
Bull. Malays. Math. Sci. Soc. (2019) 42:1329–1348
https://doi.org/10.1007/s40840-017-0551-3

Existence and Multiplicity of Solutions for Semilinear
Elliptic Systems with Periodic Potential

Guofeng Che1 · Haibo Chen1 · Liu Yang2

Received: 28 February 2017 / Revised: 28 August 2017 / Published online: 20 September 2017
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract In this paper, we consider the following semilinear elliptic systems:

{−�u + V (x)u = Fu(x, u, v), in R
N ,

−�v + V (x)v = Fv(x, u, v), in R
N ,

where V : R
N → R, Fu(x, u, v) and Fv(x, u, v) are periodic in x . We assume that

0 is a right boundary point of the essential spectrum of −� + V . Under appropri-
ate assumptions on Fu(x, u, v) and Fv(x, u, v), we prove the above system has a
ground-state solution by using the Nehari-type technique in a strongly indefinite set-
ting. Furthermore, the existence of infinitely many geometrically distinct solutions is
obtained via variational methods. Recent results from the literature are improved and
extended.
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1 Introduction

In this paper, we consider the existence and multiplicity of nontrivial solutions to the
following semilinear elliptic systems:

{−�u + V (x)u = Fu(x, u, v), in R
N ,

−�v + V (x)v = Fv(x, u, v), in R
N .

(1.1)

When � is a bounded domain of R
N , the problem

⎧⎪⎪⎨
⎪⎪⎩

−�u = λ
(
a(x)u + b(x)v

)+ Fu(x, u, v), in �,

−�v = λ
(
b(x)u + c(x)v

)+ Fv(x, u, v), in �,

u(x) = v(x) = 0, on ∂�,

(1.2)

which is related to reaction–diffusion systems that appear in chemical and biological
phenomena, including the steady- and unsteady-state situation (see [1]), has been
extensively investigated in recent years. For the results on existence,multiple solutions,
and positive solutions to problem (1.2), we refer the reader to [1–5] and the references
therein. In [3], Qu and Tang obtained the existence and multiplicity of weak solutions
for problem (1.2) by using the Ekeland variational principle together with variational
methods, and some new existence theorems of weak solutions were obtained in Duan
et al. [2]. Lots of work has been done when � is an unbounded domain of R

N , and
we refer the reader to [6–16] and the references therein.

Recall that the spectrum σ(−� + V ) of −� + V is purely continuous and may
contain gaps, i.e., open intervals free of spectrum (see [17]). In [18], Szulkin andWeth
considered the following Schrödinger equation:

− �u + V (x)u = f (x, u), in R
N . (1.3)

Assuming that 0 /∈ σ(−� + V ), they proved that problem (1.3) possesses a ground-
state solution, which is just a minimizer of the energy functional associated with
problem (1.3) on the Nehari–Pankov manifold [19]. Later, Mederski [20] considered
the ground-state solutions to the system of coupled Schrödinger equations as follows:

− �ui + Vi (x)ui = ∂ui F(x, u), on R
N , i = 1, 2, . . . , K , (1.4)

where F and Vi are periodic in x , 0 /∈ σ(−� + Vi ), i = 1, 2, . . . , K . Moreover,
they made use of a new linking-type result involving the Nehari–Pankov manifold and
assumed that F satisfies the following conditions:
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1. fi : R
N × R

K → R is measurable, Z
N -periodic in x ∈ Z

N and continuous
in u ∈ R

K for a.e. x ∈ R
N . Moreover, f = ( f1, f2, . . . , fK ) = ∂u F , where

F : R
N × R

K → R is differentiable with respect to the second variable u ∈ R
K

and F(x, 0) = 0 for a.e. x ∈ R
N .

2. There are a > 0 and 2 < p < 2∗ such that

| f (x, u)| ≤ a
(
1 + |u|p−1

)
, for all u ∈ R

K and a.e. x ∈ R
N .

3. f (x, u) = o(u) uniformly with respect to x as |u| → 0.
In [21], Guo and Mederski considered the existence and nonexistence of ground-
state solutions of system (1.4) with K = 1 and V (x) = V1(x) − μ

|x |2 , where
V1 ∈ L∞(RN ), V1 is Z

N -periodic in x ∈ R
N , and 0 /∈ σ(−� + V ). Moreover,

they assumed that f (x, u) satisfies (1)–(3) and (4)–(5) as follows:
4. F(x,u)

u2
→ ∞ uniformly in x as |u| → ∞, where F is the primitive of f with

respect to u, that is, F(x, u) = ∫ u0 f (x, s)ds.

5. u �→ f (x,u)
|u| is nondecreasing on (−∞, 0) and (0,+∞).

When 0 is a right boundary point of the essential spectrum of −� + V and f (x, u)

is superlinear and subcritical, Mederski [22] obtained the existence of ground-state
solutions and multiple solutions of system (1.3) with u(x) → 0, as |x | → ∞.

Inspired by the above facts, more precisely by [21–23], the aim of this paper is to
study the existence and multiplicity of nontrivial solutions to problem (1.1) via varia-
tional methods. To the best of our knowledge, there have been few works concerning
this case up to now.

We assume that V (x) and F(x, u, v) satisfy the following hypotheses:
(V ) V ∈ C(RN , R), V is 1-periodic in xi , i = 1, 2, . . . , N , 0 ∈ σ(−� + V ), and

there exists α > 0 such that (0, α] ∩ σ(−� + V ) = ∅.
(F1) F ∈ C1(RN × R

2), Fu(x, u, v) and Fv(x, u, v) are measurable, 1-periodic in
xi , i = 1, 2, . . . , N .

(F2) There exist c > 0 and 2 < γ ≤ p < 2∗ such that |Fu(x, u, v)| ≤
c(|(u, v)|γ−1 + |(u, v)|p−1) and |Fv(x, u, v)| ≤ c(|(u, v)|γ−1 + |(u, v)|p−1) for all
(u, v) ∈ R × R and x ∈ R

N , where |(u, v)| = (u2 + v2)
1
2 .

(F3) There exists d > 0 such that

F(x, u, v) ≥ d|(u, v)|γ , for |(u, v)| ≤ 1, x ∈ R
N .

(F4)
F(x,u,v)

|(u,v)|2 → ∞ uniformly in x ∈ R
N as |(u, v)| → ∞.

(F5) If Fu(x, u2, v2)u1 > 0 or Fv(x, u2, v2)v1 > 0 for any (u2, v2), (u1, v1) ∈ R
2,

then we have

F (x, u2, v2) − F (x, u1, v1) ≤ (Fu(x, u2, v2)u2)2 − (Fu(x, u2, v2)u1)2

2Fu(x, u2, v2)u2

+ (Fv(x, u2, v2)v2)2 − (Fv(x, u2, v2)v1)2

2Fv(x, u2, v2)v2
.
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1332 G. Che et al.

(F6) Fu(x, u, v)u ≥ 0 and Fv(x, u, v)v ≥ 0 and Fu(x, u, v)u + Fv(x, u, v)v ≥
2F(x, u, v) for any (x, u, v) ∈ R

N × R
2.

(F7) F(x,−u,−v) = F(x, u, v) for any (x, u, v) ∈ R
N × R

2.
Assumptions (V ) and (F1)−(F6) allow us to find a function space E2,γ (see Sect. 2)

on which the energy functional associated with (1.1) is given by

J (u, v) = 1

2

∫
RN

(
|∇u|2 + V (x)|u|2

)
dx + 1

2

∫
RN

(
|∇v|2 + V (x)|v|2

)
dx

−
∫
RN

F(x, u, v)dx,
(1.5)

and

〈J ′(u, v), (ϕ, ψ)〉 =
∫
RN

∇u∇ϕdx +
∫
RN

V (x)uϕdx −
∫
RN

Fu(x, u, v)ϕdx

+
∫
RN

∇v∇ψdx +
∫
RN

V (x)vψdx −
∫
RN

Fv(x, u, v)ψdx .
(1.6)

Now we state our main results.

Theorem 1.1 Suppose that (V ) and (F1)−(F6) hold, then problem (1.1) has a ground-
state solution (u, v) ∈ N such that J (u, v) = inf

N
J > 0. Furthermore, (u, v) ∈(

H2
loc(R

N ) × H2
loc(R

N )
) ∩ (Lt (RN ) × Lt (RN )

)
for γ ≤ t ≤ 2∗.

Theorem 1.2 Suppose that (V ) and (F1)−(F7) hold, then problem (1.1) has infinitely
many geometrically distinct solutions which lie in

(
H2
loc(R

N ) × H2
loc(R

N )
) ∩(

Lt (RN ) × Lt (RN )
)
for γ ≤ t ≤ 2∗.

Notation Throughout this paper, we shall denote by ‖ · ‖r the Lr -norm and C various
positive generic constants, which may vary from line to line. 2∗ = 2N

N−2 is the critical
Sobolev exponent. Also if we take a subsequence of a sequence {(un, vn)} we shall
denote it again by {(un, vn)}.

This paper is organized as follows: In Sect. 2, some preliminary results are pre-
sented. In Sect. 3, we introduce the Nehari–Pankov manifoldN ⊂ E2,γ on which we
minimize J to find a ground state and we prove Theorem 1.1. Eventually, in Sect. 4,
the multiplicity result is obtained and we prove Theorem 1.2.

2 Variational Setting and Preliminaries

In this section we outline the variational framework for problem (1.1) and give some
preliminary lemmas.

It follows from condition (V ) that there exists a decomposition of H1(RN ) = X+⊕
X− corresponding to the decomposition of the spectrum of σ(S) into σ(S)∩[α,+∞)

and σ(S) ∩ (−∞, 0], where S = −� + V with the domain D(S) = H2(RN ). We
introduce a new norm ‖ · ‖X on X+ (resp. X−) by setting
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‖u+‖2X =
∫
RN

(
|∇u+|2 + V (x)|u+|2

)
dx

and

‖u−‖2X = −
∫
RN

(
|∇u−|2 + V (x)|u−|2

)
dx

for u+ ∈ X+ and u− ∈ X−. Then, ‖ · ‖X is equivalent to ‖ · ‖H1 on X+ and is weaker
than ‖ · ‖H1 on X− (see [24])

〈u, v〉X =
∫
RN

(∇u+∇v+ + V (x)u+v+) dx −
∫
RN

(∇u−∇v− + V (x)u−v−) dx
and a norm given by

‖u‖2X = ‖u+‖2X + ‖u−‖2X ,

which is equivalent to the usual Sobolev norm in H1(RN ), that is

‖u‖H1 =
(∫

RN
(|∇u|2 + |u|2)dx

) 1
2

.

Therefore, X+ and X− are orthogonal with respect to the inner product 〈·, ·〉X as well.
As usual, for 1 ≤ p < +∞, we let

‖u‖p =
(∫

RN
|u(x)|pdx

) 1
p

, u ∈ L p
(
R

N
)

,

and

‖u‖∞ = ess sup
x∈RN

|u(x)|, u ∈ L∞ (
R

N
)

.

Then, E = X × X = E+ ⊕ E−, where E+ = X+ × X+, E− = X− × X−, is a
Hilbert space with the following inner product

〈(u, v), (ϕ, ψ)〉 = 〈u, ϕ〉X + 〈v,ψ〉X (u, v), (ϕ, ψ) ∈ X × X,

and the norm

‖(u, v)‖2 = 〈(u, v), (u, v)〉 = ‖u‖2X + ‖v‖2X , (u, v) ∈ X × X.
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1334 G. Che et al.

Note that the energy functional J can be written as follows:

J (u, v) = 1

2

(‖(u+, v+)‖2 − ‖(u−, v−)‖2)−
∫
RN

F(x, u, v)dx

= 1

2
‖(u+, v+)‖2 − I (u, v),

where

I (u, v) = 1

2
‖(u−, v−)‖2 +

∫
RN

F(x, u, v)dx

for any (u, v) = (u+, v+) + (u−, v−) ∈ E+ ⊕ E−. We do not know whether J has
critical points in H1(RN ) × H1(RN ) since 0 ∈ σ(S). Furthermore, I is not defined
on E owing to our assumptions on F(x, u, v). Hence, similar to [24], we are going to
define a space E2,λ such that there are continuous embeddings

H1
(
R

N
)

× H1
(
R

N
)

↪→ E2,λ ↪→ E,

where I is well defined on E2,λ and J admits critical points on E2,λ.
Let

(
Pλ : L2(RN ) → L2(RN )

)
λ∈R denote the spectral family of S. Let L− =

P0
(
L2(RN )

)
and L+ = (id − P0)

(
L2(RN )

)
. Thus, we have the orthogonal decom-

position L2(RN ) = L+ + L−, E+ = (
H1(RN ∩ L+)

) × (
H1(RN ∩ L+)), and

E− = (H1(RN ∩ L−)) × (H1(RN L−) (see[17,25]). Furthermore,

‖u‖2X =
∫ +∞

−∞
|λ|d‖Pλu‖22.

Let us suppose that 2 ≤ μ ≤ γ . Lμ,γ = Lμ(RN )+Lγ (RN ) denotes the Banach space
of all vector fields of the form u = u1 + u2, where u1 ∈ Lμ(RN ) and u2 ∈ Lγ (RN ),
endowed with the following norm

‖u‖μ,γ = inf
{‖u1‖μ + ‖u2‖γ

}
.

It follows from Proposition 2.5 in [26] that the infimum in ‖ · ‖μ,γ is attained. Fur-
thermore, there is a continuous embedding

Lt
(
R

N
)

↪→ Lμ,γ
(
R

N
)

for any μ ≤ t ≤ γ , and if μ = γ , then the norms ‖ · ‖μ,γ and ‖ · ‖γ are equivalent.
Let X−

μ,γ and X−
γ be the completions of X− with the respect to the norms

‖| · |‖μ,γ =
(

‖ · ‖2X + ‖ · ‖μ,γ

) 1
2
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and

‖| · |‖γ =
(

‖ · ‖2X + ‖ · ‖γ

) 1
2

,

respectively. Therefore, we have the following continuous embeddings

X− ↪→ X−
γ ↪→ X−

μ,γ ↪→ X.

Space X−
γ has been introduced in [24], and note that if μ = γ , then X−

μ,γ = X−
γ and

the norms ‖|·|‖μ,γ and ‖|·|‖γ are equivalent. In this paper, space E−
μ,γ = X−

μ,γ ×X−
μ,γ

withμ = 2 is crucial due to the superlinear growth conditions (F3) and (F4).Moreover,
we have the following lemmas from [22,24].

Lemma 2.1 E−
μ,γ = E−

γ and norms ‖ · ‖μ,γ , ‖ · ‖γ are equivalent for any 2 ≤ μ ≤
γ ≤ 2∗.

Lemma 2.2 If 2 ≤ μ ≤ γ ≤ 2∗, then E−
μ,γ embeds continuously into H2

loc(R
N ) ×

H2
loc(R

N ) and Lt (RN ) × Lt (RN ) for γ ≤ t ≤ 2∗ and compactly embeds into
Lt
loc(R

N ) × Lt
loc(R

N ) for 2 ≤ t ≤ 2∗.

Note that we have the following continuous embeddings

H1
(
R

N
)

× H1
(
R

N
)

↪→ Eμ,γ = E+ ⊕ E−
μ,γ ↪→ E,

where Eμ,γ is endowed with the norm

‖(u, v)‖ =
(

‖(u+, v+)‖2 + ‖|(u−, v−)|‖2μ,γ

) 1
2

for (u, v) = (u+, v+) + (u−, v−) ∈ E+ ⊕ E−
μ,γ . Since ‖ · ‖μ,γ is uniformly convex

(see Proposition 2.6 in [26]), then Eμ,γ is reflective and bounded sequences in Eμ,γ

are relatively weakly compact. Then, it follows from the Sobolev embedding that
Lemma 2.2 holds and J : Eμ,γ → R given by (1.5) is a well defined C1-map.
Furthermore, it follows from Lemma 2.1 and Corollary 2.3 in [24] that a solution
to problem (1.1) in Eμ,γ vanishes at infinity. Analogously, we have the following
corollary.

Corollary 2.3 If (u, v) ∈ Eμ,γ solves problem (1.1), then (u(x), v(x)) → (0, 0) as
|x | → ∞.

In order to ensure that a unit sphere in E+

S+ = {(u, v) ∈ E+∣∣‖(u, v)‖ = 1
}

is a C1-submanifold of E+, we suppose that E+ is a Hilbert space with the scalar
product 〈·, ·〉 such that 〈(u, v), (u, v)〉 = ‖(u, v)‖2 for any (u, v) ∈ E+. In addition
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1336 G. Che et al.

to the norm topology, we need the topology T on E , which is the product of the

norm topology in E+ and the weak topology in E−. In particular, (un, vn)
T→ (u, v)

provided that (u+
n , v+

n ) → (u+, v+) and (u−
n , v−

n ) ⇀ (u−, v−).
We define Nehari–Pankov manifold [22] as follows:

N ={(u, v) ∈ E\{(0, 0)} : 〈J ′(u, v), (u, v)〉=0, 〈J ′(u, v), (ω, s)〉=0, ∀ (ω, s)∈E−}.
We say that J satisfies the (PS)Tc -condition in N if every (PS)c sequence in N has
a subsequence which converges in T :

(un, vn) ∈ N , J ′(un, vn) → 0, J (un, vn) → c ⇒ (un, vn)
T→ (u, v) ∈ E .

Lemma 2.4 ([22,27]) Let J ∈ C1(E, R) be a map of the form

J (u, v) = 1

2
‖(u+, v+)‖2 − I (u, v)

for any (u, v) = (u+, v+) + (u−, v−) ∈ E+ ⊕ E− such that

(J1) I (u, v) ≥ I (0, 0) for any (u, v) ∈ E and I is T -sequentially lower semicon-

tinuous, i.e., if (un, vn)
T→ (u0, v0), then lim inf

n→∞ I (un, vn) ≥ I (u0, v0).

(J2) If (un, vn)
T→ (u0, v0) and I (un, vn) → I (u0, v0), then (un, vn) → (u0, v0).

(J3) If (u, v) ∈ N , then J (u, v) > J (tu +ω, tv + s) for t ≥ 0, (ω, s) ∈ E− such
that (tu + ω, tv + s) �= (u, v).
(J4) 0 < inf

(u,v)∈E+,‖(u,v)‖=r
J (u, v).

(J5) ‖(u+, v+)‖ + I (u, v) → ∞ as ‖(u, v)‖ → ∞.
(J6) I (tnun, tnvn)/t2n → ∞ if tn → ∞ and (u+

n , v+
n ) → (u+

0 , v+
0 ) for some

(u+
0 , v+

0 ) �= (0, 0), n → ∞.

Then,

(a) c = inf
N

J > 0 and there exists a (PS)c-sequence (un, vn)n∈N, i.e., J (un, vn) → c

and J ′(un, vn) → 0, n → ∞. If J satisfies the (PS)Tc -condition inN , then c is
achieved by a critical point of J .

(b) There is a homeomorphism m : S+ → N such that m−1(u, v) = ( u+
‖(u+,v+)‖ ,

v+
‖(u+,v+)‖ ), m(u, v) is the unique maximum point of J on (R+u, R

+v) ⊕ E−

for (u, v) ∈ E , and J ◦ m : S+ → R is of class C1. Furthermore, a sequence
(un, vn) ⊂ S+ is J ◦ m, if and only if m(un, vn) is a Palais-Smale sequence for
J , and (u, v) ∈ S+ is a critical point of J ◦ m if and only if m(u, v) is a critical
point of J .
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3 Ground-State Solutions

In order to look for critical points of J : E2,γ → R, we define the following Nehari–
Pankov manifold:

N =
{
(u, v) ∈ E2,γ \E−

2,γ : 〈J ′(u, v), (u, v)〉
= 0, 〈J ′(u, v), (ω, s)〉 = 0, ∀ (ω, s) ∈ E−

2,γ

}
. (3.1)

Lemma 3.1 There exists a constant a > 0 such that for any (u, v) ∈ E2,γ

∫
RN

F(x, u, v)dx ≥ amin
{
‖(u, v)‖22,γ , ‖(u, v)‖γ

2,γ

}
. (3.2)

Proof It follows from (F3) and (F4) that there exists b > 0 such that

F(x, u, v) ≥ bmin
{
|(u, v)|2, |(u, v)|γ

}
(3.3)

for all (u, v) ∈ R
2 and x ∈ R

N . Therefore,

∫
RN

F(x, u, v)dx ≥ b

(∫
�(u,v)

|(u, v)|2dx +
∫

�c
(u,v)

|(u, v)|γ dx
)

= b
(
‖(u, v)χ�(u,v)

‖22 + ‖(u, v)χ�c
(u,v)

‖γ
γ

)
≥ amin

{
‖(u, v)‖22,γ,∞, ‖(u, v)‖γ

2,γ,∞
}

,

for some constant a > 0, where χ denotes the characteristic function, �(u,v) = {x ∈
R

N
∥∥(u, v)‖ > 1}, and

‖(u, v)‖2,γ,∞ = inf
{
max

{‖(u1, v1)‖2, ‖(u2, v2)‖γ

} ∣∣(u, v) = (u1, v1) + (u2, v2),

(u1, v1) ∈ L2
(
R

N
)

× L2
(
R

N
)

, (u2, v2) ∈ Lγ
(
R

N
)

× Lγ
(
R

N
)}

defines a normon L2,γ (RN )×L2,γ (RN ), which is equivalent to‖.‖2,γ (see Proposition
2.4 in [26]). The proof is complete. ��
The following lemma shows that (J4) − (J6) hold for J .

Lemma 3.2 The following conditions hold:

(a) inf
(u,v)∈E+,‖(u,v)‖=r

J (u, v) > 0.

(b) ‖(u+, v+)‖ + I (u, v) → ∞ as ‖(u, v)‖ → ∞.

(c) I (tnun ,tnvn)
t2n

→ ∞ if (u+
n , v+

n ) → (u+
0 , v+

0 ) �= (0, 0) and tn → ∞, as n → ∞.
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Proof (a) If (u, v) ∈ E+, then it follows from (F2) that

J (u, v) ≥ 1

2
‖(u, v)‖2 − c

γ
‖(u, v)‖γ

γ − c

p
‖(u, v)‖p

p.

Since the embeddings from E+ into Lγ (RN ) × Lγ (RN ) and L p(RN ) × L p(RN ) are
continuous, then we have

J (u, v) ≥ 1

2
‖(u, v)‖2 − C

(‖(u, v)‖γ + ‖(u, v)‖p).
Therefore, the inequality in (a) holds.
(b) Suppose that ‖(un, vn)‖ → ∞, n → ∞, and (‖(u+

n , v+
n )‖)n∈N is bounded. Then,

(‖(u+
n , v+

n )‖2,γ )n∈N is bounded and

‖(u−
n , v−

n )‖22,γ = ‖(u−
n , v−

n )‖2 + ‖(u−
n , v−

n )‖22,γ → ∞, n → ∞.

If ‖(u−
n , v−

n )‖ → ∞, then I (un, vn) → ∞. Suppose that (‖(u−
n , v−

n )‖)n∈N →
∞ as n → ∞, then ‖(u−

n , v−
n )‖2,γ → ∞ and by (3.2), we have I (un, vn) → ∞, n →

∞.
(c) Suppose that, up to a subsequence, I (tnun, tnvn)/t2n is bounded, (u+

n , v+
n ) →

(u+
0 , v+

0 ) �= (0, 0), and tn → ∞, then by (3.2), we have

I (tnun, tnvn)

t2n
≥ 1

2
‖(u−

n , v−
n )‖2 + cmin

{
‖(un, vn)‖22,γ , tγ−2

n ‖(un, vn)‖γ
2,γ

}

and then (||(u−
n , v−

n )||2,γ )n∈N is bounded. It follows fromLemma 2.2 that (u−
n , v−

n ) ⇀

(u−
0 , v−

0 ) in E−
2,γ and (u−

n (x), v−
n (x)) → (u−

0 (x), v−
0 (x)) a.e. on R

N . If the Lebesgue

measure |�| > 0, where � = {x ∈ R
N |(u+

0 (x) + u−
0 (x), v+

0 (x) + v−
0 (x)) �= (0, 0)

}
,

then it follows from (F4) and Fatou’s lemma that

∫
RN

F(x, tnun, tnvn)

t2n
dx → ∞, n → ∞.

Therefore, we obtain I (tnun, tnvn)/t2n → ∞ as n → ∞, which is a contradiction.
Hence, |�| = 0 and (u−

0 , v−
0 ) = −(u+

0 , v+
0 ). Since 〈(u−

0 , v−
0 ), (u+

0 , v+
0 )〉 = 0, then

(u+
0 , v+

0 ) = (0, 0). This is a contradiction; then, I (tnun, tnvn)/t2n → ∞, as n → ∞.

Lemma 3.3 The following conditions hold:

(a) I (u, v) ≥ 0 for any (u, v) ∈ E2,γ and I is T -sequentially lower semicontinuous.

(b) If (un, vn)
T→ (u0, v0) and I (un, vn) → I (u0, v0), then (un, vn) → (u0, v0).

(c) If (u, v) ∈ N , then J (u, v) > J (tu + ω, tv + s) for t ≥ 0, (ω, s) ∈ E− such
that (tu + ω, tv + s) �= (u, v).
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Proof (a) Let (un, vn)
T→ (u0, v0), since E2,γ is compactly embedded in L2

loc(R
N )×

L2
loc(R

N ) and (un(x), vn(x)) → (u0(x), v0(x)) a.e. in R
N . Then, it follows from

Fatou’s lemma and the weakly sequentially lower semicontinuity of the map E− �
(u−, v−) → 1

2‖(u−, v−)‖2 that lim inf
n→∞ I (un, vn) ≥ I (u0, v0).

(b) Let (un, vn)
T→ (u0, v0) and I (un, vn) → I (u0, v0). Since E2,γ � (u, v) →∫

RN F(x, u, v)dx is T -sequentially lower semicontinuous, then

lim
n→∞ ‖ (u−

n , v−
n

) ‖2 = ‖ (u−
0 , v−

0

) ‖2
and

lim
n→∞

∫
RN

F(x, un, vn)dx =
∫
RN

F(x, u0, v0)dx . (3.4)

Observe that

‖(u−
n − u−

0 , v−
n − v−

0 )‖2 = ‖(u−
n , v−

n )‖2 − ‖(u−
0 , v−

0 )‖2
− 2〈(u−

n − u−
0 , v−

n − v−
0 ), (u−

0 , v−
0 )〉

→ 0, n → ∞.

Therefore, (un, vn) = (u+
n +u−

n , v+
n +v−

n ) → (u0, v0) = (u+
0 +u−

0 , v+
0 +v−

0 ). Since
we need to prove that (u−

n , v−
n ) → (u−

0 , v−
0 ) a.e. in R

N , let us consider the function
L : R

N × [0, 1] → R given by L(x, t) = F(x, un − tu0, vn − tv0). Then,

F(x, un − u0, vn − v0) − F(x, un, vn) = L(x, 1) − L(x, 0) =
∫ 1

0

∂L

∂s
(x, s)ds.

Furthermore,

∫
RN

[
F(x, un − u0, vn − v0) + F(x, u0, v0) − F(x, un, vn)

]
dx

=
∫
RN

[ ∫ 1

0

∂L

∂s
(x, s)ds + F(x, u0, v0)

]
dx

=
∫
RN

∫ 1

0

∂L

∂s
(x, s)dsdx +

∫
RN

F(x, u0, v0)dx

=
∫ 1

0

∫
RN

[
− Fu(x, un − su0, vn − sv0)u0

− Fv(x, un − su0, vn − sv0)v0

]
dxds +

∫
RN

F(x, u0, v0)dx .

(3.5)
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Let E ⊂ R
N be a measurable set, then it follows from the Hölder inequality that

∫
E
|Fu(x, un − su0, vn − sv0)u0|dx

≤ ε

∫
E

|(un − su0, vn − sv0)||u0|dx

+ C(ε)

∫
E

|(un − su0, vn − sv0)|p−1|u0|dx

+ C
∫
E

|(un − su0, vn − sv0)|γ−1|u0|dx
≤ ε‖(un − su0, vn − sv0)χE‖2‖u0χE‖2

+ C(ε)‖(un − su0, vn − sv0)χE‖p−1
p ‖u0χE‖p

+ C‖(un − su0, vn − sv0)χE‖γ−1
γ ‖u0χE‖γ .

Therefore, Fu(x, un − su0, vn − sv0)u0 is uniformly integrable and by the Vitali
convergence theorem, we derive

∫ 1

0

∫
RN

−Fu(x, un − su0, vn − sv0)u0dxds →
∫ 1

0

∫
RN

−Fu(x, u0 − su0, v0 − sv0)u0dxds

as n → ∞. Analogously,

∫ 1

0

∫
RN

−Fv(x, un − su0, vn − sv0)v0dxds →
∫ 1

0

∫
RN

−Fv(x, u0 − su0, v0 − sv0)v0dxds

as n → ∞. Furthermore,

∫ 1

0

∫
RN

[
− Fu(x, un − su0, vn − sv0)u0 − Fv(x, un − su0, vn − sv0)v0

]
dxds

=
∫
RN

∫ 1

0

[
− Fu(x, un−su0, vn − sv0)u0−Fv(x, un − su0, vn − sv0)v0

]
dsdx

=
∫
RN

∫ 1

0
− ∂

∂s

[
F(x, un − su0, vn − sv0)

]
dsdx

=
∫
RN

(
F(x, 0, 0) − F(x, u0, v0)

)
dx

=
∫
RN

−F(x, u0, v0)dx .
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Then, from (3.4) and (3.5), we derive

lim
n→∞ F(x, un − u0, vn − v0)dx = 0.

It follows from (3.2) that (un, vn) → (u0, v0) in L2,γ (RN ) × L2,γ (RN ).
(c) Let (u, v) ∈ N . Observe that for any t ≥ 0 and (ω, s) ∈ E−

2,γ

J (tu + ω, tv + s) − J (u, v) = −1

2
‖(ω, s)‖2 −

∫
RN

ϕ(t, x)dx,

where

ϕ(t, x) = Fu(x, u, v)

(
t2 − 1

2
u + tω

)
+ Fv(x, u, v)

(
t2 − 1

2
v + ts

)
+ F(x, u, v) − F(x, tu + ω, tv + s).

Suppose that (u(x), v(x)) �= (0, 0). Similarly as in [20,21], we show that ϕ(t, x) ≤ 0.
In fact, it follows from (F6) that ϕ(0, x) ≤ 0. By (F4), we obtain ϕ(t, x) → −∞ as
t → ∞. Let t0 > 0 be such that

ϕ(t0, x) = max
t≥0

ϕ(t, x).

We may assume that t0 > 0 and ∂tϕ(t0, x) = 0; therefore,

Fu(x, u, v)
(
t0u + ω

)+ Fv(x, u, v)
(
t0v + s

)
= Fu(x, t0u + ω, t0v + s)u + Fv(x, t0u + ω, t0v + s)v.

If Fu(x, u, v)(t0u + ω) ≤ 0, Fv(x, u, v)(t0v + s) ≤ 0, then by (F6), we have

ϕ(t0, x) ≤ −t20 − 1

2
Fu(x, u, v)u + −t20 − 1

2
Fv(x, u, v)v + F(x, u, v)

− F(x, t0u + ω, t0v + s) ≤ 0.

Otherwise, (F5) implies that

ϕ(t0, x) ≤ Fu(x, u, v)

(
t20 − 1

2
u + t0ω

)
+ Fv(x, u, v)

(
t20 − 1

2
v + t0s

)

+
(
Fu(x, u, v)u

)2 − (Fu(x, u, v)(t0u + ω)
)2

2Fu(x, u, v)u

+
(
Fv(x, u, v)v

)2 − (Fv(x, u, v)(t0v + s)
)2

2Fv(x, u, v)v
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1342 G. Che et al.

= −
(
Fu(x, u, v)ω

)2
2Fu(x, u, v)u

−
(
Fv(x, u, v)s

)2
2Fv(x, u, v)v

≤ 0.

The proof is complete. ��

Lemma 3.4 J is coercive on N , i.e., J (u, v) → ∞ as ‖(u, v)‖ → ∞, (u, v) ∈ N .

Proof Suppose that ‖(un, vn)‖ → ∞ as n → ∞, (un, vn) ∈ N and J (un, vn) ≤ c1
for some constant c1 > 0. Let (ωn, sn) = (un ,vn)‖(un ,vn)‖ , since E2,γ is reflective and

compactly embedded in L2
loc(R

N )× L2
loc(R

N ). Then, there exists (ω, s) ∈ E2,γ such
that (ωn, sn) ⇀ (ω, s) and (ωn(x), sn(x)) → (ω(x), s(x)) a.e. on R

N . Furthermore,
there exists a sequence (yn)n∈N ⊂ R

N such that

lim inf
n→∞

∫
B(yn ,1)

∣∣(ω+
n , s+

n

)∣∣2 dx > 0. (3.6)

Otherwise, it follows from Lions lemma (see Lemma 1.21 in [28]) that (ω+
n , s+

n ) →
(0, 0) in Lt (RN )× Lt (RN ) for t ∈ (2, 2∗). Then,

∫
RN F(x, tω+

n , ts+
n )dx → 0 for any

t > 0. For any t > 0, in view of Lemma 3.3 (c), we obtain

c1 ≥ lim sup
n→∞

J (un, vn) ≥ lim sup
n→∞

J
(
tω+

n , ts+
n

) = t2

2

∥∥(ω+
n , s+

n )
∥∥2

μn
. (3.7)

It follows from Lemma 2.4 (a) and (3.2) that

1

2

(∥∥(u+
n , v+

n

)∥∥2 − ∥∥(u−
n , v−

n )
∥∥2) − cmin

{
‖(un, vn)‖22,γ , ‖(un, vn)‖γ

2,γ

}
≥ J (un, vn) ≥ cin f = inf

N
J > 0.

If lim inf
n→∞ ‖(un, vn)‖2,γ = 0, then up to a subsequence, ‖(un, vn)‖2,γ → 0, n → ∞,

and for sufficiently large n

2‖(u+
n , v+

n )‖2 ≥ ‖(u+
n , v+

n )‖2 + ‖(u−
n , v−

n )‖2 + 2cin f

+ 2cmin
{
‖(un, vn)‖22,γ , ‖(un, vn)‖γ

2,γ

}
≥ ‖(u+

n , v+
n )‖2 + ‖(u−

n , v−
n )‖2 + ‖(un, vn)‖γ

2,γ

= ‖(un, vn)‖2.

If lim inf
n→∞ ‖(un, vn)‖2,γ > 0, then there exists c2 ∈ (0, 1) such that for sufficiently

large n
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2‖(u+
n , v+

n )‖2 ≥ ‖(u+
n , v+

n )‖2 + ‖(u−
n , v−

n )‖2 + 2cin f

+ 2cmin
{
‖(un, vn)‖22,γ , ‖(un, vn)‖γ

2,γ

}
≥ c2

(
‖(u+

n , v+
n )‖2 + ‖(u−

n , v−
n )‖2 + ‖(un, vn)‖γ

2,γ

)
= c2‖(un, vn)‖2.

Hence, passing to a subsequence if necessary, c3 = inf
n∈N ‖(ω+

n , s+
n )‖2 > 0 and by

(3.7), we have

c1 ≥ t2

2
c3

for any t ≥ 0. Then, we get a contradiction. Therefore, wemay assume that (yn)n∈N ⊂
R

N and

lim inf
n→∞

∫
B(yn ,1)

|(ω+
n , s+

n )|2dx > 0.

Since J and N are invariant under translations of the form (u, v) �→ (u(· −
k), v(· − k)), k ∈ Z

N , then we may assume that (ω+
n , s+

n ) → (ω+, s+) in
L2
loc(R

N ) × L2
loc(R

N ) and (ω+, s+) �= (0, 0). Note that |(ω+, s+)| �= 0, then
(un(x), vn(x)) = (ωn(x), sn(x))‖(un, vn)‖ → ∞, and by (F4), we have

F(x, un(x), vn(x))

‖(un, vn)‖2 = F(x, un(x), vn(x))

|(un, vn)|2 |(ωn(x), sn(x))|2 → ∞, n → ∞.

Hence, it follows from Fatou’s lemma that

Jμn (un, vn)

‖(un, vn)‖2 = lim sup
n→∞

(
1

2

(
‖(ω+

n , s+
n )‖2 − ‖(ω−

n , s−
n )‖2

)
−
∫
RN

F(x, un, vn)

‖(un, vn)‖2 dx

)
→ −∞, n → ∞,

which is a contradiction. The proof is complete. ��
Proof of Theorem 1.1. It follows from Lemma 2.4 (a) that cin f = inf

N
J > 0 and there

exists a (PS)cin f -sequence (un, vn)n∈N. By Lemma 3.4. we get that (un, vn)n∈N is
bounded and passing to a subsequence (un, vn) ⇀ (u, v) in E2,γ . Then, there exists
a subsequence (yn)n∈N such that

lim inf
n→∞

∫
B(yn ,1)

|(u+
n , v+

n )|2dx > 0. (3.8)

Otherwise, it follows from Lions lemma (see Lemma 1.21 in [28]) that (u+
n , v+

n ) →
(0, 0) in Lt (RN ) × Lt (RN ) for t ∈ (2, 2∗). From (F2), we have
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‖(u+
n , v+

n )‖2 =〈J ′(un, vn), (u+
n , v+

n )〉+
∫
RN

(
Fu(x, un, vn)u

+
n +Fv(x, un, vn)v

+
n

)
dx

→ 0, as n → ∞.

Therefore,

0 < cinf = lim
n→∞ J (un, vn) ≤ 1

2
lim
n→∞ ‖(u+

n , v+
n )‖2 = 0,

which is a contradiction. Therefore, (3.8) holds and we may assume that there is a
subsequence (yn)n∈N such that

lim inf
n→∞

∫
B(yn ,r)

|(u+
n , v+

n )|2dx > 0, (3.9)

for some r > 1. Since ‖(un(· + yn), vn(· + yn))‖ = ‖(un, vn)‖, then there exists
(u, v) ∈ E2,γ such that (un(· + yn), vn(· + yn)) ⇀ (u, v) in E2,γ and (u+

n (· +
yn), v+

n (· + yn)) ⇀ (u+, v+) in L2
loc(R

N ) × L2
loc(R

N ). It follows from (3.9) that
(u+, v+) �= (0, 0) and then (u, v) �= (0, 0). Since J and N are invariant under trans-
lations of the form (u, v) �→ (u(·+y), v(·+y)) for y ∈ Z

N , then J ′(u, v) = 0. Hence,
(u, v) ∈ N and J (u, v) = cinf . Since (u, v) ∈ E2,γ is a solution to problem (1.1), then
by Corollary 2.3, we get (u(x), v(x)) → (0, 0) as |x | → ∞. The proof is complete.

��
4 Multiple Solutions

Observe that if (u, v) ∈ E2,γ is a critical point of J , then the orbit under the action of
Z
N , O(u, v) = {(u(· − k), v(· − k))|k ∈ Z

N
}
consists of critical points. Two critical

points (u1, v1), (u2, v2) ∈ E2,γ are said to be geometrically distinct if O(u1, v1) ∩
O(u2, v2) = ∅. It follows from Lemma 2.4(b) that ψ = J ◦ m : S+ → R is a C1

map. In order to prove Theorem 1.2, we just need to prove that ψ has infinitely many
geometrically distinct critical points (Lemma 2.4(b)). The following lemma is crucial
in the consideration of the multiplicity of critical points (see Lemma 2.14 in [18]).

Lemma 4.1 Let d ≥ cinf , if (u1n, v
1
n), (u2n, v

2
n) ⊂ ψd = {(u, v) ∈ S+|ψ(u, v) ≤ d}

are twoPalais–Smale sequences forψ , then either ‖(u1n−u2n, v
1
n−v2n)‖ → 0, n → ∞,

or

lim sup
n→∞

‖(u1n − u2n, v
1
n − v2n)‖2 ≥ ρ(d) inf

{
‖(u1 − u2, v1 − v2)‖

∣∣ψ ′(u1, v1)

= ψ ′(u2, v2) = 0, (u1, v1) �= (u2, v2) ∈ S+
}
,

(4.1)

where ρ(d) depends on d but not on the particular choice of Palais–Smale sequences.

Proof Let (u1n, v
1
n), (u2n, v

2
n) ⊂ ψd = {

(u, v) ∈ S+|ψ(u, v) ≤ d
}
be two Palais–

Smale sequences for ψ . Let (ωi
n, s

i
n) = (m(uin, v

i
n)), i = 1, 2, and we consider two

cases:
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Case 1: ‖((ω1
n)

+ − (ω2
n)

+, (s1n)
+ − (s2n )

+)‖γ → 0, and by (F2), we have

∥∥∥∥
((

ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)∥∥∥∥

2

=
〈
J ′ (ω1

n, s
1
n

)
,

((
ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)〉

−
〈
J ′ (ω2

n, s
2
n

)
,

((
ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)〉

+
∫
RN

(
Fu
(
x, ω1

n, s
1
n

)
− Fu

(
x, ω2

n, s
2
n

))((
ω1
n

)+ −
(
ω2
n

)+)
dx

+
∫
RN

(
Fv

(
x, ω1

n, s
1
n

)
− Fv

(
x, ω2

n, s
2
n

))((
s1n
)+ −

(
s2n
)+)

dx

≤
〈
J ′ (ω1

n, s
1
n

)
,

((
ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)〉

−
〈
J ′ (ω2

n, s
2
n

)
,

((
ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)〉

+ C

(∥∥∥(ω1
n, s

1
n

)∥∥∥p−1

q
+
∥∥∥(ω1

n, s
1
n

)∥∥∥γ−1

γ
+
∥∥∥(ω2

n, s
2
n

)∥∥∥p−1

q

+
∥∥∥(ω2

n, s
2
n

)∥∥∥γ−1

γ

)∥∥∥∥
((

ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)∥∥∥∥

γ

,

where q = (p−1)γ
γ−1 and γ ≤ q ≤ p. It follows from Lemma 2.4(b) that (ω1

n, s
1
n)n∈N

and (ω2
n, s

2
n )n∈N are Palais–Smale sequences for J and by Lemma 3.4, we know that

they are bounded in E2,γ . Since the embeddings from E2,γ into Lγ (RN ) × Lγ (RN )

and into Lq(RN ) × Lq(RN ) are continuous, then we derive

∥∥∥∥
((

ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)∥∥∥∥→ 0, n → ∞.

Note that if (u, v) = (u+ + u−, v+ + v−) ∈ N , then J (u, v) ≥ cin f and

∥∥(u+, v+)∥∥ ≥
{√

2cinf‖(u−, v−)‖
}

. (4.2)

Similarly as in Lemma 2.13 in [18], we obtain

∥∥∥(u1n − u2n, v
1
n − v2n

)∥∥∥ =
∥∥∥∥∥∥
((

ω1
n

)+
,
(
s1n
)+)

∥∥∥((ω1
n

)+
,
(
s1n
)+)∥∥∥ −

((
ω2
n

)+
,
(
s2n
)+)

∥∥∥((ω2
n

)+
,
(
s2n
)+)∥∥∥

∥∥∥∥∥∥
≤
√

2

cinf

∥∥∥∥
((

ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+)∥∥∥∥ .
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Therefore,

∥∥∥(u1n − u2n, v
1
n − v2n

)∥∥∥→ 0 n → ∞.

Case 2: ‖((ω1
n)

+ − (ω2
n)

+, (s1n)
+ − (s2n )

+)‖γ � 0. It follows from Lemma 1.21 in
[18] that there exists a subsequence (yn) ∈ Z

N and r > 1 such that

lim inf
n→∞

∫
B(yn ,1)

∣∣∣∣
((

ω1
n

)+ −
(
ω2
n

)+
,
(
s1n
)+ −

(
s2n
)+) ∣∣∣∣

2

dx > 0. (4.3)

Then, we may assume that up to a subsequence,

(
ω1
n (· + yn) , s1n (· + yn)

)
⇀
(
ω1, s1

)
, in E2,γ ,(

ω2
n (· + yn) , s2n (· + yn)

)
⇀
(
ω2, s2

)
, in E2,γ ,((

ω1
n

)+
(· + yn) ,

(
s1n
)+

(· + yn)

)
⇀

((
ω1
)+

,
(
s1
)+)

, in L2loc

(
R
N
)

× L2loc

(
R
N
)

,((
ω2
n

)+
(· + yn) ,

(
s2n
)+

(· + yn)

)
⇀

((
ω2
)+

,
(
s2
)+)

, in L2loc

(
R
N
)

× L2loc

(
R
N
)

,

and

∥∥∥∥
((

ω1
n

)+
(· + yn) ,

(
s1n
)+

(· + yn)

)∥∥∥∥→ α1,∥∥∥∥
((

ω2
n

)+
(· + yn) ,

(
s2n
)+

(· + yn)

)∥∥∥∥→ α2,

for α1, α2 ≥ √2cin f . It follows from (4.3) that ((ω1)+, (s1)+) �= ((ω2)+, (s2)+) and
then (ω1, s1) �= (ω2, s2). Since m, m−, J−, (J ◦ m)− are equivariant with respect
to Z

N -action, then J−(ω1, s1) = J−(ω2, s2) = 0. Observe that if (ω1, s1) �= (0, 0)
and (ω2, s2) �= (0, 0), then (ω1, s1), (ω2, s2) ∈ N and

lim inf
n→∞

∥∥∥(u1n − u2n, v
1
n − v2n

)∥∥∥
= lim inf

n→∞
∥∥∥((u1n − u2n

)
(· + yn) ,

(
v1n − v2n

)
(· + yn)

)∥∥∥
= lim inf

n→∞

∥∥∥∥∥∥
((

ω1
n

)+
,
(
s1n
)+)

(· + yn)∥∥∥((ω1
n

)+
,
(
s1n
)+)

(· + yn)
∥∥∥ −

((
ω2
n

)+
,
(
s2n
)+)

(· + yn)∥∥∥((ω2
n

)+
,
(
s2n
)+)

(· + yn)
∥∥∥
∥∥∥∥∥∥

≥
∥∥∥∥∥∥
((

ω1
n

)+
,
(
s1n
)+)

α1
−
((

ω2
n

)+
,
(
s2n
)+)

α2

∥∥∥∥∥∥
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≥ min

⎧⎨
⎩
∥∥∥((ω1

n

)+
,
(
s1n
)+)∥∥∥

α1
,

∥∥∥((ω2
n

)+
,
(
s2n
)+)∥∥∥

α2

⎫⎬
⎭
∥∥∥∥∥∥
((

ω1
n

)+
,
(
s1n
)+)

∥∥∥((ω1
n

)+
,
(
s1n
)+)∥∥∥

−
((

ω2
n

)+
,
(
s2n
)+)

∥∥∥((ω2
n

)+
,
(
s2n
)+)∥∥∥

∥∥∥∥∥∥
≥

√
2cinf
s (d)

∥∥∥m− (ω1, s1
)

− m− (ω2, s2
)∥∥∥ ,

where s(d) = sup
{‖(u+, v+)‖∣∣(u, v) ∈ N , J (u, v) ≤ d

}
. It follows from

Lemma 2.4 that m − (ω1, s1),m − (ω2, s2) are critical points and we have (4.1).
Note that if (ω1, s1) = {0, 0} or (ω2, s2) = {0, 0}, then similarly as above, we prove
that

lim inf
n→∞

∥∥∥(u1n − u2n, v
1
n − v2n

)∥∥∥ ≥
√
2cinf
s(d)

and again (4.1) holds. The proof is complete. ��
Proof of Theorem 1.2. It follows from Lemma 2.4(b) that (u, v) is equivariant with
respect to the Z

N -action given by (u, v) �→ (u(· − k), v(· − k)) for k ∈ Z
N . Further-

more, J is even and (u, v) is odd. Thus, ψ is even and invariant with respect to the
Z
N -action. Let F be the set of geometrically distinct critical points of ψ and assume

that F is finite. Then, similar to Lemma 2.13 in [18], we prove that

inf

{
‖(u1 − u2, v1 − v2)‖

∣∣ψ ′(u1, v1) = ψ ′(u2, v2) = 0, (u1, v1) �= (u2, v2) ∈ S+
}

> 0.

The discreteness of the Palais–Smale sequences in Lemma 4.1 allows us to repeat the
following arguments: Lemma 2.15, Lemma 2.16 and proof of Theorem 1.2 in [18]. In
fact, we show that for any k ∈ N, there exists (u, v) ∈ S+ such that ψ ′(u, v) = 0 and
ψ(u, v) = ck , where

ck = inf
{
d ∈ R|γ (ψd) ≥ k

}
and γ denotes the usual Krasnoselskii genus (see [29]). Furthermore, ck < ck+1 for
k ∈ Z

N and thus we get a contradiction (see [18] for detailed arguments). It follows
from Lemma 2.4(b) that we get the existence of infinitely many geometrically distinct
solutions to problem (1.1). The proof is complete. ��
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