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980 L. Wei

1 Introduction

Fractional partial differential equations (FPDEs) have gained more and more attention
since many phenomena could be modeled by these equations in science and engineer-
ing [20]. Some publications have summarized the historical developments of fractional
calculus, such as Oldham and Spanier [16], Miller and Ross [14], and Podlubny [17]
and so on. Due to the important applications of FPDEs in engineering and science,
some numerical methods including finite difference methods, finite element methods
and spectral methods have been developed and analyzed; for details, the readers can
refer to [2,13,18,19,22].

In recent years the study of distributed-order differential equations has attracted
much attentionofmany researchers. Thedistributed-order partial differential equations
could be viewed as a natural generalization of the multi-term fractional differential
equation. It has important application in modeling ultraslow diffusion where a plume
of particles spreads at a logarithmic rate [10]. Luchko [12] studied the generalized
distributed-order time-fractional diffusion equation on bounded domains and proved
its uniqueness and continuous dependence on initial conditions. Ford andMorgado [5]
studied the existence and uniqueness of solutions of the distributed-order differential
equations.

Some scholars have proposed different numerical methods to solve the distributed-
order differential equations. B. Jin and his coworkers [8] studied the Galerkin finite
element method for the distributed-order time-fractional diffusion and established
error estimates optimal with respect to data regularity in L2 and H1 norms for
both smooth and nonsmooth initial data. Katsikadelis [9] presented an efficient
numerical method to solve linear and nonlinear distributed-order differential equa-
tions. Diethelm and Ford [4] developed an effective numerical method to solve the
distributed-order fractional ordinary differential equations. Morgado and Rebelo [15]
proposed and analyzed an implicit scheme for the distributed-order time-fractional
reaction–diffusion equation. Ye, Liu and Anh [25] studied a compact finite difference
scheme for a distributed-order time-fractional diffusion-wave equation. Li and Wu
[11] proposed a numerical method to solve the distributed-order diffusion equations.
In [1] Alikhanov presented a finite difference method for the multi-term variable
distributed-order diffusion equation. Gao and Sun [6] studied the finite difference
methods for the distributed-order differential equations and also proved its stability
and convergence. However, up to our knowledge, the study on numerical methods for
distributed-order differential equations is just beginning. The development of easy-
to-use and higher-order numerical methods for such equations is still an important
issue.

Consider the following distributed-order time-fractional reaction–diffusion equa-
tion in the Caputo sence

Dw
t u(x, t) = ∂2u(x, t)

∂x2
− ρu(x, t) + f (x, t), x ∈ (a, b), t ∈ (0, T ],

u(x, 0) = 0, x ∈ [a, b], (1.1)
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ρ > 0 is the constant reaction rate, and

Dw
t u(x, t) =

∫ 1

0
w(α)C

0 Dα
t u(x, t)dα, w(α) ≥ 0,

∫ 1

0
w(α)dα = c0 > 0,

C
0 Dα

t u(x, t) = 1

�(1 − α)

∫ t

0

∂u(x, s)

∂s

ds

(t − s)α
, t > 0, 0 < α < 1.

Here �(·) denotes the Gamma function, and the periodic or compactly supported
boundary condition considered in this paper.

The discontinuous Galerkin method, which has many good features of a finite ele-
ment and a finite volumemethod, is a very attractivemethod to solve partial differential
equations due to its flexibility in terms of mesh and shape functions and can achieve
a high order of convergence. In this paper, we first present a finite difference scheme
to approximate the time-fractional derivatives, and then a fully discrete method for
the distributed-order time-fractional reaction–diffusion equation in which the spatial
direction is approximated by a LDG method is presented and analyzed.

The paper is organized as follows. In Sect. 2 we will introduce some basic notations
and theoretic results. Then in Sect. 3 we present our finite difference/local discon-
tinuous Galerkin method for the distributed-order time-fractional reaction–diffusion
equation and discuss the stability and give an error estimate in Sect. 4. In Sect. 5,
numerical results are also given to illustrate the accuracy of convergence and capabil-
ity of the method, and the concluding remarks are included in the final section.

2 Notations and Auxiliary Results

Let � = ⋃
j I j be the partition of � = [a, b], and I j =

[
x j− 1

2
, x j+ 1

2

]
, for j =

1, . . . N . The cell lengths �x j = x j+ 1
2

− x j− 1
2
, 1 ≤ j ≤ N , and h = max

1≤ j≤N
�x j .

Denote by u+
j+ 1

2
and u−

j+ 1
2
the traces from the right cell I j+1 and the left cell I j ,

respectively.
[
un

h

]
j− 1

2
is used to denote

(
un

h

)+
j− 1

2
− (

un
h

)−
j− 1

2
, i.e., the jump of un

h at

each element boundary point, and the jump will be zero for a continuous function.
The associated discontinuous Galerkin element space V k

h is defined as the space of
piecewise polynomials of the degree up to k,

V k
h = {v : v ∈ Pk (

I j
)
, j = 1, 2, . . . N }.

For error estimates,wewill use the projectionsP andP± in [a, b], for j = 1, . . . N ,

∫

I j

(Pμ(x) − μ(x))ω(x) = 0, ∀ω ∈ Pk(I j ), (2.1)

∫

I j

(P+μ(x) − μ(x))ω(x) = 0, ∀ω ∈ Pk−1(I j ),

P+μ

(
x+

j− 1
2

)
= μ

(
x j− 1

2

)
, (2.2)
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982 L. Wei

and
∫

I j

(P−μ(x) − μ(x))ω(x) = 0, ∀ω ∈ Pk−1(I j ),

P−μ

(
x−

j+ 1
2

)
= μ

(
x j+ 1

2

)
. (2.3)

The above projections P and P± satisfy the following inequality [23,24,26]

‖μe‖ + h‖μe‖∞ + h
1
2 ‖μe‖τh ≤ Chk+1, (2.4)

here μe = Pμ − μ or μe = P±μ − μ. The positive constant C is independent of h
and solely depends on μ. τh denotes the set of boundary points of all elements I j .

Divide the interval [0, T ] uniformly with a time-step size �t = T
M , M ∈ N,

tn = n�t, n = 0, 1, . . . , M be the mesh points.
Divide the integral interval [0, 1] into 2L-subintervals with �α = 1

2L and α j =
j�α, j = 0, 1, 2, . . . , 2L .
In order to discretize the distributed-order time derivative, we introduce the follow-

ing composite Simpson formula.

Lemma 2.1 (The composite Simpson formula)
If s(α) ∈ C (4)[0, 1], then we have

∫ 1

0
s(α)dα = �α

2L∑
j=0

d j s(α j ) − �α4

180
s(4)(ξ), ξ ∈ (0, 1),

where

d j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

3
, j = 0, 2L

2

3
, j = 2, 4, . . . , 2L − 2

4

3
, j = 1, 3, . . . , 2L − 1.

Next some definitions about fractional calculus will be given. The left-sided
Riemann–Liouville fractional derivative is defined as

RL
a Dα

t f (t) = 1

�(n − α)

dn

dtn

∫ t

a

f (s)

(t − s)α
ds,

and the left-sided Caputo fractional derivative

C
0 Dα

t f (t) = 1

�(n − α)

∫ t

0

f (n)(s)

(t − s)α
ds,

when n − 1 < α < n.
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Lemma 2.2 [17] For 0 < α < 1, t > 0, the left-sided Caputo fractional derivative

C
0 Dα

t f (t) = 1

�(1 − α)

∫ t

0

f ′(s)
(t − s)α

ds

is equivalent to the Riemann–Liouville fractional derivative

RL
0 Dα

t f (t) = 1

�(1 − α)

d

dt

∫ t

0

f (s)

(t − s)α
ds,

when f (0) = 0.

Denote

	2+α(R) = { f | f ∈ Ł1(R) :
∫ ∞

−∞
(1 + |ξ |)2+α| f̂ (ξ)|dξ < ∞},

where f̂ (ξ) = ∫ ∞
−∞ eiξ t f (t)dt is the Fourier transformation of f (t).

In order to approximate the Riemann–Liouville fractional derivative, and using the
weighted and shifted Grünwald difference operator, we have

Lemma 2.3 [3,6,7] Suppose f ∈ 	2+α(R) with 0 ≤ α ≤ 1. We have

RL
0 Dα

t u(x, tn) = 1

(�t)α

n∑
j=0

μα
j u(x, tn− j ) + O

(
(�t)2

)
,

where

μ j =

⎧⎪⎨
⎪⎩

(
1 + α

2

)
gα
0 , j = 0

(
1 + α

2

)
gα

j − α

2
gα

j−1, otherwise.

The coefficients gα
j satisfy the following properties

gα
0 = 1, gα

1 = −α ≤ 0,

gα
2 ≤ gα

3 ≤ gα
4 ≤ . . . 0,

∞∑
k=0

gα
k = 0,

n∑
k=0

gα
k ≥ 0, n ≥ 1, (2.5)

and they can be evaluated recursively by
gα
0 = 1, gα

k = (
1 − α+1

k

)
gα

k−1, k ≥ 1.
For 0 ≤ α ≤ 1, after some manual calculation we know

μα
0 = 1 + α

2
> 0,

μα
1 = −1

2
(α + 3)α ≤ 0,

123



984 L. Wei

μα
2 = 1

4
(α2 + 3α − 2)α,

μα
j ≤ 0, j ≥ 3. (2.6)

Lemma 2.4 [6,21] Suppose (δ0, δ1, δ2, . . . , δm)T ∈ Rm+1 is a real vector, m ∈ N+.
Then the coefficients {μα

j }∞j=0 defined in Lemma 2.3 satisfy the following inequality

m∑
n=0

⎛
⎝

n∑
j=0

μα
j δn−k

⎞
⎠ δn ≥ 0,

In the present paperC will be used as a positive constant whichmay have a different
value in different occurrences.We denote the piecewise derivative of the functionw(x)

by wx and the L2 norm on D by ‖ · ‖D , respectively. If D = �, we drop D.

3 The Scheme

In this section, we introduce the numerical scheme for the solution of Eq. (1.1).
In virtue of Lemmas 2.1, 2.2 and 2.3, we have [6]

Dw
t u(x, tn) =

∫ 1

0
w(α)C

0 Dα
tn u(x, tn)dα

=
∫ 1

0

w(α)

�(1 − α)

∫ tn

0

∂u(x, s)

∂s

ds

(tn − s)α
dα

= �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

μ
α j
k u(x, tn−k) + rn, (3.1)

where the truncation error |rn| ≤ C
(
(�t)2 + �α4

)
.

For Eq. (1.1) we first consider the equivalent first-order system

p = ux , Dw
t u(x, t) = px − ρu(x, t) + f (x, t). (3.2)

Let un
h, pn

h ∈ V k
h be the approximation of u(·, tn), p(·, tn), respectively, f n(x) =

f (x, tn).We seek the approximation solutionsun
h, pn

h ∈ V k
h , such that for test functions

v, ξ ∈ V k
h ,

⎛
⎝ρ + �α

2L∑
j=0

d jw(α j )
1

(�t)α j
μ

α j
0

⎞
⎠

∫

�

un
hvdx +

∫

�

pn
hvxdx

−
N∑

j=1

((
p̂n

hv−)
j+ 1

2

−
(

p̂n
hv+)

j− 1
2

)
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= �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=1

(
−μ

α j
k

) ∫

�

un−k
h vdx +

∫

�

f nvdx,

∫

�

pn
hξdx +

∫

�

un
hξxdx −

N∑
j=1

((
ûn

hξ−)
j+ 1

2

−
(

ûn
hξ+)

j− 1
2

)
= 0. (3.3)

The initial conditions u0
h are taken as the L2 projections of u(, 0)

∫

�

u0
hφdx =

∫

�

Pu(x, 0)φdx =
∫

�

u0(x)φdx,

∀v ∈ V k
h .

The “hat” terms in (3.3) in the cell boundary terms from integration by parts are
the so-called numerical fluxes, which are single-valued functions defined on the edges
and should be designed based on different guiding principles for different PDEs to
ensure stability. It turns out that we can take the simple choices such that

ûn
h = ũn

h + τ
[

pn
h

]
, ũn

h = (
un

h

)−
, p̂n

h = (
pn

h

)+
, (3.4)

where τ > 0 is a constant. We remark that the choice for fluxes (3.4) is not unique. In
fact the crucial part is taking ũn

h and p̂n
h from opposite sides [23,24,26].

4 Stability and Convergence

Theorem 4.1 Fully discrete LDG scheme (3.3) is unconditionally stable for any �t >

0,

ρ�t

2

m∑
n=1

‖un
h‖2 + �t

m∑
n=1

⎛
⎝‖pn

h‖2 + τ

N∑
j=1

[pn
h ]2

j− 1
2

⎞
⎠≤χ�t‖u0

h‖2 + �t

2ρ

m∑
n=1

‖ f n‖2,

1 ≤ m ≤ M,

where χ = �α
∑2L

j=0 d jw(α j )
1

(�t)α j μ
α j
0 .

Proof Scheme (3.3) can be rewritten as

ρ

∫

�

un
hvdx + �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
μ

α j
k

) ∫

�

un−k
h vdx

+
∫

�

pn
hvxdx −

N∑
j=1

((
p̂n

hv−)
j+ 1

2

−
(

p̂n
hv+)

j− 1
2

)
=

∫

�

f nvdx,

∫

�

pn
hξdx +

∫

�

un
hξxdx −

N∑
j=1

((
ûn

hξ−)
j+ 1

2

−
(

ûn
hξ+)

j− 1
2

)
= 0. (4.1)
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986 L. Wei

Taking the test functions v = un
h, ξ = pn

h in (4.1) and with fluxes choice (3.4) we
obtain

ρ‖un
h‖2 + �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
μ

α j
k

) ∫

�

un−k
h un

hdx + τ

N∑
j=1

[
pn

h

]2
j− 1

2

+ ‖pn
h‖2 +

N∑
j=1

(
�

(
un

h, pn
h

)
j+ 1

2
− �

(
un

h, pn
h

)
j− 1

2
+ �

(
un

h, pn
h

)
j− 1

2

)

=
∫

�

f nun
hdx

≤ 1

2ρ
‖ f n‖2 + ρ

2
‖un

h‖2. (4.2)

here

�
(
un

h, pn
h

) = (
pn

h

)− (
un

h

)− − p̂n
h

(
un

h

)− − ûn
h

(
pn

h

)−
,

�
(
un

h, pn
h

) = (
pn

h

)− (
un

h

)− − (
pn

h

)+ (
un

h

)+ − p̂n
h

(
un

h

)− + p̂n
h

(
un

h

)+ − ûn
h

(
pn

h

)− + ûn
h

(
pn

h

)+
.

After some calculations, we can easily obtain �(un
h, pn

h) = 0.
Then we can get

ρ

2
‖un

h‖2 + �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
μ

α j
k

) ∫

�

un−k
h un

hdx

+ ‖pn
h‖2 + τ

N∑
j=1

[
pn

h

]2
j− 1

2
≤ 1

2ρ
‖ f n‖2. (4.3)

Denoting χ = �α
2L∑
j=0

d jw(α j )
1

(�t)α j μ
α j
0 , we know [6]

χ = 1

O(�t | ln�t |) > 0.

Next summing up n from 1 to m, and adding a term χ‖u0
h‖2 on both sides in 4.3,

we obtain
m∑

n=1

ρ

2
‖un

h‖2 +
m∑

n=1

⎛
⎝‖pn

h‖2 + τ

N∑
j=1

[
pn

h

]2
j− 1

2

⎞
⎠

+ �α

2L∑
j=0

d jw(α j )
1

(�t)α j

m∑
n=0

n∑
k=0

(
μ

α j
k

) ∫

�

un−k
h un

hdx

≤ χ‖u0
h‖2 + 1

2ρ

m∑
n=1

‖ f n‖2. (4.4)
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In virtue of Lemma 2.4, we get

ρ�t

2

m∑
n=1

‖un
h‖2 + �t

m∑
n=1

⎛
⎝‖pn

h‖2 + τ

N∑
j=1

[
pn

h

]2
j− 1

2

⎞
⎠

≤ χ�t‖u0
h‖2 + �t

2ρ

m∑
n=1

‖ f n‖2, 1 ≤ m ≤ M,

where χ�t = 1
O(| ln�t |) ≤ 1.

This finishes the proof of the stability result. 
�
Theorem 4.2 Let u(x, tn) be the exact solution of problem (1.1) at time t = tn, un

h be
the numerical solution of fully discrete LDG scheme (3.3), for any positive integer m,
there exists a constant C such that

m∑
n=1

‖u(·, tn) − un
h‖ ≤ C(hk+ 1

2 + (�t)2 + �α4), 1 ≤ m ≤ M.

Proof Denote

en
u = u (x, tn) − un

h = Pen
u − (Pu (x, tn) − u (x, tn)) ,

en
p = p (x, tn) − pn

h = P+en
p − (P+ p (x, tn) − p (x, tn)

)
. (4.5)

Taking fluxes (3.4), we can obtain the error equation:

ρ

∫

�

en
uvdx + �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
μ

α j
k

) ∫

�

en−k
u vdx

+
∫

�

en
pvxdx −

N∑
j=1

(((
en

p

)+
v−

)

j+ 1
2

−
((

en
p

)+
v+

)

j− 1
2

)
+

∫

�

rnvdx

+
∫

�

en
pξdx +

∫

�

en
uξxdx −

N∑
j=1

(((
en

u

)−
ξ−)

j+ 1
2

−
((

en
u

)−
ξ+)

j− 1
2

)

+ τ

N∑
j=1

[
pn

h

] [ξ ] j− 1
2

= 0. (4.6)

By virtue of (4.5), error Eq. (4.6) can be written as follows:

ρ

∫

�

Pen
uvdx +

∫

�

P+en
pvxdx −

N∑
j=1

(((
P+en

p

)+
v−

)

j+ 1
2

−
((

P+en
p

)+
v+

)

j− 1
2

)

+
∫

�

P+en
pξdx +

∫

�

Pen
uξxdx −

N∑
j=1

(((Pen
u

)−
ξ−)

j+ 1
2

−
((Pen

u

)−
ξ+)

j− 1
2

)
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+
∫

�

rnvdx + τ

N∑
j=1

[
P+en

p

]
[ξ ] j− 1

2

= �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
−μ

α j
k

) ∫

�

Pen−k
u vdx

− �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
−μ

α j
k

) ∫

�

(Pu (x, tn−k) − u (x, tn−k)) vdx

+
∫

�

(P+ p(x, tn) − p(x, tn)
)
vxdx −

N∑
j=1

((
(P+ p(x, tn) − p(x, tn)

)+
v−)

j+ 1
2

−
(((P+ p(x, tn) − p(x, tn)

)+
v+)

j− 1
2

)
+ ρ

∫

�

(Pu(x, tn) − u(x, tn)) vdx

+
∫

�

(P+ p (x, tn) − p (x, tn)
)
ξdx +

∫

�

(Pu (x, tn) − u (x, tn)) ξxdx

−
N∑

j=1

((
(Pu (x, tn) − u (x, tn))− ξ−)

j+ 1
2

− (
(Pu (x, tn) − u (x, tn))− ξ+)

j− 1
2

)

+ τ

N∑
j=1

[P+ p(x, tn) − p(x, tn)
] [ξ ] j− 1

2
(4.7)

Let v = Pen
u , ξ = P+en

p in (4.7), and by the application of properties (2.1)–(2.2),
we can obtain the following inequality easily

ρ‖Pen
u‖2 + ‖P+en

p‖2 + τ

N∑
j=1

[
P+en

p

]2
j− 1

2

+ �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
μ

α j
k

)
‖Pen−k

u ‖‖Pen
u‖

≤ ‖P+ p(x, tn) − p(x, tn)‖‖P+en
p‖ + ‖rn‖‖Pen

u‖

+
N∑

j=1

(Pu(x, tn) − u(x, tn))−
[
P+en

p

]
j− 1

2

+ τ

N∑
j=1

[P+ p(x, tn) − p(x, tn)
] [

P+en
p

]
j− 1

2

Noticing the fact that

φϕ ≤ εφ2 + 1

4ε
ϕ2,
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using the Höld’s inequality, choosing a small enough ε ≤ τ , we have

ρ‖Pen
u‖2 + ‖P+en

p‖2 + �α

2L∑
j=0

d jw(α j )
1

(�t)α j

n∑
k=0

(
μ

α j
k

)
‖Pen−k

u ‖‖Pen
u‖

≤ ‖P+ p(x, tn) − p(x, tn)‖2 + 1

ρ
‖rn‖2 + 1

ε

N∑
j=1

(
(Pu(x, tn) − u(x, tn))−

)2
j− 1

2

+ τ 2

ε

N∑
j=1

[P+ p(x, tn) − p(x, tn)
]2

j− 1
2

Notice
‖rn‖ ≤ C

(
(�t)2 + �α4

)
,

summing up n from 1 to m, using Lemma 2.4 and interpolating property (2.4), we
have

m∑
n=1

‖Pen
u‖ ≤ C

(
hk+ 1

2 + (�t)2 + �α4
)

, 1 ≤ m ≤ M.

From the triangle inequality, Theorem 4.2 follows. 
�

Remark We can find that a L2-error estimate of half an order lower O
(

hk+ 1
2

)
in

space has been proved; however, the optimal error estimate will be obtained in the
numerical experiments.

5 Numerical Examples

In this section, in order to verify numerical accuracy of the proposed method and the
correctness of analysis, numerical experiments will be carried out.
Example In (1.1), taking � = [0, 1], T = 0.5, w(α) = �(p + 1 − α), ρ = 1, and

f (x, t) =
[
2p�(p + 1)(t p − t p−1)

ln t
+ 4π2(2t)p + (2t)p

]
sin(2πx), (5.1)

where p > 0. Then the exact solution of the example is

u(x, t) = (2t)p sin(2πx).

Firstly, to confirm the spatial accuracy, we take the fixed and sufficiently small step
sizes �t and �α, and the varying h = 1/5, 1/10, 1/15, 1/20,, respectively, and the
numerical errors and order of convergence in L2-norm and L∞-norm are listed in
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Table 1 L2 and L∞ errors and
convergence orders of scheme
(3.3) in space with
p = 5,�α = 1

200 , �t = 1
1000

N L2-error Order L∞-error Order

P0

5 2.503089e−01 – 5.877853e−01 –

10 1.274782e−01 0.97 3.057237e−01 0.94

15 8.527318e−02 0.99 2.079117e−01 0.95

20 6.403044e−02 0.99 1.560205e−01 0.99

P1

5 5.990089e−02 – 2.238379e−01 –

10 1.645674e−02 1.86 6.296363e−02 1.83

15 7.444577e−03 1.96 2.873518e−02 1.93

20 4.213571e−03 1.98 1.621082e−02 1.99

P2

5 6.120741e−03 – 2.894045e−02 –

10 8.292215e−04 2.88 3.849735e−03 2.91

15 2.500655e−04 2.96 1.204924e−03 2.86

20 1.063324e−04 2.97 5.076364e−04 3.00

Table 2 L2 and L∞ errors and
convergence orders of scheme
(3.3) in space with
p = 4,�α = 1

200 , �t = 1
1000

N L2-error Order L∞-error Order

P0

5 2.539839e−01 – 5.877853e−01 –

10 1.279661e−01 0.99 3.091468e−01 0.93

15 8.541926e−02 1.00 2.079580e−01 0.98

20 6.409228e−02 1.00 1.564553e−01 0.99

P1

5 6.559144e−02 – 2.424330e−01 –

10 1.685305e−02 1.96 6.425581e−02 1.92

15 7.524215e−03 1.99 2.899338e−02 1.96

20 4.238911e−03 1.99 1.628811e−02 2.00

P2

5 6.545516e−03 – 3.108081e−02 –

10 8.462754e−04 2.95 3.946457e−03 2.98

15 2.523293e−04 2.98 1.216670e−03 2.90

20 1.066993e−04 2.99 5.108480e−04 3.01

Tables 1, 2, 3 and 4. From the tables one can find that the errors attain (k +1)-th order
of accuracy for piecewise Pk polynomials.

Secondly, the numerical accuracy of scheme (3.3) in time variable is computed.
Take the fixed and sufficiently small h and �α. From Table 5 and Fig. 1 we can find
that the second order of convergence of scheme (3.3) in time variable is verified.
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Table 3 L2 and L∞ errors and
convergence orders of scheme
(3.3) in space with
p = 3,�α = 1

200 , �t = 1
1000

N L2-error Order L∞-error Order

P0

5 2.604364e−01 – 6.109355e−01 –

10 1.287600e−01 1.01 3.120732e−01 0.97

15 8.565369e−02 1.01 2.088261e−01 0.99

20 6.419104e−02 1.00 1.568216e−01 0.99

P1

5 6.694642e−02 – 2.478747e−01 –

10 1.693177e−02 1.98 6.457302e−02 1.94

15 7.539528e−03 2.00 2.905454e−02 1.97

20 4.243728e−03 2.00 1.630570e−02 2.01

P2

5 6.650626e−03 – 3.158589e−02 –

10 8.496961e−04 2.97 3.965641e−03 2.99

15 2.527751e−04 3.00 1.218706e−03 2.91

20 1.067895e−04 3.00 5.114581e−04 3.02

Table 4 L2 and L∞ errors and
convergence orders of scheme
(3.3) in space with
p = 2, �α = 1

200 ,�t = 1
1000

N L2-error Order L∞-error Order

P0

5 2.638459e−01 – 6.203264e−01 –

10 1.291611e−01 1.03 3.132108e−01 0.86

15 8.577118e−02 1.01 2.091611e−01 1.00

20 6.424040e−02 1.00 1.569626e−01 1.00

P1

5 6.727034e−02 – 2.493961e−01 –

10 1.694957e−02 1.99 6.465786e−02 1.95

15 7.542958e−03 2.00 2.907104e−02 1.97

20 4.244804e−03 2.00 1.631063e−02 2.01

P2

5 6.675408e−03 – 3.170449e−02 –

10 8.504668e−04 2.97 3.969952e−03 3.00

15 2.528763e−04 2.99 1.218706e−03 2.91

20 1.068132e−04 3.00 5.115941e−04 3.02

Table 5 L2 and L∞ errors and
convergence orders of scheme
(3.3) in time with
p = 1,�α = 1

200 , h = 1
200 .

Piecewise P2 polynomials are
used

M L2-error Order L∞-error Order

10 5.129408e−05 – 7.254110e−05 –

20 1.312613e−05 1.97 1.856479e−05 1.97

30 6.097629e−06 1.89 8.630873e−06 1.89

40 3.599872e−06 1.83 5.108219e−06 1.82
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Fig. 1 Temporal accuracy test
using piecewise P2 polynomials
for different p.
�α = 1

200 , N = 200
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6 Conclusion

We have proposed and analyzed a fully discrete LDGmethod for the distributed-order
time-fractional reaction–diffusion equation in this paper. Based on the weighted and
shifted Grünwald formula for discretizing the time-fractional derivative, we develop a
fully discrete scheme to solve problem (1.1) and prove that the method is uncondition-

ally stable and convergent with order O
(

hk+ 1
2 + (�t)2 + �α4

)
. Numerical example

is computed to show the convergence order and excellent numerical performance of
proposed method. It is noted that the method proposed in this paper could be extended
to solve the problems on a rectangular or cubical domain, but the computation is very
huge. In future we want to try our best to solve this problem.
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