + u3)

)
(41)

φiso
032 = ahs − bh

2

(
u0 − 1

3
(u0 + u3 + u5)

)
. (42)

We could do a similar procedure for other signals coming from other elements, and
thus, the TE reduces to the following.

TEiso = 1

6hs
(as (2u1 + u2 − u3 − 2u5 − u6 + u7)

+ b (−u1 + u2 + 2u3 + u5 − u6 − 2u7)) .
(43)

By performing a Taylor series expansion about node 0, the overall truncation error of
the isotropic signals can be written as below.
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1640 F. Ismail et al.

TEiso =
(
a2
(
uttt + suttn + s2utnn

)

+ ab
(
suttt +

(
2s2 − 2

)
uttn − sutnn

)

+ b2
(
s2uttt − suttn + utnn

))( h2

6
√
a2 + b2

)
+ O
(
h4
)

.

(44)

This implies that the isotropic signals are second-order accurate in general (even
unsteady problems), unlike most RD methods. For inviscid steady-state conditions,
we expect no changes in the derivatives tangential to the streamline, and thus the
following is recovered.

TEiso =
(

−ab
(
2a4s4 − 5a3bs3 + 5ab3s − 2b4

)
360
(
a2 + b2

)5/2
)
unnnnnh

4 + O
(
h5
)

. (45)

The isotropic signals is fourth-order accurate for inviscid steady-state conditions.

3.3.2 Artificial Signals

Based on Eq. (38), the truncation error for the artificial terms of the signals could also
be determined.

TEart = 1

Ai

∑
e

φart
e . (46)

By expanding each signal coming from the respective element,

TEart = ||λcell||
hs (α̃1 (3u0 − u1 − u3 − u6) + α̃2 (3u0 − u2 − u5 − u7)

+ β̃1 (u1 − u2 + u3 − u5 + u6 − u7)
− β̃2 (u1 + u2 − u3 + u5 − u6 + u7)
−3γ̃1 (u0 + u2 + u5 + u7) − 3γ̃2 (u0 + u1 + u3 + u6)) .

(47)

The overall truncation error for the artificial signals is given as the following.

TEart = −
(
a2
(
s2unn + sutn + utt

)
+ ab

(
2s2utn + s (utt − unn) − 2utn

)

+ b2 (s (sutt − utn) + unn)
)( α̃I + α̃II − γ̃I − γ̃II

s
(
a2 + b2

)
)

||λ|| h + O
(
h2
)

.

(48)

From the previous equation, note that the artificial signals are second-order accurate
when we select α = γ , but this violates the entropy-stable condition of the method
[11]. For the inviscid steady state case, the overall truncation error reduces to
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TEart = −
(

(α̃I+α̃II−γ̃I−γ̃II)(b2−abs+a2s2)
(a2+b2)s

)
||λ|| unnh

+
(

ab(α̃I−α̃II+γ̃I−γ̃II−2β̃I+2β̃II)(b−as)

2(a2+b2)
3/2

)
||λ|| unnnh2

−
(

(α̃I+α̃II−γ̃I−γ̃II)(b2−abs+a2s2)2

12(a2+b2)
2s

)
||λ|| unnnnh3

−
(

ab
(
a3s3−2a2bs2+2ab2s−b3

)(
α̃I−α̃II−2β̃I+2β̃II+γ̃I−γ̃II

)

24(a2+b2)
5/2

)
||λ|| unnnnnh4

+O
(
h5
)
.

(49)

It is clear that the obstacle to achieve high-order spatial accuracy in steady-state advec-
tion problems is due to the artificial signals. From [11], selecting β = 0 and imposing
α = −γ will yield the truncation error of the artificial signals in steady-state condition
to be

TEart = −
(

(α̃I+α̃II−γ̃I−γ̃II)(b2−abs+a2s2)
(a2+b2)s

)
unnh

−
(

(α̃I+α̃II−γ̃I−γ̃II)(b2−abs+a2s2)2

12(a2+b2)
2s

)
unnnnh3 + O

(
h4
)
.

(50)

The overall truncation error for the flux-difference approach is TEiso + TEart. TE
equations for the classic RD methods are included in “Appendix A”.

3.4 First-Order Flux-Difference RD Method

To construct a baseline first-order entropy-stable method, we can just use the original
φart with α = −γ and that β = 0. In a more structured form, this can be viewed by
choosing α such that

α1st =
(

h

L r

)q1st
||λ|| h, q1st → 0+. (51)

A positive first-order method can be achieved if we select α based on Eq. (26), where
the q can be determined by Eq. (32). Note that the positive first-order method is less
diffusive than the baseline first-order method since it generates less entropy.

3.5 Second Order and Beyond

To develop a compact high-order (beyond first order) method, the main concept still
remains the same. By controlling entropy generation produced by the artificial signals,
one might be able to construct a high-order approach. Thus, we could achieve second
order and third order by choosing

αhigh =
(

h

L r

)qhigh
||λ|| h, (52)
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Fig. 4 Right-running grid
terminology for stability
analysis

(l, m)
(l + 1, m)

(l + 1, m + 1)(l, m + 1)
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(l − 1, m − 1) (l, m − 1)

λCentroids

dII

dI

where qhigh → 1− for second order and qhigh → 2− for third order. Fourth-order accu-
racy can be theoretically achieved if qhigh → 3−. The question remains on whether
the high order-of-accuracy is preserved on distorted triangular grids. The following
section will attempt to address this issue by examining the grid skewness effect on a
specific test case in which the normal derivatives can be computed.

3.6 von Neumann Stability Analysis

To assess the feasibility on the new flux difference RD method, the stability aspect
is analyzed following the work of [8]. Only forward Euler time stepping scheme is
considered in this study to maintain the explicit time feature of the new scheme while
being consistent with the time integration step addressed in Sect. 2.3. The analysis is
done again on the structured (right-running) grids as shown in Fig. 4. Hence, the Von
Neumann analysis in this study starts with Eq. (17) as the general equation for RD
method with forward Euler scheme and the sum of signals can be further categorized
into isotropic and artificial signals. Collecting the isotropic and artificial terms from
the neighboring cells and considering the entropy-stability condition [11] yields

un+1
l,m = unl,m − �t

Al,m

⎡
⎢⎣
⎛
⎝∑

j

φ
j
l,m

⎞
⎠

iso

+
⎛
⎝∑

j

φ
j
l,m

⎞
⎠

art
⎤
⎥⎦ , (53)

where

(∑
j φ

j
l,m

)iso = 1
6

[
(−bh + 2ak)unl+1,m + (bh + ak)unl+1,m+1 + (2bh + ak)unl,m+1

+ (bh−2ak)unl−1,m − (bh + ak)unl−1,m−1 + (−2bh + ak)unl,m−1

]
,

(54)
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and (∑
j φ

j
l,m

)art = 2α[6unl,m − unl+1,m − unl+1,m+1 − unl,m+1

− unl−1,m − unl−1,m−1 − unl,m−1].
(55)

Considering only the numerical errors, ζm
l,m , and casting the errors into Fourier forms,

ζ n
l,m = δnexpiθ(lx+my) and i = √−1, the numerical error equation is

δn+1expiθ(lx+my) = δnexpiθ(lx+my) − �t
Al,m

( 1
6

) [
72αδnexpiθ(lx+my)

+ (−12α − bh + 2ak)δnexpiθ((l+1)x+my)

+ (−12α + bh + ak)δnexpiθ((l+1)x+(m+1)y)

+ (−12α + 2bh + ak)δnexpiθ(lx+(m+1)y)

+ (−12α + bh − 2ak)δnexpiθ((l−1)x+my)

+ (−12α − bh − ak)δnexpiθ((l−1)x+(m−1)y)

+ (−12α − 2bh + ak)δnexpiθ(lx+(m−1)y)
]
.

(56)

Dividing by δnexpiθ(lx+my) yields

δ = 1 − �t
Al,m

( 1
6

)
[72α

+ (−12α − bh + 2ak)expiθ(x)

+ (−12α + bh + ak)expiθ(x+y)

+ (−12α + 2bh + ak)expiθ(y)

+ (−12α + bh − 2ak)expiθ(−x)

+ (−12α − bh − ak)expiθ(−x−y)

+ (−12α − 2bh + ak)expiθ(−y)
]
.

(57)

Using the identity of expiθ = cosθ − isinθ , we obtain

δ = 1 + 1
3s

(
α �t

h2

)
(−36 + 12cos(θx) + 12cos(θy) + 12cos(θx + θy))

+ i 1
3s

(
a�t

h

)
((2s − 1)sin(θx) + (2 − s)sin(θy)

+ (1 + s)sin(θx + θy)),

(58)

where s is the stretching factor defined in Eq. 36. Since δ is the ratio of the numerical
error at timestep n+1 to the error at timestep n, the magnitude, |δ|, is the amplification
factor which determines the stability of the numerical scheme. The stable condition is
achieved if and only if |δ| ≤ 1 ∀θ , where

|δ| =
{[

1 + 1
3s

(
α �t

h2

)
(−36 + 12cos(θx) + 12cos(θy) + 12cos(θx + θy))

]2
+ [i 1

3s

(
a�t

h

)
((2s − 1)sin(θx) + (2 − s)sin(θy)

(1 + s)sin(θx + θy))]2
} 1

2

.

(59)
A more generalized quantity is required to represent the stability condition of the

schemes. We have employed the non-dimensional Courant–Friedrichs–Lewy (CFL)
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Fig. 5 The CFL condition for
RD

i

j

k

λΔt

number for this purpose. Based on the CFL hypothesis [6], the characteristic vector
should not exceed the element within one iteration as it might contradict with the
characteristics in other elements which causes the solution to be unstable. The CFL
condition for RD is demonstrated in Fig. 5 and the CFL number, ν is defined as

ν = |λ|�t

min d
, (60)

where d is the distance between the centroid to the edge of the cell along the direction
of the characteristic vector. There are only two types of cell (type I and II from Fig.
3) for right running grid and their respective d (dI and dII) is denoted in Fig. 4. min d
is the minimum value of d among all the cells. Substituting �t into Eq. 59 results in

|δ| =
{[

1 + ν
(

αmin d
3sh2|λ|

)
(−36 + 12cos(θx) + 12cos(θy) + 12cos(θx + θy))

]2

+
[
iν
(
amin d
3sh|λ|

)
((2s − 1)sin(θx) + (2 − s)sin(θy)

(1 + s)sin(θx + θy))]2
} 1

2

.

(61)
The stability equations for the classic RD methods are in “Appendix B”.

3.6.1 CFL Number Range for Stable Condition

The stability of flux difference scheme is assessed based on the range of ν across
different skewness. The amplification factor, |δ| (z-axis), is plotted against both nor-
malized frequencies θx (x-axis) and θy (y-axis) in 3D graphs. Note that the ranges of
the frequencies are 0 ≤ θx ≤ π and 0 ≤ θy ≤ π as the pattern repeats beyond this
range. For conciseness, only selected plots with grid skewness, Q = 0.3 are shown.
Unstable regions where |δ| > 1 are shaded in grey, while the stable regions of |δ| ≤ 1
are shaded in orange in Fig. 6. The lower limit of stable ν is always 0 as �t is also 0,
and there is no time iteration.

From Fig. 6, both N scheme and LDA have the highest maximum stable ν at 3.0.
The positive first-order scheme performs very good in terms of stability (ν ≤ 2.0)
compared to baseline (q = 0) first order (ν ≤ 0.2). Hence, from this point onwards, the
positive approachwill be chosen as the first order scheme for the newly developed flux-
difference method. Another point to note is the frequency regions where |δ| exceeds 1.
Both the classic RD methods, together with the second-order approach, are unstable
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Fig. 6 Amplification factor plots at stable (left)-unstable (right) CFL number, a N scheme, ν = 3.0, b N
scheme, ν = 3.01, c LDA, ν = 3.0, d LDA, ν = 3.01, e Baseline 1st order, ν = 0.2, f Baseline 1st order, ν =
0.21, g Positive 1st order, ν = 2.0, h Positive 1st order, ν = 2.05, i 2nd order, ν = 0.3, j 2nd order, ν = 0.35
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Table 1 Upper limit of ν from Von Neumann analysis

Q Positive 1st order Baseline 1st order 2nd order 3rd order 4th order N LDA

0.3 2.0 0.20 0.33 0.00358 0.00323 3.0 3.0

0.4 2.3 0.24 0.36 0.00381 0.00307 3.0 3.0

0.5 2.6 0.27 0.36 0.00372 0.00316 3.0 3.0

0.6 2.4 0.29 0.37 0.00351 0.00311 3.0 3.0

0.7 2.2 0.30 0.39 0.00328 0.00301 3.0 3.0

0.8 2.1 0.32 0.45 0.00306 0.00290 3.0 3.0

0.9 2.0 0.33 0.60 0.00287 0.0028 3.0 3.0

at low-frequency regions, while baseline and positive first order show instability at
higher-frequency regions.

A summary of the maximum stable ν is shown in Table 1. The stability of
higher-order schemes, i.e. third- and fourth-order schemes, was also analyzed and
the excruciating limited ranges of ν have rendered these schemes to be too expensive
to be used practically with explicit method. Hence, they are to be deemed unstable
and will not be discussed further in the following sections. However, implicit solvers
should be explored for these higher-order schemes in the future. The positive version
will be used as our first-order method due to its larger stability range compared to the
baseline first order approach.

4 Results on Variation of Grid Skewness

4.1 Order-of-Accuracy

The steady-state (linear advection) test case [14] has a square domain with an inlet
boundary condition for left and bottom sides, and an outlet for the right and top sides.
The inlet boundaries and the steady-state exact solution are determined as

u(x, y) = − cos(2πω f (bx − ay)), (62)

where a and b are the characteristic wave speeds in x and y direction and ω f is the
frequency of wave. For simplicity, all of the calculations below use a = b = 1 but ω f

would vary and the square domain is one by one in lengths.
Using a right-running triangular grid shown in Fig. 3 and by controlling the length

(h) an height (k) of the grid, analytical and numerical order of accuracy for different
skewnesses (Q) could be determined. We denote the positive approach and (q = 1) to
be first-order and second-order flux-difference RD methods, respectively. The range
of skewness for the structured triangular grid is 0.3 ≤ Q ≤ 1 as done in [4]. From the
truncation error equations in the previous section, each error term includes a coefficient
and the normal derivative of the solution on a particular node. For this test case, the
normal derivatives can be determined based on the repeating sine-cosine function of
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Fig. 7 Analytical order of
accuracy for various the
skewness in right running grid. a
ω f = 1 b ω f = 4 c ω f = 8
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Fig. 8 Numerical order of accuracy for various the skewness in right running grid for ω f = 1

Eq. (62). The complete setup details of the truncation error (and consequently order-
of-accuracy (OoA)) versus skewness variations can be obtained in [4]. Only the first
six error terms in the TE equations are considered when performing the analysis. Note
that the grid stretching parameter s is related to grid skewness by s = 2 tan

(
π
2 Q
)
[4]

for a right triangle. For the RD methods, the order of accuracy will be unbounded for
s = 1 due to perfect grid alignment with the characteristics (a, b) = (1, 1). However,
the limit of s → 1+ still exists for most RD methods.

FromFig. 7, the asymptotic values for the analytical order-of-accuracy (OoA)when
the stretching parameter is between 1 < s < ∞ . For all of the RD schemes reported
herein, the magnitude of errors increases rapidly beyond certain skewness and reaches
an asymptotic value when Q = 1.0 (or s → ∞) as shown in Fig. 9. However, the
OoA of methods may increase (i.e Lax Wendroff, second FD), or decrease (LDA, N
scheme) or even behave in an oscillatory fashion (highest frequency), depending on
the respective TE equations. Of course numerically, we expect most schemes to have
a drop in OoA as we increase the skewness (Fig. 8) but RD schemes are usually least
affected relative to FV methods [4]. For brevity, we have only included the numerical
OoA for low frequency since the methods have a similar pattern for higher frequencies
but with more rapid deterioration at high skewness as shown in the analytical part.
The L2 errors for the numerical results are also similar to the truncation errors in
Fig. 9 hence omitted for conciseness. Note that the Lax–Wendroff L2 errors drop to
round-off errors when Q → 0.3 due to the numerical solutions approach the exact
solution at this configuration hence we could not compute its numerical OoA.

The order of accuracy for the first order scheme generally attains the desired accu-
racy and it is comparable to Lax–Friedrichs (LxF) which is also a central scheme.
However, the first order positive scheme always has slightly lower L2 error com-
pared to that of Lax–Friedrichs and the difference decreases when the grid is further
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Fig. 9 Analytical truncation error in logarithmic scale for all the skewness in right running grid. a ω f = 1
b ω f = 4 c ω f = 8
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Fig. 10 Truncation error (analytical) verses the grid distance in logarithmic scale for the linear case Q = 0.7
in the right running grid

skewed. The N-scheme is the best first order due to its narrowest stencil, which is least
susceptible to grid changes.

The second order (q = 1) version maintains its accuracy for the most part with
varying skewness while the order of accuracy of classic second order LDA deteriorates
at high skewness. The deterioration becomes more rapid as the frequency increases,
although LDA achieves third order at Q = 0.5 as the truncation error for LDA in
steady state condition is given by

TELDA =
(

−ab
(
2ab2 − 3abs + a2s2

)
6r3

)
unnnh

2 + O
(
h3
)

. (63)

With the condition of a = b = 1 and the identity of grid skewness of s = 2 tan
(

π
2 Q
)
,

the TE for LDA at Q = 0.5 becomes

TELDA = −
(
2 − 6 tan

(
π
4

)+ (2 tan (π4
))2

6r3

)
unnnh

2 + O
(
h3
)

. (64)

It can be seen that the second order term of the TE for LDA is cancelled perfectly at
that specific skewness. The Lax–Wendroff (LxW) scheme is third order accurate for
right-running grids since there the second order error terms drop out for this unique
choice of structured (right running) grids. The Lax–Wendroff is generally a second
order method as demonstrated in [5].

The sample of analytical OoA plot for one skewness value is shown in Fig. 10.
The numerical OoA plot for a particular skewness has the same hierarchical pattern,
therefore it is not included tomaintain conciseness of the paper. The numerical velocity
contours and the residual convergence history are shown in Figs. 11 and 12.
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Fig. 11 u velocity contours for
steady state linear advection test
case. a N, b 1st order, c LDA, d
2nd order
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Fig. 12 L2 errors residual plots against number of iterations for different RD schemes for steady linear
advection test case at w f = 1 and Q = 0.4

4.2 Shock-Tree Problem

This test case is to examine the ability of each method to capture a monotone shock
profile on a discontinuous data. The shock-tree case is based on the Burgers’ equation,
with the inflow boundary at the bottom, left and right of the domain.

u(x, 0) = 1.5 − 2x . (65)

The steady state exact solution is,

u(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 0.5 y ≤ 1
2&

x− 3
4

y− 1
2

< 1
2

1.5 y ≤ 1
2&

x− 3
4

y− 1
2

> 1
2

max

(
− 0.5,min

(
1.5,

x− 3
4

y− 1
2

))
elsewhere.

(66)

It is illustrated in Fig. 13 that both first order schemes preserve monotonicity in
discontinuous domain and the positive approach performs exceptionally good as the
diffusion is minimal. However, the second order approach is not monotone and oscil-
lations occur near the shock region.

5 Conclusion

The flux-difference RD methods have a general mathematical form which can eas-
ily recover the classic central and upwind RD methods, hence all of their inherent
properties as well. In addition, the new RD method can also be designed to have its
own unique central-type methods with different order-of-accuracy by controlling the
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Fig. 13 Cross section of different schemes for shock tree problem

artificial signals. Overall, the flux-difference methods are minimally sensitive to grid
skewness asmuch as the classic RDmethods, which are known to bemuch less relative
to finite volume methods.
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A Truncation Error (TE) of Classic RD Methods

The TE for different classic RD methods are determined with the assumption that
b
a < k

h .

TEN =
(

− ab

2r2
(ak − bh)

)
unn

+
(
ab

6r3
(ak − bh)(ak − 2bh)

)
unnn

+ O(h pkq), p + q = 3. (67)

TELxF =
(

−
(
4a3k3 − 3a2bk2h + 4ab2kh2 + b3h3

)
6kh
(
a2 + b2

)
)
unn

+
(
ab2(ak − bh)h

12
(
a2 + b2

)3/2
)
unnn

+ O(h pkq), p + q = 3. (68)

TELDA =
(
ab(ak − bh)(ak − 2bh)

6r3

)
unnn
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+
(

−ab2(ak − bh)2h

8r4

)
unnnn

+ O(h pkq), p + q = 4. (69)

TELxW =
(

−ab2(ak − bh)2h

12r4

)
unnnn

+ O(h pkq), p + q = 4. (70)

B Stability Analysis on Classic RD Methods

With the same formulation in Sect. 3.6, the amplification factor, δ for N and LDA
schemes are determined as the following.

|δ|N =
{[

1 + ν

3s
(−s + (s − 1)cos(θx) + cos(θx + θy))

]2

+
[
i

ν

3s
((s − 1)sin(θx) + sin(θx + θy))

]2} 1
2

. (71)

|δ|LDA =
{[

1 + ν

3s2

(
−s2 + s − 1 + (s − 1)scos(θx)

+(1 − s)cos(θy) + scos(θx + θy))]2

+
[
i

ν

3s
((s − 1)sin(θx) + sin(θx + θy))

]2} 1
2

. (72)
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