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Abstract The augmented Zagreb index (AZI index) of a graph G = (V, E), which
is a valuable predictive index in the study of the heat of formation in octanes and
heptanes, is defined as

AZI(G) =
∑

uv∈E(G)

(
dudv

du + dv − 2

)3

,

wheredu anddv are the degrees of the terminal vertices u and v of edgeuv, respectively.
In this paper, we give the expressions for computing the augmented Zagreb indices
of fluoranthene-type benzenoid systems, and we determine the extremal values of
augmented Zagreb index in f-benzenoid systems with h hexagons. Especially, we give
the extremal values of augmented Zagreb index in cata-catacondensed fluoranthene-
type benzenoid systems with h hexagons.
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1 Introduction

Molecular descriptors play a significant role in chemistry, pharmacology, etc. Among
them, topological indices have a prominent place (see [16,55]). Topological indices
are numbers associated with chemical structures derived from their hydrogen-depleted
graphs as a tool for compact and effective description of structural formulas which are
used to study and predict the structure–property correlations of organic compounds.

Let G be a simple connected graph with vertex set V (G) and edge set E(G). The
augmented Zagreb index (AZI index for short) was firstly introduced by Furtula et
al. [21], which is defined to be

AZI(G) =
∑

uv∈E(G)

(
dudv

du + dv − 2

)3

,

wheredu anddv are the degrees of the terminal vertices u and v of edgeuv, respectively.
This graph invariant has proven to be a valuable predictive index in the study of

the heat of formation in octanes and heptanes (see [21]), whose prediction power is
better than atom–bond connectivity index (please refer to [11,17,18,20,22,59] for
its research background). Moreover, Gutman and Tošovič [31] tested the correlation
abilities of 20 vertex-degree-based topological indices for the case of standard heats
of formation and normal boiling points of octane isomers, and they found that the
augmented Zagreb index yields the best results.

Furtula et al. [21] have studied extremal properties of augmented Zagreb index of
trees and chemical trees, and they proved that among all trees the star has theminimum
augmented Zagreb index value. Huang et al. [34] andWang et al. [57] gave sharp lower
and upper bounds for various classes of connected graphs (e.g., trees, unicyclic graphs,
bicyclic graphs, etc.) and characterized corresponding extremal graphs. Zhan et al. [60]
determined the minimal and the second minimal augmented Zagreb indices of the n-
vertex unicyclic graphs. Additionally, they obtained the n-vertex bicyclic graphs in
which the augmented Zagreb index attains its minimal value.

Our main concern is the class of the fluoranthene-type benzenoid systems. Fluoran-
thene is a well-known tetracyclic conjugated hydrocarbon, present in large amounts
in coal tar [7]. It consists of a benzene and a naphthalene unit, joined through a
five-membered ring. Other polycyclic conjugated hydrocarbon, consisting of two ben-
zenoid units joined through a five-membered ring are referred as fluoranthene-type
benzenoid system (or fluoranthenes) [28,29]. A few examples of fluoranthene-type
benzenoid systems are presented in Fig. 1.

Inwhat followswewill represent the fluoranthene-type benzenoid system bymeans
of their molecular graphs [26]. This, in particular, means that the carbon atoms are
represented by vertices, and the carbon–carbon bonds by edges. The molecular graphs
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The Augmented Zagreb Indices of Fluoranthene-Type… 1121

Fig. 1 Examples of fluoranthene-type benzenoid systems. 1 and 2 are cata-catacondensed, 3 is peri-
catacondensed, 4 is cata-pericondensed, and 5 is peri-pericondensed

of fluoranthene-type benzenoid system are then defined in the followingmanner. Let X
be a benzenoid system [28]. Let u and v be two vertices of X whose degree is two, and
which both are adjacent to a vertexw of degree 3. Let Y be another benzenoid system.
Let a and b be two adjacent vertices of Y whose degree is two. The fluoranthene-type
benzenoid system F is obtained by joining (with a new edge) the vertices u and a ,
and by joining (with a new edge) the vertices v and b (see Fig. 2).

What first needs to be noticed is that the vertices a, b, v, w, u of F form a five-
membered cycle. Each fluoranthene-type benzenoid system possesses (by definition)
exactly one five-membered cycle.

Although the structures of fluoranthene-type benzenoid systems and benzenoid
hydrocarbons are evidently similar, fluoranthene-type benzenoid systems were
excluded from the chemical graph theoretical consideration of benzenoid systems
because of the presence of a five-membered ring. As a result, while the topological
theory of benzenoid molecules is nowadays one of the most thoroughly elaborated
aspect of chemical graph theory, the first attempts to develop an analogous theory of
fluoranthene-type benzenoid systems started only very recently [28].

The fluoranthene-type benzenoid systems considered by us must pertain to plane
graphs composed of regular hexagonals and a regular pentagon, all having the same
edge lengths. Non-adjacent hexagon and hexagon–pentagon pairs must neither tough

123



1122 F. Li et al.

Fig. 2 The general form of an
f-benzenoid system (F) and its
construction from two
benzenoid systems X and Y

nor overlap (we exclude the helicenic and other geometrically non-plane species from
the class of fluoranthene-type benzenoid systems). Fluoranthene-type benzenoid sys-
tems are compounds which, in view of their chemical and physical properties, belong
among benzenoid hydrocarbons. For more about fluoranthene-type benzenoid system,
one can see [28].

In what follows, instead of “fluoranthene-type benzenoid system” we shall say
“f-benzenoid system”.

Throughout this paper, the notation and terminology are mainly taken from [9,
10,24,38–41]. A benzenoid system is said to be catacondensed if it has no internal
vertices; otherwise, it is pericondensed [28]. In view of this, we propose the following
classification of f-benzenoid system. If the f-benzenoid system F has just a single
internal vertex, then it is said to be cata-catacondensed. This happens when both
fragments X and Y (as shown in Fig. 2) are catacondensed benzenoid systems. A
hexagon H of F is called a kink [15], denoted as A2, if H has exactly two consecutive
2 vertices in F . If H has no 2 vertex, then H is called a branched hexagon [15], denoted
as A3. If a hexagon H has only one vertex of degree 2, we call it a P3 hexagon. If a
hexagon H has just two consecutive 3 vertices, we call it a L1 hexagon. A hexagon H
is called a L2 hexagon if it has just two non-adjacent vertices of degree 2 (as shown
in Fig. 3).

Let Lh denote the linear chain with h hexagons(as shown in Fig. 4a). A cata-
catacondensed f-benzenoid system is called an f-linear chain when fragment X is L2
and Y is Lh−2, and which is denoted as FLh , h ≥ 3 (as shown in Fig. 4b).

The extremal hexagonal systems with respect to some useful topological indices
such as connectivity index, general connectivity index, second Zagreb index, atom–
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Fig. 3 Five modes of hexagons in F

Fig. 4 Linear chain and f-linear chain. a Linear chain. b f-Linear chain

bond connectivity index, sum-connectivity index, geometric–arithmetic index, aug-
mented Zagreb index, harmonic index in chemical applications have been extensively
studied, and many results concerning this topic can be found in [3,8,14,19,27,33,36,
45,46,50–54,58].

In [40,41], we gave the expression of the second-order Randić and the general
connectivity indices of fluoranthene-type benzenoid systems in terms of their inlet fea-
tures. And they find the minimal and maximal value of the second-order Randić index
and the general connectivity indices over the set of cata-catacondensed fluoranthene-
type benzenoid systems and characterize their corresponding graphs.

In this paper, we give the expression of the augmented Zagreb index of f-benzenoid
systems (not only cata-catacondensed f-benzenoid systems) in terms of their inlet
features. The minimal and maximal values of the augmented Zagreb index over the set
of cata-catacondensed fluoranthene-type benzenoid systems were given. In the final,
we also discuss the minimal values of the augmented Zagreb indices of f-benzenoid
systems with h hexagons.
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Fig. 5 Structural features occurring on the boundary of f-benzenoid systems

2 The Augmented Zagreb Index of f-Benzenoid Systems

The following definitionswere introduced in [28,30]. If one goes along the perimeter of
an f-benzenoid system F , then a fissure (resp. a bay, cove, fjord, or lagoon) corresponds
to a sequence of three (resp. four, five, six, or seven) consecutive vertices on the
perimeter, of which the first and the last are vertices of degree 2 and the rest are
vertices of degree 3. (For examples see Fig. 5). The number of fissures, bays, coves,
fjords and lagoons are denoted, respectively, by f , B, C , Fj and L .

Fissures, bays, coves, fjords and lagoons are called various types of inlets. The total
number of inlets on the perimeter of F , f + B + C + Fj + L , will be denoted by r .
There is another parameter b = B+2C+3Fj +4L , called the number of bay regions,
will be useful later. It is easy to see that b ≥ 2 for all f-benzenoid systems, and b is just
the number of (3, 3)-type edges on the perimeter. Evidently, f +2B+3C+4Fj +5L
is the number of vertices of degree 3 on the perimeter.

First of all, all vertices in an f-benzenoid system have degrees equal to 2 or 3, so,
in further text, a j-vertex denotes a vertex of degree j , and a ( j, k)-edge stands for an
edge connecting a j-vertex with a k-vertex. The number of j-vertices and ( j, k)-edges
in the graph considered will be denoted by n j andm jk , respectively. So it follows that

AZI(F) = 8m22 + 8m23 +
(
3

2

)6

m33. (1)

If F is an f-benzenoid system with n vertices, m edges and h hexagons, then
F possesses h + 1 face cycles (h hexagons and a pentagon), so, m = n + h, and
n2 + n3 = n, 2n2 + 3n3 = 2m, it can be shown that n2 = n − 2h, n3 = 2h.

Some vertices and edges of F lie on its perimeter. These will be referred to as
external vertices and external edges, and their numbers are denoted by nex and mex,
respectively. Evidently, nex = mex.

The vertices and edges that are not external are said to be internal, and their numbers
are denoted by ni and mi . Clearly, nex + ni = n and mex + mi = m.

An f-benzenoid system with h hexagons and ni internal vertices represents a ben-
zenoid hydrocarbon of the formula C4h+5−ni H2h+5−ni . For this reason, f-benzenoid
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systems with equal number of hexagons and equal number of internal vertices will be
said to be isomeric. Isomeric f-benzenoid systems have also equal number of vertices
and equal number of edges. The formula of all cata-catacondensed f-benzenoids with
h six-membered rings is then C4h+4H2h+4 and, consequently, all these hydrocarbons
are isomers.

Lemma 2.1 [28] Let F be an f-benzenoid system with n vertices, m edges h hexagons
and ni internal vertices, then

(a) The number of internal edges mi = h + ni ;
(b) n = 4h + 5 − ni ;
(c) m = 5h + 5 − ni .

Lemma 2.2 [28] Let F be an f-benzenoid system with n vertices and h hexagons
(h ≥ 3). Then

(a) m22 + m23 + m33 = m;
(b) 6m22 + 5m23 + 4m33 = 6n,

where mi j represents the number of (i, j)-type edges in F.

Theorem 2.1 Let F be an f-benzenoid systemwith n vertices, h hexagons and r inlets.
Then

AZI(F) = 8n +
(
3

(
3

2

)6

− 16

)
h −

((
3

2

)6

− 8

)
r. (2)

Proof First, we have

m33 = 3h − r,

since by Lemma 2.1, we know that the number of (3, 3)-type edges that do not lie on
the perimeter is h + ni , and the others (3, 3)-type edges are along the perimeter, so,
we have

m33 = h + ni + b,

for n = 4h + 5 − ni , then, ni = 4h + 5 − n, so,

m33 = 5h + 5 − n + b.

We note that the number of external vertices of degree 3 is given by the expression
f + 2B + 3C + 4Fj + 5L , so, we have

f + 2B + 3C + 4Fj + 5L = n3 − ni .

For n3 = 2h, ni = 4h + 5 − n, then,

f + 2B + 3C + 4Fj + 5L = n − 5 − 2h.
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On the other hand,

f + B + C + Fj + L = r.

So, the number of bay regions is

b = B + 2C + 3Fj + 4L = n − 5 − 2h − r.

Thus,

m33 = 5h + 5 − n + b = 5h + 5 − n + n − 5 − 2h − r = 3h − r.

Second, it is clear that every inlet have two (2, 3)-type edges, thus, m23 = 2r .
Furthermore, by Lemmas 2.1 and 2.2, we know that

m22 + m23 + m33 = h + n,

hence, we have

m22 = h + n − m23 − m33 = n − 2h − r.

Now, Theorem 2.1 follows by substituting the values ofmi j obtained above in Eq. (1).
This completes the proof. ��

FromEq. (2), we can see that the augmented Zagreb index of an f-benzenoid system
is completely determined by the numbers of vertices, hexagons and inlets.

3 The Extremal Values of Augmented Zagreb Index in
Cata-catacondensed f-Benzenoid Systems

In this section, wewill try to find theminimal andmaximal value of augmented Zagreb
index over all cata-catacondensed f-benzenoid systems and characterize their corre-
sponding graphs. For convenience, we letFCh denote the set of all cata-catacondensed
f-benzenoid systems with h hexagons.

Theorem 3.1 Let F ∈ FCh be a cata-catacondensed f-benzenoid system with n ver-
tices, h hexagons, and r inlets. Then, the augmented Zagreb index of F is

AZI(F) =
(
3

(
3

2

)6

+ 16

)
h −

((
3

2

)6

− 8

)
r + 32. (3)

Proof First, we know that a cata-catacondensed f-benzenoid system has just one inter-
nal vertex, so, by Lemma 2.1, we have n = 4h + 4. Hence, by Theorem 2.1, we
get
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AZI(F) =
(
3

(
3

2

)6

+ 16

)
h −

((
3

2

)6

− 8

)
r + 32.

This completes the proof. ��
From Eq. (3), we can see that:

(i) The augmented Zagreb index of a cata-catacondensed f-benzenoid system is com-
pletely determined only by the numbers of hexagons and inlets;

(ii) Among all cata-catacondensed f-benzenoid systems with an equal number of
hexagons (or vertices, since n = 4h + 4 for a cata-catacondensed f-benzenoid
systemwith n vertices and h hexagons), the augmented Zagreb index is monotone
decreasing over the number of inlets.

Our next result classifies all cata-catacondensed f-benzenoid systems with an equal
number of vertices that have an equal augmented Zagreb index.

Corollary 3.1 Let F ′, F ′′ ∈ FCh, then, AZI(F ′) = AZI(F ′′) if and only if r(F ′) =
r(F ′′). Moreover, AZI(F ′) < AZI(F ′′) if and only if r(F ′) > r(F ′′).

From above analysis, we know that the augmented Zagreb indices of F ∈ FCh are
monotone decreasing over the number of inlets. So, it is interesting for us to find the
extremal values of r in FCh .

Lemma 3.1 [40] For any F ∈ CFh, h ≥ 3, we have

r(F) ≥
{ h+4

2 , if h is even

h+3
2 , if h is odd.

In [40], Li and Ye gave the following Lemma 3.3 which offers an upper bound for
the inlets over f-benzenoid system with h hexagons and we now give a short proof of
Lemma 3.3 by using the Lemma 3.2.

Lemma 3.2 [28] If an f-benzenoid system has h hexagons, ni internal vertices, and b
bay regions, then the counts of edges of type (2,2) and (2,3) are m22 = b + 5,m23 =
4h − 2ni − 2b.

Lemma 3.3 For any f-benzenoid system F with h hexagons, r(F) ≤ 2h − 3.

Proof By Lemma 3.2, we have

m23 = 4h − 2ni − 2b,

on the other hand, we know that m23 = 2r . So, we get

r = 2h − 3 − (ni + b − 3).

Since ni + b − 3 ≥ 0, Lemma 3.3 immediately follows.
This completes the proof. ��
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Fig. 6 Catacondensed ladders �(m1,m2, k) and �(2, 2, k)

Fig. 7 Cata-catacondensed f-benzenoid systems E3, E5, E6 and a fluoranthenoid F1

The catacondensed ladder is a type of branched catacondensed hexagonal system
shown in Fig. 6 and denoted by �(m1,m2, k); k is a positive integer. This class of
catacondensed systems has appeared frequently in the study of Kekulé structure of
benzenoid systems [15].

We can use �(2, 2, k) as the basic structure to construct cata-catacondensed f-
benzenoid systems Eh with minimal number of inlets as follows:

(i) If h is even, then E4 and E6 be as shown in Fig. 7. When h ≥ 8, we distinguish
two cases:
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Fig. 8 Two types of Eh when h is even

Case 1 If h mod 4 = 0, we first construct the catacondensed ladder �
(
2, 2, h

4

)
, then

we delete the L1 hexagon on the top of �
(
2, 2, h

4

)
, and then we attach an E3

(as shown in Fig. 7) to the bottom kink of �
(
2, 2, h

4

)
(as shown in Fig. 8).

Case 2 If h mod 4 �= 0, we first construct the catacondensed ladder �
(
2, 2, h−2

4

)
,

then we attach a hexagon to the top kink of �
(
2, 2, h−2

4

)
, and then we attach

an E3 to the bottom kink of it (as shown in Fig. 8).
(ii) If h is odd, then E3 and E5 be as shown in Fig. 7. When h ≥ 7, we distinguish

two cases:
Case 1 If (h − 1) mod 4 = 0, we first construct the catacondensed ladder

�
(
2, 2, h−1

4

)
, then attach a hexagon to the top kink of �

(
2, 2, h−1

4

)
, and

then we attach an F1 (as shown in Fig. 7) to the bottom kink (as shown in
Fig. 9).

Case 2 If (h − 1) mod 4 �= 0, we first construct the catacondensed ladder
�

(
2, 2, h+1

4

)
, thenwe delete the L1 type hexagon on the top of�

(
2, 2, h+1

4

)
,

and then we attach an F1 to the bottom kink (as shown in Fig. 9).

Nowwe give the minimal and maximal value of the augmented Zagreb indices over
the set of cata-catacondensed f-benzenoid systems and characterize their correspond-
ing graphs.

Theorem 3.2 For any F ∈ CFh, h ≥ 3, we have

(a) AZI(F) ≤ AZI(Eh)

=
⎧
⎨

⎩

(
5
2

( 3
2

)6 + 20
)
h + 48 − 2

( 3
2

)6
, if h is even(

5
2

( 3
2

)6 + 20
)
h + 44 − ( 3

2

)7
, if h is odd.

(b) AZI(F) ≥ AZI(FLh) =
(( 3

2

)6 + 32
)
h + 8 + 3

( 3
2

)6
.
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Fig. 9 Two types of Eh when h is odd

Proof By the structure of Eh , h ≥ 3 (as shown in Figs. 7, 8, 9), we have

r(Eh) =
{ h+4

2 , if h is even

h+3
2 , if h is odd,

and for f-linear chain FLh , h ≥ 3,wehave r(FLh) = 2h−3, and then byTheorem3.1,
Lemmas 3.1 and 3.3, we deduce the result.
This completes the proof. ��

4 The Extremal Values of Augmented Zagreb Indices in f-Benzenoid
Systems

In this section, we determine the extremal values of augmented Zagreb indices in
f-benzenoid systems with h hexagons.

By the proof of Theorem 2.1, we have

r = n − 5 − 2h − b, n = 4h + 5 − ni ,

and so by Eq. (2) in Theorem 2.1, we deduce that

AZI(F) =
((

3

2

)6

+ 32

)
h −

(
16 −

(
3

2

)6
)
ni +

((
3

2

)6

− 8

)
b + 40 (4)

From Eq. (4), we know that in f-benzenoid systems with h hexagons, the smaller n
(the greater ni ) and b are, the smaller augmented Zagreb index is.
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Fig. 10 The Harary–Harborth
construction of hexagonal
systems with maximal number
of internal vertices [32].
Hexagons have to be added
one-by-one, going along the
indicated spiral line

So, in the next section, we try to find f-benzenoid systems with the greater ni and
the smaller b.

By analogy with an extremal benzenoid system [9,32], an f-benzenoid system
possessing the maximum number of internal vertices ni = (ni )max for a given number
of hexagons is defined to be an extremal f-benzenoid system. Firstly, we determine the
expression for (ni )max.

Our result will rely on a result of Harary and Harborth [32]: Among the benzenoid
systems with h hexagons, the spiral hexagon system Th has the maximum number of
internal vertices, i.e., for any benzenoid system S with h hexagons,

ni (S) ≤ ni (Th) = 2h + 1 −
⌈√

12h − 3
⌉

, (5)

here the ceiling function is employed, 
x� is the smallest integer not smaller than x .
The spiral hexagon system Th is a hexagonal system with maximal number of

internal vertices which are constructed by the spiral method illustrated in Fig. 10.
For convenience,we let SHh(h ≥ 3)denote the set of all f-benzenoid systemswhose

two fragments X and Y are both spiral hexagon systems. Especially, an f-benzenoid
system F∗ ∈ SHh with two fragments X = Th−1 and Y = T1 is called an f-spiral
hexagon system (as shown in Fig. 11). It is obvious that

ni (F
∗) = 2h − 
√12(h − 1) − 3 �.

Lemma 4.1 [41] For any f-benzenoid system F ′ ∈ SHh, h ≥ 3, we have

ni (F
′) ≤ ni (F

∗) = 2h −
⌈√

12(h − 1) − 3
⌉

.

In [41], we introduce a graph operation and a corresponding result which will be
used later.

Operation 1 As shown in Fig. 12, for any f-benzenoid system F with fragments X
and Y , let h1 and h2 denote the number of hexagons in X and Y , respectively. We can
get a new f-benzenoid system F ′ ∈ SHh from F by replacing X and Y with spiral
hexagon systems Th1 and Th2 , respectively.
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1132 F. Li et al.

Fig. 11 An f-benzenoid system F ′ ∈ SHh whose two fragments X and Y are both spiral hexagon systems,
and an f-spiral hexagon system F∗ ∈ SHh with two fragments X = Th−1 and Y = T1

Fig. 12 F ′ is obtained from F by applying Operation 1 to it

Lemma 4.2 [41] For any f-benzenoid system F with h ≥ 3 hexagons, we have

ni (F) ≤ 2h −
⌈√

12(h − 1) − 3
⌉

.

Theorem 4.1 If F0 is an f-benzenoid system with h(h ≥ 3) hexagons such that

ni (F0) = 2h − u

b(F0) = 2

}
(6)
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Fig. 13 The general form of a
convex hexagonal system
(CHS). The parameters
ai ≥ 1, i = 1, 2, . . . , 6, count
the hexagons on the respective
side of CHS

then F0 has the smallest augmented Zagreb index in the f-benzenoid systems with h
hexagons, and

AZI(F0) = 3

(
3

2

)6

h +
(
16 −

(
3

2

)6
)
u + 2

((
3

2

)6

+ 12

)
,

where u = ⌈√
12(h − 1) − 3

⌉
.

By the structure of the f-spiral hexagon system F∗ with h hexagons, we know that
ni (F∗) = 2h−u. But, b(F∗) may not always equal to 2. It is obvious that if fragment
X of F∗ satisfies that b(X) = 0, i.e., X is a convex benzenoid system, we can get an
f-benzenoid system F∗ such that b(F∗) = 2 or 3.

But, we know that the fragment X constructed by the “spiral” method is not nec-
essarily convex (and may have a single bay, i.e., B = 1). So, it is naturally for us to
find a method to transform a spiral benzenoid system into a convex benzenoid system
with equal number of internal vertices.

The convex benzenoid systems is a special class of hexagonal systems [8] in which
there are no bay regions. The structure of a convex benzenoid system W can be
specified as W = H(a1, a2, a3, a4, a5, a6) for positive integers a1, a2, a3, a4, a5, a6.
Their general form is depicted in Fig. 13. It has been demonstrated [8] that W is
completely determined by the parameters a1, a2, a3, a4, since it must be

a5 = a1 + a2 − a4, a6 = a3 + a4 − a1.

Fortunately, the authors in [53] precisely determined necessary and sufficient condi-
tions for the existence of convex benzenoid systems with maximal number of internal
vertices.

Lemma 4.3 [53] Let h be a positive integer. The following conditions are equivalent:
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(a) There exists a convex benzenoid system W with h hexagons satisfying

ni (W ) = 2h + 1 −
⌈√

12h − 3
⌉

;

(b) There exist a set of positive integers a1, a2, a3, a4 which are solutions of the system
of equation

h = a1a3 + a1a4 + a2a3 + a2a4 − a2 − a3

− 1
2a1(a1 + 1) − 1

2a4(a4 + 1) + 1
⌈√

12h − 3
⌉ = a1 + 2a2 + 2a3 + a4 − 3

⎫
⎪⎪⎬

⎪⎪⎭
(7)

If the system of equation (7) has a solution for a positive integer h, then there exists
a convex benzenoid system W such that ni (W ) = ni (Th). But, Rada et al. [53] show
that not for every positive integer h there is a solution for the system of equation (7).
As a byproduct, they show that given a positive integer h, the existence of convex
benzenoid systems with maximal number of internal vertices implies the existence of
a solution to the following Diophantine equation

21x2 + 3y2 + z2 = 28

(⌈√
12h − 3

⌉2 − (12h − 3)

)
.

This gives a method to find values of h for which there are no convex benzenoid
systems which satisfy ni (W ) = ni (Th).

We now return to the study of augmented Zagreb indices of f-benzenoid systems.
If the following system

h − 1 = a1a3 + a1a4 + a2a3 + a2a4 − a2 − a3

− 1
2a1(a1 + 1) − 1

2a4(a4 + 1) + 1
⌈√

12(h − 1) − 3
⌉ = a1 + 2a2 + 2a3 + a4 − 3

⎫
⎪⎪⎬

⎪⎪⎭
(8)

has a solution {a1, a2, a3, a4} for a positive integer h − 1, then there exists a convex
benzenoid system Wh−1 such that

ni (Wh−1) = 2(h − 1) + 1 −
⌈√

12(h − 1) − 3
⌉

.

If at least one element ai in the set {a1, a2, a3, a4, a5, a6} is equal to 2, we let Wh−1
be the X fragment, and it is obvious that Wh−1 possess only one fissure on the side
of ai . Let the three vertices of this fissure be u, w, v in Fig. 2, and let Y be a single
hexagon, then we get an f-benzenoid system F�

1 with h hexagons such that ni (F�
1 ) =

2h − ⌈√
12(h − 1) − 3

⌉
and b(F�

1 ) = 2. (as shown in Fig. 14)
From above analysis, we can see that the set of relation in Eq. (6) is equivalent to

the system
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Fig. 14 Two f-benzenoid systems F�
1 and F�

2 whose fragments X are convex hexagon systems Wh−1

h − 1 = a1a3 + a1a4 + a2a3 + a2a4 − a2 − a3
− 1

2a1(a1 + 1) − 1
2a4(a4 + 1) + 1⌈√

12(h − 1) − 3
⌉ = a1 + 2a2 + 2a3 + a4 − 3

∃ ai ∈ {a1, a2, a3, a4, a5, a6}, ai = 2

⎫
⎪⎪⎬

⎪⎪⎭
(9)

Combining Theorem 4.1 and Lemma 4.2, we can get the following Theorem.

Theorem 4.2 Let h − 1 be a positive integer such that the system of equation (9) has
a solution. Then, F�

1 (as shown in Fig. 14) has the minimal augmented Zagreb index
in the f-benzenoid systems with h hexagons, and

AZI
(
F�
1

) = 3

(
3

2

)6

h +
(
16 −

(
3

2

)6
)
u + 2

((
3

2

)6

+ 12

)
,

where u = ⌈√
12(h − 1) − 3

⌉
.

If for any solution {a1, a2, a3, a4} of Eq. (8), there exist no elements in the set
{a1, a2, a3, a4, a5, a6} which is equal to 2, without loss of generality, we assume that
ai > 2, i.e., there exist at least two fissures on the side of ai , then, we let Wh−1 be
the X fragment and let the three vertices of the first fissure be the vertices u, w, v in
Fig. 2, and let Y be a single hexagon, then we get an f-benzenoid system F�

2 such that
ni (F�

2 ) = 2h − 
√12(h − 1) − 3 � and b(F�
2 ) = 3. (as shown in Fig. 14)

We have the following result.

Theorem 4.3 Let h−1 be a positive integer such that for any solution {a1, a2, a3, a4}
of the system of equation (8), no element in {a1, a2, a3, a4, a5, a6} is equal to 2. Then
F�
2 (as shown in Fig. 13) has the minimal augmented Zagreb index in the f-benzenoid

systems with h hexagons, and

AZI
(
F�
2

) = 3

(
3

2

)6

h +
(
16 −

(
3

2

)6
)
u + 3

(
3

2

)6

+ 16,
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Fig. 15 Two kinds of f-spiral hexagon systems F∗
1 and F∗

2

where u = ⌈√
12(h − 1) − 3

⌉
.

Proof It is easy to see that b(F�
2 ) = 3. Let F be an f-benzenoid system with h

hexagons. From Eq. (4), we have

AZI(F) − AZI
(
F�
2

)

= −
((

3

2

)6

− 8

)
(
b

(
F�
2

) − b(F)
)+

(
16 −

(
3

2

)6
)

(
ni

(
F�
2

) − ni (F)
) (10)

We consider two cases.

Case 1 If b(F) = 2, since ni (F) < ni (F�
2 ), i.e., ni (F�

2 ) − ni (F) ≥ 1, consequently
from Eq. (10) we deduce

AZI(F) − AZI(F�
2 ) ≥ 24 − 2

(
3

2

)6

> 0.

Case 2 If b(F) ≥ 3, which implies 3 − b(F) ≤ 0. Since ni (F�
2 ) − ni (F) ≥ 0 by

Eq. (10) it follows that

AZI(F) − AZI
(
F�
2

) ≥ 0.

This completes the proof. ��

Theorems 4.2 and 4.3 imply that F�
1 or F�

2 has the minimal augmented Zagreb
index when Eq. (8) has a solution for certain h − 1. So a question arises naturally:
if the system of equation (8) has no solution for certain h − 1, which is the minimal
augmented Zagreb index in the set of all f-benzenoid systems with h hexagons?
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From Lemma 4.3 we know that, if Eq. (8) has no solution for certain h − 1, there
exists no convex benzenoid system Wh−1 such that

ni (Wh−1) = 2(h − 1) + 1 −
⌈√

12(h − 1) − 3
⌉

.

In this case, we consider the f-spiral benzenoid system F∗ such that b(Th−1) = 1.
If there exists at least one side in X = Th−1 being equal to 2, then we denote this
f-spiral benzenoid system F∗ as F∗

1 what is formed by letting the three vertices of
the single fissure at the side of X = Th−1 equal to 2 be u, w, v in Fig. 2, and letting
Y be a single hexagon (as shown in Fig. 14). If there exists no side in X = Th−1
equal to 2, then we denote this f-spiral benzenoid system F∗ as F∗

2 which is formed
by arbitrarily selecting one side which is larger than 2, and letting the three vertices
of the first fissure at the chosen side of X = Th−1 be u, w, v, and letting Y be a single
hexagon (as shown in Fig. 15).

Theorem 4.4 Let h − 1 be a positive integer such that the system of equation (8)
has no solution. If there exists at least one side in X = Th−1 equal to 2, then the
f-spiral benzenoid system F∗

1 has minimal augmented Zagreb index over the set of all
f-benzenoid systems with h hexagons, and

AZI
(
F∗
1

) = 3

(
3

2

)6

h +
(
16 −

(
3

2

)6
)
u + 3

(
3

2

)6

+ 16,

where u = ⌈√
12(h − 1) − 3

⌉
.

Proof It is easy to see that on this condition, b(F∗
1 ) = 3. Let F be a f-benzenoid

system with h hexagons. From Eq. (4), we have

AZI(F) − AZI
(
F∗
1

)

= −
((

3

2

)6

− 8

)
(
b

(
F∗
1

) − b(F)
) +

(
16 −

(
3

2

)6
)

(
ni

(
F∗
1

) − ni (F)
) (11)

We consider two cases.

Case 1 If b(F) = 2, since ni (F) < ni (F∗
1 ), i.e., ni (F∗

1 ) − ni (F) ≥ 1, consequently
from equation (11) we deduce

AZI(F) − AZI(F�
1 ) ≥ 24 − 2

(
3

2

)6

> 0.

Case 2 If b(F) ≥ 3, which implies 3 − b(F) ≤ 0. Since ni (F∗
1 ) − ni (F) ≥ 0 by

Eq. (11) it follows that

AZI(F) − AZI(F∗
1 ) ≥ 0.
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This completes the proof. ��
Theorem 4.5 Let h − 1 be a positive integer such that the system of equation (8) has
no solution. If there exists no side in X = Th−1 equal to 2, then the f-spiral benzenoid
system F∗

2 has minimal augmented Zagreb index over the set of all f-benzenoid systems
with h hexagons and b ≥ 3, and

AZI
(
F∗
1

) = 3

(
3

2

)6

h +
(
16 −

(
3

2

)6
)
u + 4

((
3

2

)6

+ 2

)
,

where u = ⌈√
12(h − 1) − 3

⌉
.

Proof It is easy to see that on this condition, the fragment X in F∗
2 satisfies that

b(X) = 1, then b(F∗
2 ) = 4. Let F be a f-benzenoid system with h hexagons. From

Eq. (4), we know that

AZI(F) − AZI
(
F∗
2

) =

−
((

3

2

)6

− 8

)
(
b

(
F∗
2

) − b(F)
) +

(
16 −

(
3

2

)6
)

(
ni

(
F∗
2

) − ni (F)
) (12)

We consider two cases.

Case 1 If b(F) = 3, since ni (F) < ni (F∗
2 ), i.e., ni (F∗

2 ) − ni (F) ≥ 1, consequently
from (12) we deduce

AZI(F) − AZI(F∗
2 ) ≥ 24 − 2

(
3

2

)6

> 0.

Case 2 If b(F) ≥ 4, which implies 4 − b(F) ≤ 0. Since ni (F0) − ni (F) ≥ 0 by (5)
then again by (12) it follows that

AZI(F) − AZI(F∗
2 ) ≥ 0.

This completes the proof. ��
We end this section by the following problem.

Problem 1 Let h − 1 be a positive integer such that the system of equation (8) has no
solution. If there exists no side in X = Th−1 equal to 2, what is the minimal augmented
Zagreb index over the set of all f-benzenoid systems with h hexagons and b = 2.

5 Conclusions

In this paper, we give the expression for the augmented Zagreb indices of f-benzenoid
systems in terms of their inlet features. Andwe find theminimal andmaximal values of
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the augmented Zagreb indices over the set of cata-catacondensed f-benzenoid systems
and characterize their corresponding graphs.

As future work, it would be interesting to consider the values of other topologi-
cal indices of f-benzenoid systems, such as Wiener index [37] and Wiener polarity
index [49], the Zagreb index [1,25,48,56,57], ABC index [33,50], the Harary
index [2], graph energy [35,43,44],Randić energy [12], incidence energy [4],matching
energy [47], energy ofmatrix [23],HOMO-LUMO index [42], entropymeasures [5,6],
molecular identification numbers [13].
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201607910003).
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52. Rada, J., Araujo, O., Gutman, I.: Randić index of benzenoid systems and phenylenes. Croat. Chem.

Acta 74, 225–235 (2004)

123



The Augmented Zagreb Indices of Fluoranthene-Type… 1141

53. Rada, J., Cruz, R., Gutman, I.: Benzenoid systems with extremal vertex-degree-based topological
indices. MATCH Commun. Math. Comput. Chem. 72, 125–136 (2014)

54. Rada, J.: Vertex-degree-based topological indices of hexagonal systems with equal number of edges.
Appl. Math. Comput. 296, 270–276 (2017)

55. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)
56. Vasilyev, A., Darda, R., Stevanovic, D.: Trees of given order and independence number with minimal

first Zagreb index. MATCH Commun. Math. Comput. Chem. 72, 775–782 (2014)
57. Wang, D., Huang, Y., Liu, B.: Bounds on augmented Zagreb index. MATCHCommun.Math. Comput.

Chem. 68, 209–216 (2012)
58. Wu, R., Deng, H.: The general connectivity indices of benzenoid systems and phenylenes. MATCH

Commun. Math. Comput. Chem. 64, 459–470 (2010)
59. Xing, R., Zhou, B., Du, Z.: Further results on atom-bond connectivity index of trees. Discrete Appl.

Math. 158, 1536–1545 (2010)
60. Zhan, F., Qiao, Y., Cai, J.: Unicyclic and bicyclic graphs with minimal augmented Zagreb index. J.

Inequal. Appl. 1, 1–12 (2015)

123


	The Augmented Zagreb Indices of Fluoranthene-Type Benzenoid Systems
	Abstract
	1 Introduction
	2 The Augmented Zagreb Index of f-Benzenoid Systems
	3 The Extremal Values of Augmented Zagreb Index in Cata-catacondensed f-Benzenoid Systems
	4 The Extremal Values of Augmented Zagreb Indices in f-Benzenoid Systems
	5 Conclusions
	Acknowledgements
	References




