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Abstract This paper deals with the asymptotic behavior, regularity criterion and
global existence for the generalized Navier–Stokes equations. Firstly, an upper bound
for the difference between the solution of our equation and the generalized heat equa-
tion in L2 space is proved. We optimize the upper bound of decay for the solutions
and obtain the algebraic lower bound by using Fourier splitting method. Then, a new
scaling invariant regularity criterion on the fractional derivative is established. Finally,
global existence is obtained provided that the initial data are small enough.
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1 Introduction

We consider the following incompressible generalized Navier–Stokes equations:

ut + u · ∇u + ν(−�)αu + ∇P = 0, (1.1)
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div u = 0, (1.2)

here u = u(x, t) ∈ R
n, p = p(x, t) ∈ R represent the unknown velocity field and

the pressure, respectively. ν > 0 is the kinematic viscosity. For simplicity, we set
ν = 1 in the sequel. (−�)α is defined in terms of Fourier transform by ̂(−�)α f (ξ) =
|ξ |2α f̂ (ξ).

The existence of weak solutions was investigated by Jiu and Yu [12] (see also
[10,16] for the classical Navier–Stokes equations (α = 1)). Some decay estimates
were shown as follows:

Theorem 1.1 [12] Let 0 < α ≤ 5
4 . Then for divergence-free vector field u0 ∈

L2(R3) ∩ L p(R3) with max
{

1
3−2α , 1

}
≤ p < 2, system (1.1)–(1.2) admits a weak

solution such that

‖u(t)‖2L2 ≤ C(t + 1)
− 3

2α

(
2
p −1

)
,

where the constant C depends on α, the L p and L2 norms of the initial data.

From [31] (or [3] for the Navier–Stokes equations), we know that if u is a solution
to system (1.1)–(1.2), then uλ with any λ > 0 is also a solution, where uλ(x, t) =
λ2α−1u(λx, λ2αt). By direct calculation, we obtain the norms ‖u‖L p,q and ‖Λγ u‖L p,q

are scaling invariant for 2α
p + 3

q = 2α − 1 and 2α
p + 3

q = 2α + γ − 1, respectively.
Very recently, the local solution for the generalized MHD system was investigated

by Jiang and Zhou [11].

ut + u · ∇u + Λ2αu + ∇P = B · ∇B (1.3)

Bt + u · ∇B − Λ2βB = B · ∇u (1.4)

div u = div B = 0. (1.5)

If B ≡ 0, generalized MHD systems (1.3)–(1.5) reduce to this generalized Navier–
Stokes equations. The main result in [11] reduces to

Theorem 1.2 [11] For s > max{ n2 + 1 − α, 1}, and the initial data u0 ∈ Hs(Rn)

with divu0 = 0, there exists a time T∗ such that (1.1)–(1.2) have a unique solution
u ∈ C(0, T∗; Hs(Rn)).

It is shown that if α ≥ 1
2 + N

4 , then the solution u(x, t) remains smooth for all time
(refer [17,29] for details). When α = 1, systems (1.1)–(1.2) reduce to the classical
Navier–Stokes equations. The existence of a weak solution to the three-dimensional
Navier–Stokes equations is well known by Leray [16] and Hopf [10]. However, its
uniqueness and global regularity are still major challenging open problems. On the
other hand, many sufficient conditions ensuring the smoothness of a weak solution are
known. The classical Prodi–Serrin’s-type criteria (see [20,24], and for the case s = 3,
see [7]) say that if a weak solution u additionally belongs to Lt (0; T ; Ls(R3)), with
2
t + 3

s = 1, s ∈ [3;+∞], then it is regular and unique. Analogous result in terms of
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Asymptotic Behavior, Regularity Criterion… 1087

the gradient of velocity, i.e., ∇u ∈ Lt (0, T ; Ls(R3)), with 2
t + 3

s = 2, s ∈ ( 32 ;+∞]
is established by Beirão da Veiga (see [2]).

In this paper, we deal with the asymptotic behavior of solutions to the general-
ized Navier–Stokes equations by using Fourier splitting method. The Fourier splitting
method [23] was first applied to the parabolic conservation laws to obtain algebraic
energy decay rates. Then, it is used in the study of the classical Navier–Stokes equa-
tions [9,13,21,22] and the references therein. It is worth to point out that Zhou used a
new method to get the famous result in [30]. A new regularity criterion which almost
consists with the results in [2,20,24] and global existence with small initial data will
also be established to the generalized Navier–Stokes equations.

The rest of this paper is organized as follows. In Sect. 2, we collect some elementary
facts and inequalities that will be needed in later analysis. Section 3 is devoted to the
decay results for the generalized Navier–Stokes equation. A new regularity criterion
will be established in Sect. 4. Finally, global existence with small initial data will be
studied in Sect. 5.

2 Preliminaries

In this section, we will recall some known facts and elementary inequalities that will
be used frequently later.

Now, we list some notations that will be used in our paper. Use ‖u‖L p to denote the
L p(Rn) norm. Throughout this paper, C denotes a generic positive constant (generally
large); it may be different from line to line. Use f̂ and f̆ (or F−1) to denote the
Fourier transform f̂ (ξ) = 1

(2π)n/2

∫
Rn f (x)e−i xξdx and the inverse Fourier transform

f̆ (ξ) = 1
(2π)n/2

∫
Rn f (x)eixξdx . Hs(Rn) and Ḣ s(Rn) denote the nonhomogeneous

Sobolev spaces ‖u‖2Hs (Rn)
= ∫

Rn (1 + |ξ |2)s |û(ξ)|2dξ and homogeneous Sobolev

spaces‖u‖2
Ḣ s (Rn)

= ∫
Rn |ξ |2s |û(ξ)|2dξ . We introduce the norm L p,q

‖ f ‖L p,q =
⎧⎨
⎩

(∫ t
0 ‖ f (·, τ )‖p

Lqdτ
) 1

p
, if 1 ≤ p < ∞,

esssup 0<τ<t ‖ f ‖Lq , if p = ∞.

A fractional power of the Laplace transform (−�)α is defined through the Fourier
transform

̂(−�)α f (ξ) = |ξ |2α f̂ (ξ).

In particular, Λ = (−�)
1
2 is defined in terms of Fourier transform by Λ̂ f (ξ) =

|ξ | f̂ (ξ). More details on (−�)α can be found in Chapter 5 of Stein’s book [25] (or
see [6]).

Lemma 2.1 (Plancherel’s theorem) Assume u ∈ L1(Rn) ∩ L2(Rn). Then f̂ , f̆ ∈
L2(Rn) and

‖ f̂ ‖L2(Rn) = ‖ f̆ ‖L2(Rn) = ‖ f ‖L2(Rn).
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1088 Z. Jiang, M. Zhu

Lemma 2.2 (Gagliardo–Nirenberg inequality [18,19]) Let u belong to Lq in R
n and

its derivatives of order m,Λmu, belong to Lr , 1 ≤ q, r ≤ ∞. For the derivativesΛ j u,
0 ≤ j < m, the following inequalities hold

‖Λ j u‖L p ≤ C‖Λmu‖α
Lr ‖u‖1−α

Lq , (2.1)

where

1

p
= j

n
+ α

(
1

r
− m

n

)
+ (1 − α)

1

q
,

for all α in the interval

j

m
≤ α ≤ 1

(the constant depending only on n,m, j, q, r, α), with the following exceptional cases
1. If j = 0, rm < n, q = ∞, then we make the additional assumption that either

u tends to zero at infinity or u ∈ Lq̃ for some finite q̃ > 0.
2. If 1 < r < ∞, and m − j − n/r is a nonnegative integer, then (2.1) holds only

for a satisfying j/m ≤ α < 1.

By applying the Coifman–Meyer multiplier theorem [5] and Stein’s complex interpo-
lation theorem for analytic families [27], they [14,15] proved the following calculus
inequalities in the Sobolev spaces.

Lemma 2.3 (Kato–Ponce inequality [14,15]) Let s > 0, 1 < p < ∞, if f ∈ W 1,p1 ∩
Ws,q2 , g ∈ L p2 ∩ Ws,q1 , then

‖Λs( f g) − f Λsg‖L p ≤ C(‖∇ f ‖L p1 ‖Λs−1g‖Lq1 + ‖g‖L p2 ‖Λs f ‖Lq2 )

and

‖Λs( f g)‖L p ≤ C(‖ f ‖L p1 ‖Λsg‖Lq1 + ‖g‖L p2 ‖Λs f ‖Lq2 )

with 1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
.

3 Decay Results

As the assumption, v(x, t) is the solution of

{
vt + Λ2αv = 0;
v(x, 0) = u0(x).

By directly computation, we have

v̂(ξ, t) = e−|ξ |2α t û0(ξ).
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By the Plancherel’s theorem, we know that

‖v‖2L2 = ‖v̂‖2L2 = ‖e−|ξ |2α t û0(ξ)‖2L2 .

Our main results are as follows. Firstly, we establish the upper bound for the weak
solution of system (1.1)–(1.2) in L2 space.

Theorem 3.1 Assume v is the solution to the generalized heat equation vt +Λ2αv = 0
with the same initial data u0 ∈ L2(Rn), and

‖v(t)‖2L2 ≤ C(1 + t)−θ

for some θ > 0. Then, for n ≥ 2 and α ∈ (0, n+2
4 ], there exists a weak solution u(x, t)

such that

‖u(t)‖2L2 ≤ C(1 + t)−θ0 , t ≥ 0

with θ0 = min{θ, n+2
2α }.

Proof Multiplying u on (1.1), integration by parts, we get the following energy equal-
ity:

1

2

d

dt
‖u‖2L2 + ‖Λαu‖2L2 = 0. (3.1)

By Lemma 2.1 (Plancherel’s theorem), we have

‖Λαu‖2L2 =
∫

Rn
|ξ |2α |̂u|2dξ ≥ (2π)n|r(t)|2α

∫

|ξ |≥r(t)
|̂u|2dξ

≥
(

|r(t)|2α
∫

Rn
|̂u|2dξ − |r(t)|2α

∫

|ξ |≤r(t)
|̂u|2

)
dξ. (3.2)

Combining (3.2) to (3.1), we get

d

dt
‖û‖2L2(t) + 2r(t)2α‖û‖2L2 ≤ 2r(t)2α

∫

|ξ |≤r(t)
|û|2dξ. (3.3)

From the generalized Navier–Stokes equations, we obtain

|û| ≤ |v̂(ξ, t)| + |ξ |
∫ t

0
‖u‖2L2dτ.

Therefore, it follows from (3.3) that

d

dt
‖û‖2L2(t) + 2r(t)2α‖û‖2L2 ≤ Cr(t)2α

[
‖v̂‖2L2 + r(t)2+n

(∫ t

0
‖u‖2L2dτ

)2
]

.

(3.4)
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1090 Z. Jiang, M. Zhu

Let r(t)2α = 1
2(t+e) ln(t+e) , it yields

d

dt

[
ln(t + e)‖û‖2L2(t)

]
≤ C(t + e)−1−θ + C(t + e)−1− n+2

2α

(∫ t

0
‖u‖2L2dτ

)2

.

(3.5)

Now, we claim that ‖u(s)‖2
L2 ≤ C(1+s)β for some β > 0 when α = n+2

4 . In order

to prove the claim,weneed to show that ln(t+e)2‖u‖2
L2 ≤ C.Let r(t)2α = 1

(t+e) ln(t+e)
in (3.4), we have

d

dt

[
ln(t + e)2‖û‖2L2(t)

]

≤ C
ln(t + e)

t + e

{
(t + e)−θ + (ln(t + e)(t + e))−

n+2
2α

(∫ t

0
‖u‖2L2dτ

)2
}

.

Note that ‖u‖2
L2 is bounded, we have ln(t + e)2‖u‖2

L2 ≤ C. It follows that∫ s
0 ‖u(τ )‖2

L2dτ ≤ C(s + 1) ln(s + e)−2. Then, by the same argument as that in [28],
we complete the claim.

Suppose that ‖u(s)‖2
L2 ≤ C(1 + s)β with β > 0 for α = n+2

4 and β ≥ 0 for

α ∈ (0, n+2
4 ). Hence, from (3.5), we obtain

ln(t + e)‖û‖2L2(t) ≤ C(t + e)−θ + C(t + e)−
n+2
2α +2−2β,

which implies that

‖u‖2L2 ≤ (1 + t)−β̃ ,

with β̃ = min{θ, n+2
2α − 2 + 2β}. When α = n+2

4 , if we start with β = 0, we would
get β̃ = 0. This is why we need the claim above.

Now, starting with the new exponent, and after finitely many iterations, we get if
θ ≤ 1, then ‖u‖2

L2 ≤ C(1 + t)−θ . If θ > 1, then we have β̃ = 1 + ε with ε > 0.

It follows
∫ s
0 ‖u(τ )‖2

L2dτ ≤ C; here C is without respect to the time s. By (3.5), we
have

ln(t + e)‖û‖2L2 ≤ C(t + e)−θ + C(t + e)−
n+2
2α .

It follows that

‖u‖2L2 ≤ (1 + t)−θ0 for θ0 = min

{
θ,

n + 2

2α

}
.

This completes the proof of Theorem 3.1. ��
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Then, we optimize the upper bound of decay for the strong solutions and obtain their
algebraic lower bound.

Theorem 3.2 Assume v is the solution to the generalized heat equation vt +Λ2αv = 0
with the same initial data u0 ∈ H1(Rn) ∩ Rε

μ for some μ, ε > 0, and

‖v(t)‖2L2 ≤ M(1 + t)−
n
2α .

Then, v satisfies

m(1 + t)−
n
2α ≤ ‖v(t)‖2L2 ≤ M(1 + t)−

n
2α ,

here m, M are positive constants. Then for n ≥ 2 and α ∈ (0, n+2
4 ], we have

‖u(t)‖L2 ≥ C(1 + t)−
n
4α .

Here, Rε
μ = {u : |û(ξ)| ≥ μ for |ξ | ≤ ε} as that in [28].

In order to prove Theorem 3.2, we need the following lemma.

Lemma 3.3 Choose T1 large enough and fixed (will be chosen later). Let h be the
solution to the generalized heat equation

{
ht + Λ2αh = 0, t ≥ 0, x ∈ R

n;
h(x, 0) = u(x, T1), x ∈ R

n .

For t > T1, we have

C(δ)(1 + t)−
n
2α ≤ ‖h(t)‖2L2 ≤ C1(1 + t)−

n
2α .

Proof For |ξ | ≤ T
− 1

2α
1 , T1 ≥ max{ε−2α, 1}, by direct calculation we have

|û(ξ, T1)| =
∣∣∣∣e−|ξ |2αT1 û0 −

∫ T1

0
e−|ξ |2α(T1−s)(û · ∇u + ∇̂ p)(ξ, s)ds

∣∣∣∣
≥

∣∣∣e−|ξ |2αT1 û0
∣∣∣

−
∣∣∣∣∣∣

∫ T1

0
e−|ξ |2α(T1−s)

⎛
⎝

n∑
j=1

iξ ĵ u j u + iξ
n∑

i, j=1

ξiξ j

|ξ |2 ûi u j

⎞
⎠ (ξ, s)ds

∣∣∣∣∣∣
≥ e−1μ − C(|ξ |)

For |ξ | ≤ T
− 1

2α
1 , we can obtain

|û(ξ, T1)| ≥ δ.
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1092 Z. Jiang, M. Zhu

Then

‖h‖2L2 ≥
∫

|ξ |≤T
− 1
2α

1

e−2|ξ |2α t |û(ξ, T1)|2dξ ≥ δ2t−
n
2α

∫

|y|≤
√
t√
T1

e−2|y|2αdy.

For t > T1, we have

‖h‖2L2 ≥ δ2t−
n
2α

∫

|y|≤1
e−2|y|2αdy ≥ C(δ)(1 + t)−

n
2α ,

here C(δ) = δ2π
n
2

e2�( n2+1)
.

Now we give the upper bound for ‖h‖L2 ; we obtain

|ĥ(ξ, t)| = |e−|ξ |2α t û(ξ, T1)|
≤ |e−|ξ |2α(t+T1)û0| +

∣∣∣∣e−|ξ |2α t
∫ T1

0
e−|ξ |2α(T1−s)(û · ∇u + ∇̂ p)(ξ, s)ds

∣∣∣∣
≤ |e−|ξ |2α(t+T1)û0| + |Ce−|ξ |2α tξ |.

Then we have

‖h(·, t)‖L2 = |ĥ(ξ, t)|
≤ C‖ĥ(t + T1)‖L2 + C‖|ξ |e−|ξ |2α t‖L2

≤ C1(1 + t)−
n
4α .

��
Now, we give the proof of Theorem 3.2.

SetU (x, t) = u(x, t+T1) and V (x, t) = U (x, t)−h(x, t). Multiplying both sides
of the equation of V by V , and integrating over R

n , after suitable integration by parts,
we obtain

d

dt
‖V (t)‖2L2 + 2‖∇V ‖2L2 = 2

∫

Rn
(U · ∇)U · V dx

≤ 2‖∇h‖L∞‖U‖2L2 .

Using the parseval’s equality, we have

d

dt
‖V̂ (t)‖2L2 + 2‖̂∇V ‖2L2 ≤ 2‖∇h‖L∞‖U‖2L2 .

It follows that

d

dt
‖V̂ (t)‖2L2 + k

1 + t
‖̂∇V ‖2L2 ≤ k

1 + t

∫

|ξ |≤r(t)
|V̂ (t)|2dξ + 2‖∇h‖L∞‖U‖2L2 .

(3.6)
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On the other hand, we have

V̂ (ξ, t) =
∫ t

0
e−|ξ |2α(t−s) Ĥ(ξ, s)ds,

here

Ĥ(ξ, t) = −Û · ∇U − ∇̂P,

which follows

|Ĥ(ξ, t)| ≤ C |ξ |‖U‖2L2 .

Thanks to the above inequality, we have

V̂ (ξ, t) ≤ C
∫ t

0
(|ξ |‖U‖2L2)ds

≤ C |ξ |
∫ t+T1

T1
‖u‖2L2ds

≤ C |ξ |(1 + T1)
− n

2α +1.

Inserting above inequality into the right-hand side of (3.6), we obtain

d

dt

[
(1 + t)k‖V̂ (t)

]
‖2L2 ≤ C(1 + t)k−1− n+2

2α (1 + T1)
− n

α
+2 + 2‖∇h‖L∞‖U‖2L2 .

(3.7)

Before completing the proof, we need to show

‖∇h‖L∞ ≤ ‖∇̂h‖L1 ≤
∫

Rn
|ξ ||ĥ

(
t − 1

2

)
|e−|ξ |2α t+1

2 dξ

≤ C‖ĥ
(
t − 1

2

)
‖L2(1 + t)−

n+2
4α ≤ C(1 + t)−

n+1
2α . (3.8)

Combining (3.8) into (3.7) and choosing T1 large enough, we have

‖V (·, t)‖2L2 ≤ C(δ)

4
(1 + t)−

n
2α as t → ∞.

Then, we can deduce

‖V (·, t)‖2L2 ≥
√
C(δ)

2
(1 + t)−

n
2α as t → ∞.

Now, we complete the proof of Theorem 3.2. ��
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4 Regularity Criterion

In [11], they proved that the generalized Navier–Stokes system is local well posed for
any given initial datum ‖u0‖ ∈ Hs with s > max{ 52 − α, 1}. However, whether this
unique local solution (for the case α < 5

4 ) can exist globally is still an open problem. In
this section, a new regularity criterion will be established to (1.1)–(1.2) in dimension
three. Our main result is as follows

Theorem 4.1 Suppose α ∈ (0, 1], u0 ∈ Hm(R3) with m ≥ 5
2 − α and divu0 = 0. If

on [0, T ], u(x, t) satisfies

Λθu(x, t) ∈ Lt,s, wi th
2α

t
+ 3

s

≤ 2α − 1 + θ, θ ∈ [1 − α, 1], 3

2α − 1 + θ
< s < ∞. (4.1)

Then the solution remains smooth on [0, T ] and satisfies

u ∈ L∞(0, T ; Hm(R3)) ∩ L2(0, T ; Hm+α(R3)).

Remark 4.1 If α = 1, system (1.1)–(1.2) is the classical Navier–Stokes equations.
Our regularity criterion reduces to

Λθu(x, t) ∈ Lt,s, with
2

t
+ 3

s
≤ 1 + θ, θ ∈ [0, 1], 3

1 + θ
< s < ∞. (4.2)

When θ = 0, (4.2) is almost the famous result established by Prodi [20] and Serrin
[24]. When θ = 1, (4.2) reduces to H. Beirão da Veiga’s work in [2].

Remark 4.2 It is worth to point out that ‖Λθu‖Lt,s is scaling invariant for 2α
t + 3

s =
2α − 1 + θ . It is interesting and difficult to get similar results for θ ∈ [0, 1 − α).

Remark 4.3 Our result can also be established to any dimension by the same argument.
We only present the theorem and omit the detail proof.

Theorem 4.2 Suppose α ∈ (0, 1], u0 ∈ Hm(RN ) with m ≥ n
2 + 1 − α, N ≥ 2 and

divu0 = 0. If on [0, T ], u(x, t) satisfies

Λθu(x, t) ∈ Lt,s, wi th
2α

t
+ N

s

≤ 2α − 1 + θ, θ ∈ [1 − α, 1], N

2α − 1 + θ
< s < ∞.

Then the solution remains smooth on (0, T ) and satisfies

u ∈ L∞(0, T ; Hm(RN )) ∩ L2(0, T ; Hm+α(RN )).
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Proof Multiplying (1.1) by u, after integration by parts and taking the divergence-free
property into account, we have the following energy estimate

‖u‖2L2 + 2
∫ T

0
‖Λαu‖2L2dτ = ‖u0‖2L2 .

H1-estimation. Multiplying (1.1) by �u , after integration by parts and taking the
divergence-free property into account, we have the following energy estimate

1

2

d

dt
‖∇u‖2L2 + ‖Λ1+αu‖2L2 =

∫

R3
u · ∇u�udx

=
∫

R3
−∂kui∂i u j∂ku jdx

≤
∫

R3
−∂̂kuiF−1(∂i u j∂ku j )dx

≤
∫

R3
−|ξ |θ−1∂̂kui |ξ |1−θF−1(∂i u j∂ku j )dx

≤
∫

R3
−Λθ−1(∂kui )Λ

1−θ (∂i u j∂ku j )dx

≤ ‖Λθ−1(∂kui )‖Ls‖Λ1−θ (∂i u j∂ku j )‖
L

s
s−1

Note that

Λθ−1∂ku = −Λθ−1Rk(Λu),

where Ri is the Riesz transform, R̂i g(ξ) = −i(ξi/|ξ |)ĝ(ξ), and the boundedness of
the operator Ri : L p → L p, 1 < p < ∞, we have

‖Λθ−1(∂kui )‖L p ≤ ‖Λθu‖L p , 1 < p < ∞.

By the Kato–Ponce inequality, Gagliardo–Nirenberg inequality and the above esti-
mate, we have

1

2

d

dt
‖∇u‖2L2 + ‖Λ1+αu‖2L2 ≤ C‖Λθu‖Ls‖∇u‖L A‖Λ2−θu‖LB

≤ C‖Λθu‖Ls‖∇u‖2−μ−ν

L2 ‖Λ1+αu‖μ+ν

L2 ,

where

1

s
+ 1

A
+ 1

B
= 1;

1

A
=

(
1

2
− α

3

)
μ + 1 − μ

2
;

1

B
= 1 − θ

3
+

(
1

2
− α

3

)
ν + 1 − ν

2
.
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By direct calculation, we have

μ = 3(A − 2)

2αA
, ν = 5

2α
− θ

α
− 3

αB
.

Then,

1

2

d

dt
‖∇u‖2L2 + ‖Λ1+αu‖2L2

≤ C‖Λθu‖Ls‖∇u‖2−
4−θ
α

+ 3
αA+ 3

αB
L2 ‖Λ1+αu‖

4−θ
α

− 3
αA− 3

αB
L2

≤ C‖Λθu‖Ls‖∇u‖2−
1−θ
α

− 3
αs

L2 ‖Λ1+αu‖
1−θ
α

+ 3
αs

L2

≤ C‖Λθu‖
2αs

2αs−s+θs−3
Ls ‖∇u‖2L2 + 1

2
‖Λ1+αu‖2L2 .

Actually, the choice of A and B depends on s. Here we can choose A = 2(α+1)s
(α+1)s−2 and

B = 2(α+1)s
2(α+1)s−2α . By the Gronwall’s inequality and assumption (4.1), we obtain

u ∈ L∞(0, T ; H1) ∩ L2(0, T ; H1+α).

H2-estimation. Taking � to (1.1) and multiplying (1.1) by �u, after integration
by parts and taking the divergence-free property into account, we have the following
energy estimate

1

2

d

dt
‖�u‖2L2 + ‖Λ2+αu‖2L2 =

∣∣∣∣
∫

R3
�(u · ∇u)�udx

∣∣∣∣

≤
∣∣∣∣
∫

R3
∂hh(ui∂i u j )∂kku jdx

∣∣∣∣

≤
∣∣∣∣
∫

R3
∂hhui∂i u j∂kku jdx +

∫

R3
∂hui∂ihu j∂kku jdx

∣∣∣∣

By the same argument as above.

1

2

d

dt
‖�u‖2L2 + ‖Λ2+αu‖2L2 ≤ C‖Λθu‖Ls‖�u‖L A‖Λ3−θu‖LB

≤ C‖Λθu‖Ls‖�u‖2−μ−ν

L2 ‖Λ2+αu‖μ+ν

L2

≤ C‖Λθu‖Ls‖�u‖2−
4−θ
α

+ 3
αA+ 3

αB
L2 ‖Λ2+αu‖

4−θ
α

− 3
αA− 3

αB
L2

≤ C‖Λθu‖Ls‖�u‖2−
1−θ
α

− 3
αs

L2 ‖Λ2+αu‖
1−θ
α

+ 3
αs

L2

≤ C‖Λθu‖
2αs

2αs−s+θs−3
Ls ‖�u‖2L2 + 1

2
‖Λ2+αu‖2L2 .

123



Asymptotic Behavior, Regularity Criterion… 1097

By the Gronwall’s inequality and the assumption, we have

u ∈ L∞(0, T ; H2(R3)) ∩ L2(0, T ; H2+α(R3)).

Due to Sobolev’s embedding Hs ↪→ L∞ with s > 3
2 , we have ∇u ∈ L2(0, T ; L∞)

for α > 1
2 . This completes the proof for α > 1

2 by the BKM criterion [1].
H3-estimation. Then, for α ∈ (0, 1

2 ], we need to show the H3-estimation. Taking
∇� to (1.1) and multiplying (1.1) by ∇�u, after integration by parts and taking the
divergence-free property into account, we have the following energy estimate

1

2

d

dt
‖Λ3u‖2L2 + ‖Λ3+αu‖2L2 = −

∫

R3
∇�(u · ∇u)∇�udx

= −
∫

R3
∂ikku · ∇u∂ikku + 2∂iku · ∂k∇u∂ikku

+ ∂kku · ∂i∇u∂ikku + ∂i u · ∂kk∇u∂ikku + 2∂ku · ∂ik∇u∂ikkudx

= K1 + K2 + K3 + K4 + K5. (4.3)

One can use the methods above to estimate K1, K4, K5.
The section term can be estimated as above

|K1| + |K4| + |K5| ≤ C‖Λθu‖Ls‖Λ3u‖L A‖Λ4−θu‖LB

≤ C‖Λθu‖Ls‖Λ3u‖2−μ−ν

L2 ‖Λ3+αu‖μ+ν

L2

≤ C‖Λθu‖Ls‖Λ3u‖2−
4−θ
α

+ 3
αA+ 3

αB
L2 ‖Λ3+αu‖

4−θ
α

− 3
αA− 3

αB
L2

≤ C‖Λθu‖Ls‖Λ3u‖2−
1−θ
α

− 3
αs

L2 ‖Λ3+αu‖
1−θ
α

+ 3
αs

L2

≤ C‖Λθu‖
2αs

2αs−s+θs−3
Ls ‖Λ3u‖2L2 + 1

4
‖Λ3+αu‖2L2 .

By the Hölder inequality, Gagliardo–Nirenberg inequality and Young’s inequality, we
can estimate K2 and K3 in the right-hand side of (4.3)

|K2| + |K3| ≤ C‖Λ2u‖2
L

12s
6−2θs+5s

‖Λ3u‖
L

6s
s+2θs−6

≤ C(‖Λθu‖Ls‖Λ3u‖L2)‖Λ3u‖1−
1
α
(1−θ+ 3

s )

L2 ‖Λ3+αu‖
1
α
(1−θ+ 3

s )

L2

≤ C‖Λθu‖Ls‖Λ3u‖2−
1−θ
α

− 3
αs

L2 ‖Λ3+αu‖
1−θ
α

+ 3
αs

L2

≤ C‖Λθu‖
2αs

2αs−s+θs−3
Ls ‖Λ3u‖2L2 + 1

4
‖Λ3+αu‖2L2 .

Combining the above estimates to (4.3), by the Gronwall’s inequality, we have

u ∈ L∞(0, T ; H3(R3)) ∩ L2(0, T ; H3+α(R3)).
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Due to Sobolev’s embedding Hs ↪→ L∞ with s > 3
2 , we have ∇u ∈ L2(0, T ; L∞).

This complete the proof of Theorem 3.1 by the regularity criterion in [1]. ��

5 Global Existence

In this section, we will show that the local solution can exist globally with the small
initial data.

Theorem 5.1 Suppose α ∈ (0, 5
4 ), u0 ∈ Hm(R3) with m ≥ 5

2 − α and divu0 = 0.
There exists a constant K > 0 such that if ‖u0‖

Ḣ
5
2−2α ≤ K, then there exists a unique

global solution.

Remark 5.1 Our result is partially motivated by Chae and Lee’s work for Hall-MHD
system in [4]. As we know, Leary [16] proved that if ‖u0‖H1 is small enough, then
the classical Navier–Stokes equations exist globally. In 1964, Fujita and Kato [8]
improved Leary’s result as the initial data ‖u0‖

Ḣ
1
2
are small enough. It seems that our

result is a generalization.

Proof The proof of the global existence is based on the energy method by combining
the local existence and the closure of the a priori estimate. We can use the similar
method as that in [11] to obtain the local existence. Here we only need to close the
priori estimate. That is, under the priori assumption that ‖u‖Hm (R3)(t), m ≥ 5

2 − 2α
is very small, say, ‖u‖Hm (R3)(t) < δ where δ is a sufficiently small positive constant,
we want to prove the following energy inequality

d

dt
‖u‖2Hm (R3)

+ ‖u‖2Hm+α(R3)
≤ ‖u‖Hm (R3)(t)‖u‖2Hm+α(R3)

.

In fact, this inequality is to say that if ‖u‖Hm (R3) is priori small uniformly in time,
then it will be smaller than what is expected. Now, as long as it is initially small, it
must be uniformly bounded in all time due to the continuity argument.

Assume ‖u‖Hm (R3)(t) < δ where δ is a sufficiently small positive constant.

Taking Λ
5
2−2α to (1.1) and multiplying (1.1) by Λ

5
2−2αu, we have the following

energy estimate

1

2

d

dt
‖Λ 5

2−2αu‖2L2 + ‖Λ 5
2−αu‖2L2

=
∣∣∣∣
∫ T

0
Λ

5
2−2α(u · ∇u)Λ

5
2−2αudx

∣∣∣∣
≤ C‖Λ 5

2−2α(u · ∇u) − u · ∇Λ
5
2−2αu‖L2‖Λ 5

2−2αu‖L2

≤ C‖∇u‖
L

3
α
‖Λ 5

2−2αu‖
L

6
3−2α

‖Λ 5
2−2αu‖L2

≤ C‖Λ 5
2−2αu‖L2‖Λ 5

2−αu‖2L2 .

Here, we have used the Kato–Ponce inequality.
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Choosing K so small that

C‖Λ 5
2−2αu0‖L2 ≤ 1

2
,

then, for any T > 0, we have

‖Λ 5
2−2αu‖2L2 +

∫ T

0
‖Λ 5

2−αu‖2L2dτ ≤ ‖Λ 5
2−2αu0‖2L2 .

Then, we will show the Hm-estimate for the generalized Navier–Stokes equations.

1

2

d

dt
‖Λmu‖2L2 + ‖Λm+αu‖2L2 =

∣∣∣∣
∫

R3
Λm(u · ∇u)Λmudx

∣∣∣∣
≤ C‖∇u‖

L
3
α
‖Λmu‖L2‖Λmu‖

L
6

3−2α

≤ C‖Λ 5
2−αu‖L2‖Λmu‖L2‖Λm+αu‖L2

≤ C‖Λ 5
2−αu‖2L2‖Λmu‖2L2 + 1

2
‖Λm+αu‖2L2 .

Choosing K so small that

C‖Λ 5
2−2αu0‖L2 ≤ 1

2
,

then, for any T > 0, we have

‖Λmu‖2L2 +
∫ T

0
‖Λm+αu‖2L2dτ ≤ C‖Λmu0‖2L2 .

This completes the proof of Theorem 4.1. ��
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