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1 Introduction

Eigenvalue problems of higher-order tensors have become an important topic of study
in a new applied mathematics branch and numerical multilinear algebra, and they have
a wide range of practical applications [1–5].

The class of M-tensor introduced in [6,7] is the generalization M-matrices [8].
And some important properties of M-tensors and nonsingular M-tensors have been
established in [7,9]. It is noteworthy that some applications of M-tensors [6,7,9,10]
are related to the eigenvalue problems of M-tensors. In [11–14], some bounds for
the minimum H -eigenvalue of nonsingularM-tensors have been proposed. The main
aim of this paper is to present some new bounds for the minimum H -eigenvalue of
weakly irreducible nonsingular M-tensors, and these bounds improve some existing
ones.

Let C(R) denote the set of all complex (real) field and N = {1, 2, . . . , n}. We
consider an m-order n-dimensional tensor A = (ai1i2...im ) consisting of nm entries,
denoted by A ∈ C

[m,n](R[m,n]), if

ai1i2...im ∈ C(R),

where i j = 1, 2, . . . , n for j = 1, 2, . . . ,m [9,15]. Obviously, a vector is a tensor of
order 1 and a matrix is a tensor of order 2. Moreover, anm-order n-dimensional tensor
I = (δi1i2...im ) is called the unit tensor [16], if its entries are δi1...im for i1, . . . , im ∈ N ,
where

δi1i2...im =
{
1 if i1 = · · · = im,

0, otherwise.

Let A ∈ C
[m,n], if there exist a number λ ∈ C and a nonzero vector x =

(x1, x2, . . . , xn)T ∈ C
n that are solutions of the following homogeneous polynomial

equations:

Axm−1 = λx [m−1],

then λ is an eigenvalue ofA and x is the eigenvector ofA associated with λ [1,15,17,
18], where Axm−1 and λx [m−1] are vectors, whose i th components are

(Axm−1)i =
∑

i2,...,im∈N
aii2...im xi2 . . . xim

and

(x [m−1])i = xm−1
i .

Furthermore, if λ and x are restricted to the real field, then we call λ an H -eigenvalue
of A and x an H -eigenvector of A associated with λ [15].

Let � be a digraph with vertex set V and arc set E . If there exist directed paths
from i to j and j to i for any i, j ∈ V (i �= j), then � is called strongly connected.
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For each vertex i ∈ V , if there exists a circuit such that i belong to the circuit, then �

is called weakly connected. For a tensorA = (ai1...im ) ∈ C
[m,n], we associateA with

a digraph �A as follows. The vertex set of �A is V (A) = {1, . . . , n}, and the arc set
of �A is E = {(i, j)|aii2...im �= 0, j ∈ {i2. . . . , im} �= {i, . . . , i}}. Let C(A) denote
the set of circuits of �A. A tensor A is called weakly irreducible if �A is strongly
connected [19–21]. The tensorA is called reducible if there exists a nonempty proper
index subset J ∈ N such that ai1i2...im = 0,∀i1 ∈ J,∀i2, . . . , im /∈ J . If A is not
reducible, then we call A irreducible [22].

Let ρ(A) = max{|λ| : λ is an eigenvalue of A}, where |λ| denotes the modulus of
λ. We call ρ(A) the spectral radius of tensorA [23]. Anm-order n-dimensional tensor
A is called nonnegative [1,2,16,23,24], if each entry is nonnegative. We call a tensor
A a Z-tensor, if all of its off-diagonal entries are nonpositive, which is equivalent to
writeA = sI −B, where s > 0 and B is a nonnegative tensor (B ≥ 0), and the set of
m-order and n-dimensional Z-tensors is denoted by Z. A Z-tensorA = sI −B is an
M-tensor if s ≥ ρ(B), and it is a nonsingular (strong)M-tensor if s > ρ(B) [6,7,9].

Denote by τ(A) the minimum value of the real part of all eigenvalues of the tensor
A. Let A = (ai1i2...im ) ∈ R

[m,n]. For i, j ∈ N , j �= i , we denote

Ri (A) =
n∑

i2,...,im=1

aii2...im , Rmax(A) = max
i∈N Ri (A), Rmin(A) = min

i∈N Ri (A),

ri (A) =
∑

δi i2 ...im=0

|aii2...im |, r j
i (A) =

∑
δi i2 ...im=0,
δ j i2 ...im=0

|aii2...im | = ri (A) − |ai j ... j |.

In recent years, much literature has focused on the bounds of the minimum H -
eigenvalue of nonsingularM-tensors. In [11], He and Huang first proposed the upper
and lower bounds for the minimum H -eigenvalue of irreducible nonsingular M-
tensors as follows.

Lemma 1.1 [11] Let A ∈ R
[m,n] be an irreducible nonsingular M-tensor. Then

Rmin(A) ≤ τ(A) ≤ Rmax(A).

Lemma 1.2 [11] Let A ∈ R
[m,n] be an irreducible nonsingular M-tensor. Then

min
i, j∈N ,
j �=i

1

2

{
ai ...i + a j ... j − r j

i (A) − �
1
2
i j (A)

}
≤ τ(A)

≤ max
i, j∈N ,
j �=i

1

2

{
ai ...i + a j ... j − r j

i (A) − �
1
2
i j (A)

}
,

where

�i j (A) = (ai ...i − a j ... j + r j
i (A))2 − 4ai j ... j r j (A).
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Recently, Zhao and Sang in [13] pointed out that there are some errors in the
calculation process of Lemma1.2, and the correction is as follows:

Lemma 1.3 [13] Let A ∈ R
[m,n] be an irreducible nonsingular M-tensor. Then

τ(A) ≥ min
i, j∈N ,
j �=i

Li j (A),

where

Li j (A)= 1

2

{
ai ...i + a j ... j − r j

i (A) −
[
(ai ...i − a j ... j − r j

i (A))2 − 4ai j ... j r j (A)
] 1
2
}

.

In addition, Wang and Wei presented the upper and lower bounds on τ(A) for a
weakly irreducible nonsingular M-tensor as follows.

Lemma 1.4 [12] Let A ∈ R
[m,n] be a weakly irreducible nonsingular M-tensor.

Then

min
i, j∈N ,
j �=i

1

2

{
ai ...i + a j ... j − r̃i (A) − �̃

1
2
i j (A)

}
≤ τ(A)

≤ max
i, j∈N ,
j �=i

1

2

{
ai ...i + a j ... j − r̃i (A) − �̃

1
2
i j (A)

}
,

where

(M(A))i j =
{
ri (A) i = j,
|ai j ... j |, i �= j.

is a nonnegative matrix and �̃i j (A) = (ai ...i − a j ... j − r̃i (A))2 + 4ri (M(A))r j (A),
with ri (M(A)) = ∑

j �=i (M(A))i j , r̃i (A) = ri (A) − ri (M(A)).

In this paper, we continue this research on the estimates of the minimum H -
eigenvalue for weakly irreducible nonsingular M-tensors; inspired by the ideas of
[25,26], we obtain two new estimates of the minimum H -eigenvalue for weakly irre-
ducible nonsingular M-tensors. They are proved to be tighter than Lemmas1.1 and
1.2 in corrected form. Finally, we derive a sharper bound in Ky Fan theorem for
nonsingular M-tensors.

The remainder of the paper is organized as follows. In Sect. 2, we recollect some
useful lemmas on tensors which are utilized in the following proofs, then focus on
the estimates of τ(A) and establish some new bounds for τ(A). In Sect. 3, a sharper
bound in Ky Fan theorem is obtained. Finally, some conclusions are given to end this
paper in Sect. 4.
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2 Several New Estimates of the Minimum H-eigenvalue

In this section,we give several newestimates of theminimum H -eigenvalue forweakly
irreducible nonsingular M-tensors.

Lemma 2.1 [12] If a tensor A is irreducible, then A is weakly irreducible.

Lemma 2.2 [11] LetA be a nonsingularM-tensor and denote by τ(A) the minimum
value of the real part of all eigenvalues of A. Then τ(A) is an eigenvalue of A with
a nonnegative eigenvector. Moreover, if A is irreducible, then τ(A) is the unique
eigenvalue with a positive eigenvector.

Zhang et al. [6] obtained some results similar to those of Lemma2.2 for weakly
irreducible nonsingular M-tensors in the following lemma.

Lemma 2.3 [6] Let A be a nonsingularM-tensor and denote by τ(A) the minimum
value of the real part of all eigenvalues ofA. Then τ(A) is an H-eigenvalue ofA with
a nonnegative eigenvector. Moreover, ifA is a weakly irreducibleZ-tensor, then τ(A)

is the unique eigenvalue with a positive eigenvector.

Lemma 2.4 [27] LetA be a weakly irreducible nonsingularM-tensor. Then τ(A) <

min
i∈N {aii ...i }.

For any given diagonal nonsingular matrix D = diag(d1, . . . , dn), we define a
tensor AD as follows:

AD = A ×1 D1−m ×2 D ×3 · · · ×m D,

where ×k is k-mode tensor-matrix multiplication between A and D [28]. Here the
entries of AD are given by [9] as follows:

(AD)i1i2...im = Ai1i2...im d
1−m
1 d2 . . . dm, 1 ≤ i1, i2, . . . , im ≤ n.

Lemma 2.5 [23] The tensors AD and A have the same set of eigenvalues.

Lemma 2.6 Let f (x) = a1x2 + b1x + c1, g(x) = a2x2 + b2x + c2, where a1 > 0
and a2 > 0. Assume that x1, x2 and x̃1, x̃2 are roots of f (x) = 0 and g(x) = 0,
respectively. Then the solution of f (x) ≤ 0 is [x1, x2], and that of g(x) ≤ 0 is
[̃x1, x̃2]. If g(x) ≤ 0 under the condition f (x) ≤ 0, then [x1, x2] ⊆ [̃x1, x̃2].
Proof It is obvious that [x1, x2] and [̃x1, x̃2] are the solutions of f (x) ≤ 0 and g(x) ≤
0, respectively. Since g(x) ≤ 0 under the condition f (x) ≤ 0, we get g(x) ≤ 0 for
any x ∈ [x1, x2]. And because [̃x1, x̃2] is the solution of g(x) ≤ 0, we can obtain that
x ∈ [̃x1, x̃2], i.e., [x1, x2] ⊆ [̃x1, x̃2]. �	
Lemma 2.7 ([29], Lemmas2.2 and 2.3) Let a, b, c ≥ 0 and d > 0.

(I) If a
b+c+d ≤ 1, then

a − (b + c)

d
≤ a − b

c + d
≤ a

b + c + d
.
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(II) If a
b+c+d ≥ 1, then

a − (b + c)

d
≥ a − b

c + d
≥ a

b + c + d
.

2.1 The New Brauer-Type Estimates of Minimum H-eigenvalue

In this subsection, we present the new Brauer-type estimates of minimum H -
eigenvalue for weakly irreducible nonsingular M-tensors, which are tighter than the
results in Lemmas1.1 and 1.2 in corrected form.

We denote

�i = {(i2, i3, . . . , im) : i j = i for some j ∈ {2, . . . ,m}, where i, i2, . . . , im ∈ N },
�i = {(i2, i3, . . . , im) : i j �= i for any j ∈ {2, . . . ,m}, where i, i2, . . . , im ∈ N },

and let

r�i
i (A) =

∑
(i2,...,im )∈�i ,

δi i2 ...im=0

|aii2...im |, r�i
i (A) =

∑
(i2,...,im )∈�i

|aii2...im |.

Then, ri (A) = r�i
i (A) + r�i

i (A).

Theorem 2.1 Let A = (ai1i2...im ) ∈ R
[m,n] be a weakly irreducible nonsingular M-

tensor with n ≥ 2. Then

�min ≤ τ(A) ≤ �max,

where

�min = min{�̃min,�min}, �̃min = min
i∈N {aii ...i − r�i

i (A)},

�min = min
i, j∈N ,
j �=i

max{1
2
(aii ...i + a j j ... j − r�i

i (A) − r�i
j (A) − 	

1
2
i, j ), Ri (A)},

�max = max
i, j∈N ,
j �=i

min{1
2
(aii ...i + a j j ... j − r�i

i (A) − r�i
j (A) − 	

1
2
i, j ), Ri (A)},

	i, j = (aii ...i − a j j ... j − r�i
i (A) + r�i

j (A))2 + 4r�i
i (A)r�i

j (A).

Proof Since A is weakly irreducible nonsingular M-tensor, by Lemma2.3, there
exists x = (x1, x2, . . . , xn)T > 0 such that

Axm−1 = τ(A)x [m−1]. (2.1)

Now, the proof is proceeded in two steps.
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(i) Let xt ≥ xl ≥ max{xk : k ∈ N , k �= t, k �= l} (where the last term above is
defined to be zero if n = 2). From (2.1), we have

(att ...t − τ(A))xm−1
t = −

∑
(i2,...,im )∈�t ,

δti2 ...im=0

ati2...im xi2xi3 . . . xim

−
∑

(i2,...,im )∈�t

ati2...im xi2xi3 . . . xim .

Using the inequality technique gives

(att ...t − τ(A))xm−1
t =

∑
(i2,...,im )∈�t ,

δti2 ...im=0

|ati2...im |xi2 xi3 . . . xim +
∑

(i2,...,im )∈�t

|ati2...im |xi2 xi3 . . . xim

≤
∑

(i2,...,im )∈�t ,
δti2 ...im=0

|ati2...im |xm−1
t +

∑
(i2,...,im )∈�t

|ati2...im |xm−1
l

= r�t
t (A)xm−1

t + r�t
t (A)xm−1

l .

Equivalently

(att ...t − τ(A) − r�t
t (A))xm−1

t ≤ r�t
t (A)xm−1

l .

If att ...t − τ(A) − r�t
t (A) ≤ 0, then

τ(A) ≥ att ...t − r�t
t (A) ≥ min

i∈N {aii ...i − r�i
i (A)}. (2.2)

Otherwise, we have att ...t − τ(A) − r�t
t (A) > 0, which means that

0 < (att ...t − τ(A) − r�t
t (A))xm−1

t ≤ r�t
t (A)xm−1

l . (2.3)

On the other hand, by (2.1) we can get

(all...l − τ(A))xm−1
l =

∑
(i2,...,im )∈�t

|ali2...im |xi2 xi3 . . . xim +
∑

(i2,...,im )∈�t ,
δli2 ...im=0

|ali2...im |xi2 xi3 . . . xim

≤
∑

(i2,...,im )∈�t

|ali2...im |xm−1
t +

∑
(i2,...,im )∈�t ,

δli2 ...im=0

|ali2...im |xm−1
l

= r�t
l (A)xm−1

t + r�t
l (A)xm−1

l ,

i.e.,

(all...l − τ(A) − r�t
l (A))xm−1

l ≤ r�t
l (A)xm−1

t . (2.4)
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Multiplying Inequalities (2.3) and (2.4) yields

(att ...t − τ(A) − r�t
t (A))(all...l − τ(A) − r�t

l (A))xm−1
t xm−1

l

≤ r�t
t (A)r�t

l (A)xm−1
t xm−1

l .

Note that xm−1
t xm−1

l > 0, thus

(att ...t − τ(A) − r�t
t (A))(all...l − τ(A) − r�t

l (A)) ≤ r�t
t (A)r�t

l (A),

which is equivalent to

τ(A)2 − (att ...t + all...l − r�t
t (A) − r�t

l (A))τ (A)

+ (att ...t − r�t
t (A))(all...l − r�t

l (A)) − r�t
t (A)r�t

l (A) ≤ 0.

This gives the following bounds for τ(A),

τ(A) ≥ 1

2

(
att ...t + all...l − r�t

t (A) − r�t
l (A) − 	

1
2
t,l

)
, (2.5)

where

	t,l = (att ...t − all...l − r�t
t (A) + r�t

l (A))2 + 4r�t
t (A)r�t

l (A).

Furthermore, by Inequality (2.3), we can get that

att ...t − τ(A) − r�t
t (A) ≤ r�t

t (A);

consequently,

τ(A) ≥ att ...t − r�t
t (A) − r�t

t (A) = att ...t − rt (A) = Rt (A). (2.6)

Combining Inequalities (2.5) and (2.6), we have

τ(A) ≥ max

{
1

2
(att ...t + all...l − r�t

t (A) − r�t
l (A) − 	

1
2
t,l), Rt (A)

}

≥ min
i, j∈N ,
j �=i

max

{
1

2
(aii ...i + a j j ... j − r�i

i (A) − r�i
j (A) − 	

1
2
i, j ), Ri (A)

}
. (2.7)

The first inequality in Theorem2.1 follows from Inequalities (2.2) and (2.7).
(ii) Let xp ≤ xq ≤ min{xk : k ∈ N , k �= p, k �= q}. By (2.1), we derive that

(app...p − τ(A))xm−1
p = −

∑
(i2,...,im )∈�p,

δpi2 ...im=0

api2...im xi2xi3 . . . xim
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−
∑

(i2,...,im )∈�p

api2...im xi2xi3 . . . xim

and

(aqq...q − τ(A))xm−1
q = −

∑
(i2,...,im )∈�p

aqi2...im xi2xi3 . . . xim

−
∑

(i2,...,im )∈�p,
δqi2 ...im=0

aqi2...im xi2xi3 . . . xim .

Using the inequality technique gives

(app...p − τ(A))xm−1
p =

∑
(i2,...,im )∈�p ,

δpi2 ...im=0

|api2...im |xi2 xi3 . . . xim +
∑

(i2,...,im )∈�p

|api2...im |xi2 xi3 . . . xim

≥
∑

(i2,...,im )∈�p ,
δpi2 ...im=0

|api2...im |xm−1
p +

∑
(i2,...,im )∈�p

|api2...im |xm−1
q

= r
�p
p (A)xm−1

p + r
�p
p (A)xm−1

q (2.8)

and

(aqq...q − τ(A))xm−1
q =

∑
(i2,...,im )∈�p

|aqi2...im |xi2 xi3 . . . xim +
∑

(i2,...,im )∈�p ,
δqi2 ...im=0

|aqi2...im |xi2 xi3 . . . xim

≥
∑

(i2,...,im )∈�p

|aqi2...im |xm−1
p +

∑
(i2,...,im )∈�p ,

δqi2 ...im=0

|aqi2...im |xm−1
q

= r
�p
q (A)xm−1

p + r
�p
q (A)xm−1

q . (2.9)

Combining Inequalities (2.8) and (2.9) and using the same method as the proof in (i),
we can deduce the following result:

τ(A) ≤ min

{
1

2

(
app...p + aqq...q − r

�p
p (A) − r

�p
q (A) − 	

1
2
p,q

)
, Rp(A)

}

≤ max
i, j∈N ,
j �=i

min

{
1

2

(
aii ...i + a j j ... j − r�i

i (A) − r�i
j (A) − 	

1
2
i, j

)
, Ri (A)

}
.

This completes our proof of Theorem2.1. �	
We now give the following comparison theorem for Theorem2.1 and Lemma1.2

in corrected form. First, we prove that the lower bound of Theorem2.1 is better than
that of Lemma1.2 in corrected form.

123



1222 J. Cui et al.

Theorem 2.2 Let A = (ai1i2...im ) ∈ R
[m,n] be a weakly irreducible nonsingular M-

tensor with n ≥ 2. Then

�min ≥ min
i, j∈N ,
j �=i

Li j (A).

Proof Fromproof ofLemma1.3,we can see that τ(A) ≥ mini, j∈N ,
j �=i

Li j (A) is obtained

by solving the following quadratic inequality

(aii ...i − τ(A) − r j
i (A))(a j j ... j − τ(A)) ≤ −ai j ... j r j (A).

Let gi j (τ (A)) = (aii ...i − τ(A) − r j
i (A))(a j j ... j − τ(A)) − (−ai j ... j )r j (A), and the

left solution of gi j (τ (A)) = 0 is Li j (A). If�min = �̃min = mini∈N {aii ...i −r�i
i (A)},

then there exists i0 ∈ N such that

�min = �̃min = ai0...i0 − r
�i0
i0

(A).

From Theorem2.1, we get

τ(A) ≥ �min = ai0...i0 − r
�i0
i0

(A),

which together with Lemma2.4 results in

gi0 j (τ (A)) = (ai0...i0 − τ(A) − r j
i0
(A))(a j j ... j − τ(A)) − (−ai0 j ... j )r j (A) ≤ 0.

By Lemma2.6, we derive that

�min = ai0...i0 − r
�i0
i0

(A) ≥ Li0 j (A) ≥ min
i, j∈N ,
j �=i

Li j (A). (2.10)

If �min = �min = min
i, j∈N ,
j �=i

max{ 12 (aii ...i + a j j ... j − r�i
i (A) − r�i

j (A) − 	
1
2
i, j ), Ri (A)},

then there exist i1, j1 ∈ N such that

τ(A) ≥ �min = max

{
1

2

(
ai1...i1 + a j1... j1 − r

�i1
i1

(A) − r
�i1
j1

(A) − 	
1
2
i1, j1

)
, Ri1(A)

}
,

(2.11)

which means that

τ(A) ≥ Ri1(A) (2.12)
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and

τ(A) ≥ 1

2

(
ai1...i1 + a j1... j1 − r

�i1
i1

(A) − r
�i1
j1

(A) − 	
1
2
i1, j1

)
. (2.13)

By proof of Theorem2.1, we see that Ki1 j1(A) := 1
2 (ai1...i1 + a j1... j1 − r

�i1
i1

(A) −
r
�i1
j1

(A) − 	
1
2
i1, j1

) is the left root of the following equation

(ai1...i1 − τ(A) − r
�i1
i1

(A))(a j1... j1 − τ(A) − r
�i1
j1

(A)) − r
�i1
i1

(A)r
�i1
j1

(A) = 0,

so, we let

f i1 j1(τ (A)) :=
(
ai1...i1 − τ(A) − r

�i1
i1

(A)
)(

a j1... j1 − τ(A) − r
�i1
j1

(A)

)

−r
�i1
i1

(A)r
�i1
j1

(A).

By Lemma2.6, if gi1 j1(τ (A)) ≤ 0 under the condition f i1 j1(τ (A)) ≤ 0, then
Ki1 j1(A) ≥ Li1 j1(A) ≥ mini, j∈N ,

j �=i
Li j (A). Combining with (2.11), we can derive that

�min ≥ min
i, j∈N ,
j �=i

Li j (A). Therefore, now we only need to prove that gi1 j1(τ (A)) ≤ 0

under the condition f i1 j1(τ (A)) ≤ 0.

When ai1...i1 − τ(A) − r
�i1
i1

(A) ≤ 0, it is not difficult to get the following form

gi1 j1(τ (A)) = (ai1...i1 − τ(A) − r j1
i1

(A))(a j1... j1 − τ(A)) − (−ai1 j1... j1)r j1(A) ≤ 0.

Otherwise,wehaveai1...i1−τ(A)−r
�i1
i1

(A) > 0. From the condition f i1 j1(τ (A)) ≤ 0,
we have

(ai1...i1 − τ(A) − r
�i1
i1

(A))(a j1... j1 − τ(A) − r
�i1
j1

(A)) ≤ r
�i1
i1

(A)r
�i1
j1

(A).

(2.14)

If r
�i1
i1

(A)r
�i1
j1

(A) = 0, then

a j1... j1 − τ(A) − r
�i1
j1

(A) ≤ 0 ≤ r
�i1
j1

(A),

which leads to

a j1... j1 − τ(A) ≤ r j1(A). (2.15)

In addition, by (2.12) we have

τ(A) ≥ ai1...i1 − (r j1
i1

(A) + (−ai1 j1... j1)),
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1224 J. Cui et al.

i.e.,

ai1...i1 − τ(A) − r j1
i1

(A) ≤ −ai1 j1... j1 . (2.16)

Note that τ(A) < a j1... j1 , then multiplying Inequality (2.15) with Inequality (2.16)
gives

(ai1...i1 − τ(A) − r j1
i1

(A))(a j1... j1 − τ(A)) ≤ (−ai1 j1... j1)r j1(A),

which implies that gi1 j1(τ (A)) ≤ 0.

If r
�i1
i1

(A)r
�i1
j1

(A) > 0, then by dividing Inequality (2.14) by r
�i1
i1

(A)r
�i1
j1

(A), we
get

ai1...i1 − τ(A) − r
�i1
i1

(A)

r
�i1
i1

(A)

a j1... j1 − τ(A) − r
�i1
j1

(A)

r
�i1
j1

(A)
≤ 1. (2.17)

By (2.12), we have

ai1...i1 − τ(A) − r
�i1
i1

(A)

r
�i1
i1

(A)

≤ 1. (2.18)

Then it follows from Inequality (2.17) that

a j1... j1 − τ(A) − r
�i1
j1

(A)

r
�i1
j1

(A)
≥ 1,

or

a j1... j1 − τ(A) − r
�i1
j1

(A)

r
�i1
j1

(A)
≤ 1.

When −ai1 j1... j1 > 0, from the part (I) in Lemma2.7 and Inequality (2.18) we have

ai1...i1 − τ(A) − r j1
i1

(A)

−ai1 j1... j1
≤ ai1...i1 − τ(A) − r

�i1
i1

(A)

r
�i1
i1

(A)

. (2.19)

Furthermore, if
a j1 ... j1−τ(A)−r

�i1
j1

(A)

r
�i1
j1

(A)

≥ 1, it follows from the part (II) in Lemma2.7

that
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a j1... j1 − τ(A)

r j1(A)
≤ a j1... j1 − τ(A) − r

�i1
j1

(A)

r
�i1
j1

(A)
. (2.20)

Then multiplying Inequality (2.19) with Inequality (2.20), together with (2.17), gives

ai1...i1 − τ(A) − r j1
i1

(A)

−ai1 j1... j1

a j1... j1 − τ(A)

r j1(A)

≤ ai1...i1 − τ(A) − r
�i1
i1

(A)

r
�i1
i1

(A)

a j1... j1 − τ(A) − r
�i1
j1

(A)

r
�i1
j1

(A)
≤ 1,

equivalently,

(ai1...i1 − τ(A) − r j1
i1

(A))(a j1... j1 − τ(A)) ≤ (−ai1 j1... j1)r j1(A),

that is gi1 j1(τ (A)) ≤ 0. And if
a j1... j1−τ(A)−r

�i1
j1

(A)

r
�i1
j1

(A)

≤ 1, then

a j1... j1 − τ(A) ≤ r j1(A).

Inequality (2.18) implies

ai1...i1 − τ(A) − r j1
i1

(A) ≤ −ai1 j1... j1 .

The above two inequalities lead to

(ai1...i1 − τ(A) − r j1
i1

(A))(a j1... j1 − τ(A)) ≤ (−ai1 j1... j1)r j1(A),

i.e., gi1 j1(τ (A)) ≤ 0.
When ai1 j1... j1 = 0, from (2.18), we easily get

ai1...i1 − τ(A) − r j1
i1

(A) ≤ 0 = −ai1 j1... j1 .

Hence,

(ai1...i1 − τ(A) − r j1
i1

(A))(a j1... j1 − τ(A)) ≤ 0 = (−ai1 j1... j1)r j1(A),

i.e., gi1 j1(τ (A)) ≤ 0. �	
By using the technique in the proof of Theorem2.2, we can get �max ≤

maxi, j∈N ,
j �=i

Li j (A). Combiningwith Theorem5 in [13], we can easily obtain the bounds

in Theorem2.1 are shaper than Lemmas1.1 and 1.2 in corrected form.
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Now we take an example to show the efficiency of the bounds established in The-
orem2.1.

Example 2.1 Let A = (ai jk) ∈ R
[3,3] be a weakly irreducible M-tensor with entries

defined as follows:

A = [A(1, :, :), A(2, :, :), A(3, :, :)] ∈ R
[3,3],

where

A(1, :, :) =
⎛
⎝15 0 0

0 −0.5 −0.2
0 −1 −2

⎞
⎠ , A(2, :, :) =

⎛
⎝−1 −5.8 −2

0 55 0
0 0 −0.5

⎞
⎠ ,

A(3, :, :) =
⎛
⎝−1 −2 0

0 −1 −3
0 −3 15

⎞
⎠ .

We compare the results derived in Theorem2.1 with those of Lemmas1.1, 1.2 in the
correct form and Lemma1.4. By Lemma1.1, we have

5 ≤ τ(A) ≤ 45.7.

By Lemma1.2 in the corrected form, we get

5.4256 ≤ τ(A) ≤ 14.8406.

By Lemma1.4, we obtain

5.8038 ≤ τ(A) ≤ 14.7458.

By Theorem2.1 , we have

8.4610 ≤ τ(A) ≤ 10.4580.

This example shows that the upper and lower bounds in Theorem2.1 are better than
those in Lemmas1.1, 1.2 and 1.4.

2.2 The New S-type Estimates of Minimum H-eigenvalue

In this subsection, the new S-type estimates of minimum H -eigenvalue for weakly
irreducible nonsingularM-tensor are derived, which are better than the ones in Lem-
mas1.1 and 1.2 in corrected form.

Given a nonempty proper subset S of N , we denote

�N = {(i2, i3, . . . , im) : each i j ∈ N , for j ∈ 2, 3, . . . ,m},
�S = {(i2, i3, . . . , im) : each i j ∈ S, for j ∈ 2, 3, . . . ,m},�S = �N\�S .
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This implies that for i ∈ S, we have

ri (A) = r�S

i (A) + r�S
i (A),

where

r�S

i (A) =
∑

(i2,...,im )∈�S ,
δi i2 ...im=0

|aii2...im |, r�S

i (A) =
∑

(i2,...,im )∈�S

|aii2...im |.

Theorem 2.3 Let A = (ai1i2...im ) ∈ R
[m,n] be a weakly irreducible nonsingular M-

tensor with n ≥ 2, and S be a nonempty proper subset of N . Then

ϒmin(A) ≤ τ(A) ≤ ϒmax(A),

where

ϒmin(A) = min{ϒ S
(A), ϒ

S
(A)}, ϒmax(A) = max{ϒ̃ S(A), ϒ̃ S(A)},

ϒ
S
(A) = min

i∈S,

j∈S
max{1

2
(a j j ... j + aii ...i − r�S

j (A) − (�S
i, j )

1
2 ), R j (A)},

ϒ̃ S(A) = max
i∈S,

j∈S
min{1

2
(aii ...i + a j j ... j − r�S

j (A) − (�S
i, j )

1
2 ), R j (A)},

�S
i, j = (a j j ... j − aii ...i − r�S

j (A))2 + 4r�S

j (A)ri (A).

Proof Since A is a weakly irreducible nonsingular M-tensor, by Lemma2.3, there
exists x = (x1, x2, . . . , xn)T > 0 such that

Axm−1 = τ(A)x [m−1]. (2.21)

(i) Let xl = maxi∈S xi and xt = maxi∈S xi . Next, we divide into two cases to prove.
Case I xt ≥ xl , that is, xt = maxi∈N xi . From (2.21), we have

(τ (A) − att ...t )x
m−1
t =

∑
(i2,...,im )∈�S

ati2...im xi2xi3 . . . xim

+
∑

(i2,...,im )∈�S ,
δti2 ...im=0

ati2...im xi2xi3 . . . xim .

Using the inequality technique, together with τ(A) < att ...t , gives

(att ...t − τ(A))xm−1
t =

∑
(i2,...,im )∈�S

|ati2...im |xi2xi3 . . . xim
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1228 J. Cui et al.

+
∑

(i2,...,im )∈�S ,
δti2 ...im=0

|ati2...im |xi2xi3 . . . xim

≤
∑

(i2,...,im )∈�S

|ati2...im |xm−1
l +

∑
(i2,...,im )∈�S ,

δti2 ...im=0

|ati2...im |xm−1
t

= r�S

t (A)xm−1
l + r�S

t (A)xm−1
t ;

hence,

(att ...t − τ(A) − r�S

t (A))xm−1
t ≤ r�S

t (A)xm−1
l . (2.22)

On the other hand, by (2.21), we also get that

(all...l − τ(A))xm−1
l =

∑
i2,...,im∈N ,
δli2 ...im=0

|ali2...im |xi2xi3 . . . xim

≤ rl(A)xm−1
t . (2.23)

Multiplying (2.22) with (2.23) gives

(att ...t − τ(A) − r�S

t (A))(all...l − τ(A)) ≤ r�S

t (A)rl(A).

Solving the above quadratic inequality yields

τ(A) ≥ 1

2
(att ...t + all...l − r�S

t (A) − (�S
l,t )

1
2 ), (2.24)

with

�S
l,t = (att ...t − all...l − r�S

t (A))2 + 4r�S

t (A)rl(A).

Furthermore, by Inequality (2.22), we can get that

att ...t − τ(A) − r�S

t (A) ≤ r�S

t (A),

i.e.,

τ(A) ≥ att ...t − r�S

t (A) − r�S

t (A) = att ...t − rt (A) = Rt (A). (2.25)

It follows from Inequalities (2.24) and (2.25) that

τ(A) ≥ max{1
2
(att ...t + all...l − r�S

t (A) − (�S
l,t )

1
2 ), Rt (A)}

≥ min
i∈S,

j∈S
max{1

2
(aii ...i + a j j ... j − r�S

j (A) − (�S
i, j )

1
2 ), R j (A)}. (2.26)
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Case II xl ≥ xt , that is, xl = max
i∈N xi . In a similar manner to the proof of Case I,

we have

(all...l − τ(A) − r�S

l (A))xm−1
l ≤ r�S

l (A)xm−1
t

and

(att ...t − τ(A))xm−1
t ≤ rt (A)xm−1

l .

Note that xt xl > 0. Thus,

(all...l − τ(A) − r�S

l (A))(att ...t − τ(A)) ≤ r�S

l (A)rt (A)

and

τ(A) ≥ all...l − r�S

l (A) − r�S

l (A)= Rl(A).

Then, solve for τ(A),

τ(A) ≥ max

{
1

2

(
att ...t + all...l − r�S

l (A) − (�S
t,l)

1
2

)
, Rl(A)

}

≥ min
i∈S,
j∈S

max

{
1

2

(
aii ...i + a j j ... j − r�S

j (A) − (�S
i, j )

1
2

)
, R j (A)

}
. (2.27)

Combining (2.26) and (2.27) yields the first inequality of Theorem2.3.
(ii) Let xp = mini∈S xi and xq = mini∈S xi . Dividing into two cases to prove:

xp ≥ xq and xq ≥ xp and by the analogical proof as (i), we can prove the second
inequality of Theorem2.3. �	

Next, we show the bounds of Theorem2.3 are sharper than those of Lemma1.2 in
corrected form. We first proof that the lower bound of Theorem2.3 is greater than or
equal to than that of Lemma1.2 in corrected form.

Theorem 2.4 Let A = (ai1i2...im ) ∈ R
[m,n] be a weakly irreducible nonsingular M-

tensor with n ≥ 2. Then

ϒmin(A) ≥ min
i, j∈N ,
j �=i

Li j (A).

Proof By Theorem2.3, we have ϒmin(A) = ϒ
S
(A) or ϒmin(A) = ϒ

S
(A). Without

loss of generality, we suppose that ϒmin(A) = ϒ
S
(A) (we can prove it similarly if

ϒmin(A) = ϒ
S
(A)). Then there are i2 ∈ S, j2 ∈ S such that
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ϒmin(A) = ϒ
S
(A) = max

{
1

2

(
a j2... j2 + ai2...i2 − r�S

j2 (A) − (�S
i2, j2)

1
2

)
, R j2(A)

}
,

which leads to

τ(A) ≥ R j2(A) (2.28)

and

τ(A) ≥ 1

2

(
a j2... j2 + ai2...i2 − r�S

j2 (A) − (�S
i2, j2)

1
2

)
. (2.29)

From proof of Theorem2.3, Inequality (2.29) is derived by solving the following
quadratic inequality

(
a j2... j2 − τ(A) − r�S

j2 (A)
) (

ai2...i2 − τ(A)
) ≤ r�S

j2 (A)ri2(A).

So we let hi2 j2(τ (A)) = (a j2... j2 − τ(A) − r�S

j2
(A))(ai2...i2 − τ(A)) − r�S

j2
(A)ri2(A)

and Wi2 j2(A) := 1
2 (a j2... j2 + ai2...i2 − r�S

j2
(A) − (�S

i2, j2
)
1
2 ) is the left root of the

equation hi2 j2(τ (A)) = 0. By Lemma2.6, if g j2i2(τ (A)) ≤ 0 under the condi-
tion hi2 j2(τ (A)) ≤ 0, then Wi2 j2(A) ≥ L j2i2(A) ≥ mini, j∈N ,

j �=i
Li j (A), that is,

ϒmin(A) ≥ mini, j∈N ,
j �=i

Li j (A). We now prove that g j2i2(τ (A)) ≤ 0 under the con-

dition hi2 j2(τ (A)) ≤ 0. From the condition hi2 j2(τ (A)) ≤ 0, we have

(
a j2... j2 − τ(A) − r�S

j2 (A)
) (

ai2...i2 − τ(A)
) ≤ r�S

j2 (A)ri2(A). (2.30)

If r�S

j2
(A)ri2(A) = 0, then r�S

j2
(A) = 0 or ri2(A) = 0. When r�S

j2
(A) = 0, we get

−a j2i2...i2 = 0, r�S

j2
(A) = r i2j2(A). Therefore,

(
a j2... j2 − τ(A) − r i2j2 (A)

) (
ai2...i2 − τ(A)

) =
(
a j2... j2 − τ(A) − r�S

j2 (A)
) (

ai2...i2 − τ(A)
)

≤ r�S

j2 (A)ri2 (A)

= 0

= (−a j2i2...i2 )ri2 (A);

consequently, gi2 j2(τ (A)) ≤ 0. When ri2(A) = 0,

(
a j2... j2 − τ(A) − r i2j2 (A)

) (
ai2...i2 − τ(A)

) ≤
(
a j2... j2 − τ(A) − r�S

j2 (A)
) (

ai2...i2 − τ(A)
)

≤ r�S

j2 (A)ri2 (A)
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= 0

= (−a j2i2...i2

)
ri2 (A).

This leads to g j2i2(τ (A)) ≤ 0.
If r�S

j2
(A)ri2(A) > 0, then we can equivalently express Inequality (2.30) as

a j2... j2 − τ(A) − r�S

j2
(A)

r�S

j2
(A)

ai2...i2 − τ(A)

ri2(A)
≤ 1. (2.31)

By (2.28), we have
a j2 ... j2−τ(A)−r�S

j2
(A)

r�S
j2

(A)
≤ 1, and when a j2i2...i2 > 0, from the part (I)

in Lemma2.7 we have

a j2... j2 − τ(A) − r i2j2(A)

−a j2i2...i2
≤ a j2... j2 − τ(A) − r�S

j2
(A)

r�S

j2
(A)

,

together with Inequality (2.31), we can derive that

a j2... j2 − τ(A) − r i2j2 (A)

−a j2i2...i2

ai2...i2 − τ(A)

ri2 (A)
≤

a j2... j2 − τ(A) − r�S

j2
(A)

r�S

j2
(A)

ai2...i2 − τ(A)

ri2 (A)
≤ 1.

i.e., g j2i2(τ (A)) ≤ 0. When a j2i2...i2 = 0, by (2.28) we easily get

a j2... j2 − τ(A) − r i2j2(A) ≤ 0 = −a j2i2...i2 .

Hence,

(a j2... j2 − τ(A) − r i2j2(A))(ai2...i2 − τ(A)) ≤ 0 = −a j2i2...i2ri2(A).

This also implies g j2i2(τ (A)) ≤ 0. This completes our proof of Theorem2.4. �	
By using the technique in the proof of Theorem2.4, we can get ϒmax(A) ≤

maxi, j∈N ,
j �=i

Li j (A). Together with Theorem 5 in [13], we can easily see the bounds

in Theorem2.3 are better than Lemmas1.1 and 1.2 in corrected form.
Let us show the advantage of Theorem2.3 over the results in Lemma1.1, 1.2 which

are corrected, Lemma1.4 and newly derived by Huang et al. [14] by a simple example
as follows.

Example 2.2 Let A = (ai jk) ∈ R
[3,4] be a weakly irreducible M-tensor with entries

defined as follows:

A = [A(1, :, :), A(2, :, :), A(3, :, :), A(4, :, :)] ∈ R
[3,4],
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where

A(1, :, :) =

⎛
⎜⎜⎝

37 −2 −1 −4
−1 −3 −3 −2
−1 −1 −3 −2
−2 −3 −3 −3

⎞
⎟⎟⎠ , A(2, :, :) =

⎛
⎜⎜⎝

−2 −4 −2 −3
−1 39 −2 −1
−3 −3 −4 −2
−2 −3 −1 −4

⎞
⎟⎟⎠ ,

A(3, :, :) =

⎛
⎜⎜⎝

−4 −1 −1 −1
−1 0 −2 −3
−1 −1 35 −1
−2 −2 −4 −3

⎞
⎟⎟⎠ , A(4, :, :) =

⎛
⎜⎜⎝

−2 −4 0 1
−4 −4 −2 −4
−3 0 −3 −3
−3 −3 −4 49

⎞
⎟⎟⎠ .

Wenow compute the bounds for τ(A). Let S = {1, 2}, then S = {3, 4}. By Lemma1.1,
we have

2 ≤ τ(A) ≤ 9.

By Lemma1.2 in the corrected form, we get

2.0541 ≤ τ(A) ≤ 8.8969.

By Lemma1.4, we obtain

2.2233 ≤ τ(A) ≤ 8.7447.

By Theorem3.5 in [14], we get

2.6604 ≤ τ(A) ≤ 8.1955.

By Theorem2.3, we have

3.5550 ≤ τ(A) ≤ 7.1629.

Obviously, the bounds given in Theorem2.3 are sharper than the aforementioned
existing results.

3 Ky Fan Theorem

In [11], He andHuang gave the Ky Fan theorem for nonsingularM-tensors as follows:

Lemma 3.1 [11] LetA,B be of order m dimension n, suppose thatB is a nonsingular
M-tensor and |bi1,...,im | ≥ |ai1,...,im | for any i1, . . . , im ∈ N and δi1,...,im �= 0. Then,
for any eigenvalue λ of A, there exists i ∈ N such that

|λ − ai ...i | ≤ bi ...i − τ(B). (3.1)
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In [19], Bu et al. derived the following Brualdi-type eigenvalue inclusion sets of
tensors.

Lemma 3.2 [19] Let A = (ai1,...,im ) ∈ C
[m,n] be a tensor such that �A is weakly

connected. Then,

σ(A) ⊆
⋃

γ∈C(A)

⎧⎨
⎩z ∈ C :

∏
i∈γ

|z − aii ...i | ≤
∏
i∈γ

ri (A)

⎫⎬
⎭ .

Based on Lemma3.2, we derive a new set in Ky Fan theorem, which is sharper than
the one in (3.1).

Theorem 3.1 Let A,B be m-order n-dimensional tensors such that �A is weakly
connected and B be a nonsingular M-tensor, and |bi1...im | ≥ |ai1...im | for all i1 �=
. . . �= im. Then, there exists a circuit γ ∈ C(A), such that

∏
i∈γ

|λ − aii ...i | ≤
∏
i∈γ

(bii ...i − τ(B)).

Proof We first suppose that B is irreducible, by Lemma2.2, there exists
x = (x1, x2, . . . , xn)T > 0 such that

Bxm−1 = τ(B)x [m−1]. (3.2)

Let D = diag(x1, . . . , xn), AD = AD1−m

m−1︷ ︸︸ ︷
D . . . D, y = (y1, . . . , yn)T be an eigen-

vector of AD corresponding to λ. Then

ADy
m−1 = λy[m−1].

By Lemma2.5, we have

λ(A) = λ(AD).

Equation (3.2) implies that for any i ,

(bi ...i − τ(B))xm−1
i = −

∑
δi i2 ...im=0

bii2...im xi2 . . . xim =
∑

δi i2 ...im=0

|bii2...im |xi2 . . . xim ,

which is equivalent to

bi ...i − τ(B) =
∑

δi i2 ...im=0

|bii2...im |x1−m
i xi2 . . . xim .
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Since �A is weakly connected, so is �AD . From Lemma3.2 and the above equation,
for any eigenvalue λ of AD , there exists a circuit γ ∈ C(A), such that

∏
i∈γ

|λ − aii ...i | ≤
∏
i∈γ

ri (AD)

=
∏
i∈γ

⎛
⎝ ∑

δi i2 ...im=0

|aii2...im |x1−m
i xi2 . . . xim

⎞
⎠

≤
∏
i∈γ

⎛
⎝ ∑

δi i2 ...im=0

|bii2...im |x1−m
i xi2 . . . xim

⎞
⎠

=
∏
i∈γ

(bi ...i − τ(B)).

When the tensorB is reducible, by replacing the zero entries ofBwith− 1
k ,where k is

a positive integer,we see that the Z -tensorBk is irreducible and |(Bk)i1...im | ≥ |Ai1...im |.
Then there exists a circuit γ ∈ C(A) such that

∏
i∈γ

|λ − aii ...i | ≤
∏
i∈γ

(bii ...i − τ(Bk)). (3.3)

From the proof process of Theorem3.6 in [14], we have

lim
k→∞ τ(Bk) = τ(B).

In Inequality (3.3), letting k → ∞ results in

∏
i∈γ

|λ − aii ...i | ≤
∏
i∈γ

(bii ...i − τ(B)).

This completes our proof of Theorem3.1. �	
Denote

G(A) =
⋃
i∈N

{z ∈ C : |z − aii ...i | ≤ (bi ...i − τ(B))} ,

S(A) =
⋃

γ∈C(A)

⎧⎨
⎩z ∈ C :

∏
i∈γ

|z − aii ...i | ≤
∏
i∈γ

(bi ...i − τ(B))

⎫⎬
⎭ .

It follows from Lemma3.1 and Theorem3.1 that σ(A) ⊆ G(A) and σ(A) ⊆ S(A).
Next, we compare the sets S(A) and G(A) in the following theorem, showing that
Theorem3.1 is better than the Ky Fan theorem.
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Theorem 3.2 Let A,B be m-order n-dimensional tensors such that �A is weakly
connected, B be a nonsingular M-tensor, and |bi1...im | ≥ |ai1...im | for all i1 �= . . . �=
im. Then

S(A) ⊆ G(A).

Proof For any z ∈ S(A), if z /∈ G(A), then |z − aii ...i | > bii ...i − τ(B) (i =
1, 2, . . . , n). In this case,

∏
i∈γ |z − aii ...i | >

∏
i∈γ (bii ...i − τ(B)) for any γ ∈ C(A),

a contradiction to z ∈ S(A). Hence z ∈ G(A), i.e., S(A) ⊆ G(A). �	

4 Conclusions

In this paper, several new estimates of the minimum H -eigenvalue for weakly irre-
ducible nonsingular M-tensors are presented, which are proved to be sharper than
those of [11,12]. On the other hand, we have studied a new Ky Fan-type theorem. It
should be noted that the new Ky Fan theorem is based on the condition that �A is
weakly connected andB is a nonsingularM-tensor, and the newKy Fan-type theorem
improves the one in [11].

However, the new S-type estimates for minimum H -eigenvalue depend on the set
S. Then an interesting problem is how to pick S to make the bounds exhibited in
Theorem2.3 as tight as possible. But it is very difficult when the dimension of the
tensorA is large. Therefore, future work will include numerical or theoretical studies
for finding the best choice for S.
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