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numerical experiment suggest the superiority of the newmethods in terms of accuracy
and computational efficiency over hybrid methods for special second ODEs, Runge–
Kutta methods recently proposed for solving special fourth-order ODEs directly and
some linear multistep methods proposed for the same purpose in the literature.

Keywords Hybrid method · Four-step method · B4-series · Order conditions ·
Fourth-order ordinary differential equations

Mathematics Subject Classification 65L05

Communicated by Ahmad Izani Md. Ismail.

B Y. D. Jikantoro
jdauday@yahoo.ca

1 Department of Mathematics, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2 Institute for Mathematical Research, University Putra Malaysia (UPM), 43400 Serdang,
Selangor, Malaysia

3 Department of Mathematics, Ibrahim Badamasi Babangida University, P.M.B 11, Lapai, Nigeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-017-0520-x&domain=pdf
http://orcid.org/0000-0001-7634-2283


986 Y. D. Jikantoro et al.

1 Introduction

Fourth-order ordinary differential equations (ODEs) occur in a number of areas of
applied sciences including quantum mechanics, fluid mechanics, elasticity, physics
and engineering. It is a common knowledge that many classes of fourth-order ODEs
defy analytical solution. That is, only a small class of the equations can be solved
by analytical techniques. Hence, the need for numerical methods becomes impera-
tive. Owing to this fact, a number of authors have proposed and investigated some
numerical methods for solving the fourth-order ODEs, among which are linear multi-
step and Runge–Kutta- related methods [1–4], where the fourth-order ODEs need to
be transformed into an equivalent system of first-order ODEs for the numerical inte-
gration to proceed. The drawback of computational inefficiency of these methods
prompted direct integrators for fourth-order ODEs such as cubic spline colloca-
tion tau method [5], logarithmic collocation method [6], cubic spline method for
fourth-order obstacle problems [7], fourth-order initial and boundary value prob-
lems integrators [8]. Other such methods can be found in [9–11] and references
therein.

In this paper, we seek to construct and investigate a class of efficient numerical
integrators for a class of special fourth-order ODEs, which takes the form

yiv(x) = f (x, y(x)), y(x0) = y0, y′(x0) = y′
0, y′′(x0) = y′′

0 , y′′′(x0) = y′′′
0 , (1)

where y ∈ Rr , f : R × Rr → Rr is a continuous vector value function. And the
fact that f does not depend on y′, y′′, y′′′ explicitly is the specialty associated with
(1). Typical example of (1) is the ill-posed problem of a beam on elastic foundation,
which finds an important engineering application. This problem has been studied in
[11,12].

In line with the direct numerical integrators of Runge–Kutta type for a class of
special third-order ODEs [13], a direct numerical integrator of Runge–Kutta type was
proposed for (1) recently [11], whose internal and update stages depend on the first,
second and the third derivatives of the solution at each step. We propose a class of new
integrators whose stages do not depend on the derivatives of the solution.

Section 2 is devoted to formulation of the proposed method. In Sect. 3, we present
the theory of B-series and the associated rooted trees through which order conditions
of the proposed method are derived. Local truncation error and order of conver-
gence of the method are presented in Sect. 4. We present algebraic order conditions
of the method in Sect. 5. As examples, explicit one-stage and two-stage HMFD
methods are presented in Sect. 6. Stability and convergence analysis is presented
in Sect. 7. Numerical experiment is presented in Sect. 8. And conclusion is given in
Sect. 9.

2 Formulation of HMFD Method

To formulate the proposed HMFDmethod, we consider transforming (1) into a system
of first-order initial value problem (IVP) as follows:
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⎛
⎜⎜⎝

y(x)
u(x)
v(x)
w(x)

⎞
⎟⎟⎠

′

=

⎛
⎜⎜⎝

u(x)
v(x)
w(x)

f (x, y(x))

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

y(x0)
u(x0)
v(x0)
w(x0)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y0
y′
0
y′′
0

y′′′
0

⎞
⎟⎟⎠ . (2)

An s-stage Runge–Kutta method is defined by

Yi = yn + h
s∑

j=1

āi, j f (xn + c j h,Y j ), i = 1, ..., s,

yn+1 = yn + h
s∑

j=1

b̄i f (xn + ci h,Yi ). (3)

Applying (3) to (2), the following equations are obtained

Yi = yn + h
s∑

j=1

āi, j Ȳ j ,

Ȳi = y′
n + h

s∑
j=1

āi, j
¯̄Y j ,

¯̄Yi = y′′
n + h

s∑
j=1

āi, j
¯̄̄
Y j ,

¯̄̄
Y i = y′′′

n + h
s∑

j=1

āi, j f (xn + c j h,Y j ),

yn+1 = yn + h
s∑

i=1

b̄i Ȳi ,

y′
n+1 = y′

n + h
s∑

i=1

b̄i
¯̄Yi ,

y′′
n+1 = y′′

n + h
s∑

i=1

b̄i
¯̄̄
Y i ,

y′′′
n+1 = y′′′

n + h
s∑

i=1

b̄i f (xn + ci h,Yi ).
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Eliminating Ȳi ,
¯̄Yi and ¯̄̄

Y i in the equations above, we have

Yi = yn + h
s∑

j=1

āi, j y
′
n + h2

s∑
j,k=1

āi, j ā j,k y
′′
n + h3

s∑
j,k,l=1

āi, j ā j,k āk,l y
′′′
n

+ h4
s∑

j,k,l,m=1

āi, j ā j,k āk,l āl,m f (xn + cmh,Ym),

yn+1 = yn + h
s∑

i=1

b̄i y
′
n + h2

s∑
i, j=1

b̄i āi, j y
′′
n + h3

s∑
i, j,k=1

b̄i āi, j ā j,k y
′′′
n

+ h4
s∑

i, j,k,l=1

b̄i āi, j ā j,k āk,l f (xn + clh,Yl),

y′
n+1 = y′

n + h
s∑

i=1

b̄i y
′′
i + h2

s∑
i, j=1

b̄i āi, j y
′′′
n + h3

s∑
i, j,k=1

b̄i āi, j ā j,k f (xn + ckh,Yk),

y′′
n+1 = y′′

n + h
s∑

i=1

b̄i y
′′′
n + h2

s∑
i, j=1

b̄i āi, j f (xn + c j h,Y j ),

y′′′
n+1 = y′′′

n + h
s∑

i=1

b̄i f (xn + ci h,Yi ).

Denote

s∑
j=1

āi, j = ci ,
s∑

j,k=1

āi, j ā j,k = ci (ci + 1)

2
,

s∑
j,k,l=1

āi, j ā j,k āk,l = ci (ci + 1)(ci + 2)

6
,

s∑
i=1

bi =
s∑

i, j=1

b̄i āi, j =
s∑

i, j,k=1

b̄i āi, j ā j,k = 1, i = 1, ..., s.

And

s∑
k,l,m=1

āi,k āk,l āl,mām, j = ai, j ,
s∑

j,k,l=1

b̄ j ā j,k āk,l āl,i = bi .

The above suppositions together with difference formula on the above equations lead
to the proposed method in vector form as follows:

yn+1 = 2 (2yn − 3yn−1 + 2yn−2) − yn−3 + h4
(
bT ⊗ I

)
f (xn + ch,Y),

Y = 1
6 {C1 ⊗ yn − 3C2 ⊗ yn−1 + 3C3 ⊗ yn−2 − C4 ⊗ yn−3} + h4 (A ⊗ I) f (xn + ch,Y), (4)

where C1 = 6e + 11c + 6c2 + c3, C2 = 6c + 5c2 + c3, C3 = 3c + 4c2 + c3,
C4 = 2c+3c2 + c3, b = [b1, ..., bm]T , c = [c1, ..., cm]T , e = [1, ..., 1]T ,A = [ai, j ],

123



A Class of Hybrid Methods for Direct Integration of Fourth… 989

Table 1 General coefficients of HMFD methods

-3 a1,1 a1,2 a1,3 · · · a1,m

-2 a2,1 a2,2 a2,3 · · · a2,m

-1 a3,1 a3,2 a3,3 · · · a3,m

0 a4,1 a4,2 a4,3 · · · a4,m

c5 a5,1 a5,2 a5,3 · · · a5,m
...

...
...

...
...

...
cm am,1 am,2 am,3 · · · am,m

b1 b2 b3 · · · bm

Y = [Y1, ...,Ym]T and I is identity matrix of m × m dimension. The coefficients of
the methods are summarized in Table 1.

3 B4-Series and Associated Rooted Trees

As we have in the case of RKT, RKN and RK methods for third-, second- and first-
order ODEs, when working on the derivation of order conditions for HMFD methods
for fourth-order ODEs, we need to consider the autonomous case of problem (1)

yiv(x) = f (y(x)), y(x0) = y0, y′(x0) = y′
0, y′′(x0) = y′′

0 , y′′′(x0) = y′′′
0 . (5)

In fact, the equation in (1) can be extended by one dimension v = x in order to rewrite
the initial value problem (IVP) (1) equivalently as the following autonomous problem

viv = 0, v(x0) = x0, v′(x0) = 1, v′′(x0) = 0, v′′′(x0) = 0,

yiv = f (v, y), y(x0) = y0, y′(x0) = y′
0, y′′(x0) = y′′

0 , y′′′(x0) = y′′′
0 . (6)

Applying the scheme (4) to (6) gives

Vi = 1

6

[
C1vn − 3C2vn−1 + 3C3vn−2 − C4vn−3

]
,

= vn + hciv
′
n + h2

2
ci (ci + 1)v′′

n + h3

6
ci (ci + 1)(ci + 2)v′′′

n ,

Yi = 1

6

[
C1yn − 3C2yn−1 + 3C3yn−2 − C4yn−3

] + h4
s∑

j=1

ai, j f (Vj ,Y j ),

vn+1 = 4zn − 6zn−1 + 4vn−2 − vn−3,= vn + hv′
n + h2v′′

n + h3v′′′
n ,

yn+1 = 4yn − 6yn−1 + 4yn−2 − yn−3 + h4
s∑

i=1

bi f (Vi ,Yi ). (7)
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Substituting first part of (6) into (7) gives

Vi = xn + ci h,

vn+1 = xn + h,

Yi = 1

6

[
C1yn − 3C2yn−1 + 3C3yn−2 − C4yn−3

] + h4
s∑

j=1

ai, j f (xn + c j h,Y j ),

yn+1 = 4yn − 6yn−1 + 4yn−2 − yn−3 + h4
s∑

i=1

bi f (xn + ci h,Yi ). (8)

Observe the last two equations of (8), they look exactly like (4). This implies that
the HMFD method (4) applied to (5) produces the same numerical solution like the
one obtained when (4) is applied to (1).Thus, it’s enough to discuss the numerical
solution of (5). Hence, the method (4) takes the form

Yi = 1

6

[
C1yn − 3C2yn−1 + 3C3yn−2 − C4yn−3

] + h4
s∑

j=1

ai, j f (Y j ),

yn+1 = 4yn − 6yn−1 + 4yn−2 − yn−3 + h4
s∑

i=1

bi f (Yi ). (9)

Continuous differentiation of the exact solution y(x) with respect to independent
variable x gives the following:

y′ = y′, y′′ = y′′, y′′′ = y′′′, yiv = f (y), yv = f ′(y)y′,
yvi = f ′′(y)(y′, y′) + f (y)y′′, yvi i = f ′′′(y)(y′, y′, y′)

+ 3 f ′′(y)(y′, y′′) + f ′(y)y′′′,
yvi i i = f iv(y)(y′, y′, y′, y′) + 6 f ′′′(y)(y′, y′, y′′) + 3 f ′′(y)(y′′, y′′)

+ 4 f ′(y)(y′, y′′′) + f ′(y) f (y).

3.1 Construction of Rooted Trees

Here, detail description of how the relevant trees in this paper are constructed is given.
It’s easy to associate each of the expressions of the derivatives of y above and those of
higher orders with rooted trees. The relevant trees here consist of four type of vertices,
namely small dot ( ), big dot ( ), small circle ( ) and big circle ( ) representing y′, y′′,
y′′′ and f , respectively. The ’branch’ of a tree is a line joining its vertices according
to naturally defined rules. The line simply indicates differentiation with respect to
components of y, y′, y′′ or y′′′. When a ’branch’ grows to a small dot vertex, then
it represents differentiation with respect to the component of y. It’s with respect to
the component of y′ if the ’branch’ grows to a big dot vertex. The differentiation is
with respect to component of y′′ if the ’branch’ grows to a small circle vertex. And
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it’s with respect to the component of y′′′ if the destination vertex is a big circle. This
relationship could also be interpreted as parent–son relationship. For instance, small
dot vertex gives birth to big dot vertex as its only son, because y′ has only one nonzero
derivative with respect to itself and has not with respect to y, y′′ and y′′′. The only
son of big dot vertex on the other hand is small circle vertex, because y′′ has only
one nonzero derivative with respect to itself and has non with respect to y, y′ and y′′′.
Similarly, small circle vertex’s only son is big circle vertex. In the case of big circle
vertex, it has many sons which are all small dot vertices. This is because f depends on
y only and can have multiple derivatives with respect to component of y only, but not
with y′, y′′ and y′′′. The relevant trees can recursively be defined by simply modifying
the notation used for trees associated with second-order differential equations in [14].

Definition 1 The set of trees T4 is defined recursively as follows:

(i) the graph (root) is a member of T4; the graphs , and are in T4. And the null
tree θ is also a member of T4;

(ii) if t1, ..., tm ∈ T4, then the graph t = [t1, ..., tm]4 obtained by connecting the roots

of t1, ..., tm to the big circle vertex of the graph is also in T4, where the small dot
vertex at the bottom represents the root of the trees. The subscript 4 is a reminder
that the tree is associated with fourth-order differential equations and that the

’stem’ upon which ’branches’ grow consists of a string of four vertices.

Let τ1 = , τ2 = , τ3 = and τ4 = denote first-order, second-order, third-order
and fourth-order trees, respectively.

Definition 2 The order ρ : T4 → N of a tree t is defined recursively as follows:

(i) ρ(τ1) = 1, ρ(τ2) = 2, ρ(τ3) = 3, ρ(τ4) = 4;
(ii) for t = [t1, ..., tm]4 ∈ T4, ρ(t) = 4 + ∑m

i=1ρ(ti ). In nutshell, for each t ∈ T4,
the order ρ(t) of a tree t is the number of vertices of the tree. The set of all T4 of
order q is denoted by T4q .

(iii) α(θ) = α(τ1) = α(τ2) = α(τ3) = α(τ4) = 1;
(iv) if t = [

tμ1
1 , ..., tμm

m
]
4 ∈ T4, with ti distinct for different i and different from θ ,

then

α(t) = (ρ(t) − 4)!
m∏
i=1

1

μi !
(

α(ti )

ρ(ti )!
)μi

.

The first four vertices of a tree are its small dot vertex, big dot vertex, small circle
vertex and big circle vertex. Any distinct labeling involves only the remaining ρ(t)−4
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992 Y. D. Jikantoro et al.

vertices. The first four vertices form the root and the ’stem’ upon which the ’branches’
(other vertices) grow.

It is important to associate each elementary differential F(t) with a corresponding
t ∈ T4.

Definition 3 The function F on T4 is defined recursively by

(i) F(θ)
(
y, y′, y′′, y′′′) = y, F(τ1)

(
y, y′, y′′, y′′′) = y′, F(τ2)

(
y, y′, y′′, y′′′) =

y′′, F(τ3)
(
y, y′, y′′, y′′′) = y′′′ and F(τ4)

(
y, y′, y′′, y′′′) = f (y);

(ii) if t = [t1, ..., tm]4 ∈ T4, then

F(t)
(
y, y′, y′′, y′′′)= f (m)(y)

(
F(t1)

(
y, y′, y′′, y′′′) , ..., F(tm)

(
y, y′, y′′, y′′′)) .

Definition 4 Let β : T4 → R be a mapping, with β(θ) = 1. The B4-series with
coefficient function β is a formal series of the form

B(β, y) = y + hα(τ1)β(τ1)y
′ + h2

2
α(τ2)β(τ2)y

′′ + h3

6
α(τ3)β(τ3)y

′′′ + ...

=
∑
t∈T4

hρ(t)

ρ(t)!α(t)β(t)F(t)
(
y, y′, y′′, y′′′). (10)

In the derivation of order conditions, the following lemma, which states that h4 f (.)
applied to a B4-series generates a B4-series [3,13,14], is very important.

Lemma Let B(β, y) be a B4-series with coefficient function β. Then, h4 f (B(β, y))
is also a B4-series, i.e.,

h4 f (B(β, y)) = B(β iv, y),

with

β iv(θ) = β iv(τ1) = β iv(τ2) = 0, β iv(τ3) = β iv(τ4) = 24

and for all other tree t = [t1, ..., tm]4 ∈ T4,

β iv(t) = ρ(t)(ρ(t) − 1)(ρ(t) − 2)(ρ(t) − 3)
m∏
i=1

β(ti ).

Proof Since B(β, y) = y + O(h), it is clear that h4 f (B(β, y)) can be expanded
as a Taylor series about y. Furthermore, β iv(θ) = β iv(τ1) = β iv(τ2) = β iv(τ3) =
0, because the expansion starts with h4 f (y), which also shows that β iv(τ4) = 24.
Proceeding as in the proof of Lemma in [11,13,14], we have
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h4 f (B(β, y)) = h4
∑
m≥0

1

m! f
(m)(y) (B(β, y) − y)m

= h4
∑
m≥0

1

m!
∑

t1∈T4\θ
...

∑
tm∈T4\θ

hρ(t1)+,...,+ρ(tm )

ρ(t1)!...ρ(tm)! α(t1)...α(tm)

β(t1)...β(tm) f (m)(y)
(
F(t1)(y, y

′y′′, y′′′)...F(tm)(y, y′y′′, y′′′)
)

=
∑
m≥0

∑
t1∈T4\θ

...
∑

tm∈T4\θ

hρ(t)

(ρ(t) − 4)!α(t)
μ1!...μm !

m!
β(t1)...β(tm)F(t)(y, y′y′′, y′′′)

=
∑

t∈T4\θ

hρ(t)

(ρ(t) − 4)!α(t)β(t1)...β(tm)F(t)(y, y′y′′, y′′′),

because m!
μ1!...μm ! is ways of ordering the labels t1, ..., tm in [t1, ..., tm]4. Finally, with

β iv as defined in the statement of Lemma,

h4 f (B(β, y)) =
∑

t∈T4\θ

hρ(t)

ρ(t)!α(t)β iv(t)F(t)(y, y′y′′, y′′′) = B(β iv(t), y).

��

4 Local Truncation Error of HMFD and its Convergence Order

Like the hybrid methods presented in [14], to derive the order conditions of HMFD
methods (four-step methods), we consider them as single step methods of the form

Hn = Hn−1 + h�(Hn−1, h), (11)

where Hn is a well-defined numerical solution whose initial point H0 is generated by
some starting procedure, see [14]. The first part of equation (4) can be written as a set
of four equations by letting

Fn :=
(
yn+1 − yn

h

)
,

so that

yn = yn−1 + hFn−1, (12)

which implies that

Fn = 3Fn−1 − 3hFn−2 + Fn−3 + h3
(
bT ⊗ I

)
f (Y). (13)
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994 Y. D. Jikantoro et al.

Now, let

Gn :=
(
Fn+1 − Fn

h

)
,

which implies that

Fn = Fn−1 + hGn−1. (14)

Then, (13) becomes

Gn = 2Gn−1 − Gn−2 + h2
(
bT ⊗ I

)
f (Y). (15)

Now, by letting

Un :=
(
Gn+1 − Gn

h

)
,

we have

Gn = Gn−1 + hUn−1. (16)

Hence, (15) gives,

Un = Un−1 + h
(
bT ⊗ I

)
f (Y). (17)

The system of Eqs. (12), (14), (16) and (17) can be written as (11) with

Hn =

⎛
⎜⎜⎝

yn
Fn
Gn

Un

⎞
⎟⎟⎠ and �(Hn−1, h) =

⎛
⎜⎜⎝

Fn−1
Gn−1
Un−1(

bT ⊗ I
)
f (Y)

⎞
⎟⎟⎠ .

The vector Hn is an approximation for wn = w(xn, h), where w is the exact-value
function defined by

w(x, h) =

⎛
⎜⎜⎜⎜⎝

y(x)
y(x+h)−y(x)

h
F(x+h)−F(x)

h
G(x+h)−G(x)

h

⎞
⎟⎟⎟⎟⎠

. (18)
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The local truncation error of the HMFD method at point xn is defined by

dn = wn − wn−1 − h�(wn−1, h), (19)

where

�(wn−1, h) =

⎛
⎜⎜⎜⎜⎜⎝

y(xn)−y(xn−1)
h

F(xn)−F(xn−1)
h

G(xn)−G(xn−1)
h(

bT ⊗ I
)
f (Y)

⎞
⎟⎟⎟⎟⎟⎠

. (20)

Suppose that each component of Y in the second part of (4) can be expanded as a
B4-series Yi (xn) = B(ψi , y(xn)), we get

B(ψi , y(xn)) = 1

6

(
c3i + 6c2i + 11ci + 6

)
y(xn)

−1

2

(
c3i + 6c2i + 5ci

)
B

(
(−1)ρ(t), y(xn)

)

+1

2

(
c3i + 4c2i + 3ci

)
B

(
(−2)ρ(t), y(xn)

)

−1

6

(
c3i + 3c2i + 2ci

)
B

(
(−3)ρ(t), y(xn)

)
+ h4

s∑
j

ai, j f (Y j ). (21)

Applying Lemma in Sect. 3 on (21) , we get

B(ψi , y(xn)) = 1

6

(
c3i + 6c2i + 11ci + 6

)
y(xn)

−1

2

(
c3i + 6c2i + 5ci

)
B

(
(−1)ρ(t), y(xn)

)
+ 1

2

(
c3i + 4c2i + 3ci

)

B
(
(−2)ρ(t), y(xn)

)
− 1

6

(
c3i + 3c2i + 2ci

)
B

(
(−3)ρ(t), y(xn)

)

+h4
s∑
j

ai, j f (Y j ) +
s∑
j

ai, j B(ψ iv
j (ti ), y(xn)). (22)

It follows from (22) that, in vector form,

ψ(θ) = e, ψ(τ1) = c, ψ(τ2) = 1

2
c2, and ψ(τ3) = 1

6
c3,
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and ∀ tree t ∈ T4 with ρ(t) ≥ 4,

ψ(t) = 1

2

(
c3 + 5c2 + 6c

)
(−1)ρ(t)+1 −

(
c3 + 4c2 + 3c

)
(−2)ρ(t)−1

+1

2

(
c3 + 3c2 + 2c

)
(−3)ρ(t)−1 + Aψ iv(t). (23)

And for trees t = [t1, ..., tm]4 ∈ T4, see Lemma in Sect. 3,

ψ iv
j (t) = ρ(t)(ρ(t) − 1)(ρ(t) − 2)(ρ(t) − 3)

m∏
i=1

ψ j (ti ). (24)

By substituting (24) in (23), the coefficients ψ j (t) can be generated recursively.

Theorem For exact starting values, the method (4) is said to be convergent of order
p if and only if for all trees t ∈ T4,

s∑
i=1

biψ
iv
i (t) = 1 + 6(−1)ρ(t) − 4(−2)ρ(t) + (−3)ρ(t), (25)

for ρ(t) ≤ p + 1 but not for some trees of order p + 2.

Proof The proof is similar to the proof of Theorem 1 in [14]. From (18)–(20), it is
obvious that the first, second and third components of the local truncation error dn
varnish, and the fourth component is

1

h3

⎡
⎢⎣
B(1, y(xn)) − 4y(xn) + 6B

(
(−1)ρ(t), y(xn)

) − 4B
(
(−2)ρ(t), y(xn)

)+
B

(
(−3)ρ(t), y(xn)

) −
s∑

i=1
bi B(ψ iv(t), y(xn))

⎤
⎥⎦ .

The method is of order p if p is the largest integer such that

dn = O
(
h p+1

)
. (26)

The only condition that makes (26) to hold for all n ≥ 0 is

bTψ iv(t) = 1 + 6(−1)ρ(t) − (−2)ρ(t)+2 + (−3)ρ(t), for ρ(t) ≤ p + 1.

��
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5 Algebraic Order Conditions

A relationship that exists between the coefficients of a numerical method which causes
annihilation of successive terms in a Taylor series expansion of local truncation error of
themethod is termed order condition of themethod [14]. To generate such relationships
(order conditions) for HMFD methods for trees of different orders, Eq. (25) together
with (23) and (24) is used. It is worth noting that the ’order’ referred to here is for the
convergence of HMFD methods not for the order of the rooted trees.

5.1 Fourth-Order Tree

The only tree with order four in T4 is τ4 = [θ ]4: , and the order condition for it is

s∑
i=1

bi = 1, (27)

and (23) gives

ψi (τ4) = 24
s∑

j=1

ai, j − 6c3i − 11c2i − 6ci .

5.2 Fifth-Order Tree

The tree in T4 with order 5 is t51 = [τ1]4: . The corresponding order condition is

s∑
i=1

bi ci = −1, (28)

and from (24) we obtain ψ ′′′
i (t4,1) = 120ψi (τ1), which implies that from (23)

ψi (t51) = 120
s∑

j=1

ai, j c j + 25c3i + 60c2i + 36ci .

The trees of order up to nine are constructed below in accordance with the descrip-
tion given in Sect. 3.
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τ1:

τ2:

τ3:

τ4:

t51: t61: t62:

t71: t72: t73:

t81: t82: t83: t84: t85:

t91: t92: t93: t94: t95: t96: t97:

The corresponding order conditions of HMFD methods up to trees of order nine
are presented in Table 2 below, where all the summations in the order conditions run
from i, j, k, ... to s.

Like the two-step hybrid methods, the summations in the equations of the order
conditions of HMFD methods associated with any tree can easily be generated as
follows: the stem of any tree of order ρ(t) ≥ 4 represents a component of vector b;
each small dot vertex at the terminal donates a component of vector c; each branch
from big circle vertex to a terminal big dot vertex contributes a component of c2; each
branch that grows from big circle vertex to a terminal small circle vertex contributes
a component of vector c3, and each branch growing from big circle vertex to another
big circle vertex contributes an element of matrix A.
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Table 2 Order conditions Tree t ρ(t) Order condition

τ1 1

τ2 2

τ3 3

τ4 4
∑

bi = 1

t51 5
∑

bi ci = −1

t61, t6,2 6
∑

bi c
2
i = 4

3

t71, t7,2, t7,3 7
∑

bi c
3
i = −2

t81, t8,2, t8,3, t8,4 8
∑

bi c
4
i = 33

10

t85
∑

bi ci ai, j = − 1
720

t91, t9,2, t9,3, t9,4, t9,5 9
∑

bi c
5
i = − 35

6

t96
∑

bi ai, j c j = − 1
720

t97
∑

bi ci ai, j = 1
720

5.3 Simplifying Assumptions

It can be seen in Table 2 that the number of equations of order conditions of HMFD
(like every other method, e.g., RK, RKN THM) increases with increase in the order of
the trees, resulting in more equations to be solved for higher-order methods. But there
exist certain relationships that naturally connect the coefficients of numerical methods
which when explored appropriately can reduce the number of independent equations
of order conditions. These relationships are called simplifying assumptions.

Suppose HMFD method (4) has a stage order q, so that Yi (xn) = B(ψi , y(xn))
differs from y(xn + ci h) by terms of order hq+1 [14], then

ψi (t) = cρ(t)
i for ρ(t) ≤ q.

Which implies that

ψ iv
i (t) = ρ(t)(ρ(t) − 1)(ρ(t) − 2)(ρ(t) − 3)cρ(t)−4

i ,

and (23) gives the set of simplifying assumptions as

s∑
j=1

ai, j c
λ
j

= cλ+4
i − 1

2 (6ci +5c2i +c3i )(−1)λ+5 + (3ci + 4c2i + c3i )(−2)λ+3− 1
2 (2ci +3c2i +c3i )(−3)λ+3

(λ+4)(λ+3)(λ+2)(λ+1)
,

(29)

where 0 ≤ λ ≤ q − 4.

123



1000 Y. D. Jikantoro et al.

Table 3 Coefficients of
one-stage method (HMFDs1)

-3 0 0 0 0
-2 0 0 0 0
-1 0 0 0 0
0 0 0 0 0

0 1
6

2
3

1
6

6 Construction of Explicit HMFD Methods

Having derived the order conditions for the proposed class of HMFD methods, we
present in this section some explicit methods of the class. It is noteworthy that the
proposed methods possess certain special properties, which are responsible for their
computational efficiency. For example, although the methods are not self- starting,
but after obtaining the starting values, the integration proceeds with s − 3 function
evaluation per step. These properties are given special consideration in the derivation
process.

6.1 One-Stage Explicit HMFD Method

To construct a one-stage method, which is the first member of the proposed class of
HMFD methods, algebraic order conditions (see Table 2) up to trees of order 7 are
considered. Note that s ≥ 4 in any case of HMFDmethods. Putting s = 4 in the order
conditions mentioned, we get

b1 + b2 + b3 + b4 = 1,

b1c1 + b2c2 + b3c3 + b4c4 = −1,

b1c
2
1 + b2c

2
2 + b3c

2
3 + b4c

2
4 = 4

3
,

b1c
3
1 + b2c

3
2 + b3c

3
3 + b4c

3
4 = −2,

which is a system of four equations in four unknown parameters, see Table 1. This
gives unique values of the unknowns. From Eq. (29) with λ = 0, the components of
matrix A of the method are obtained. Summary of the coefficients is given in Table 3.

6.2 Two-Stage Explicit HMFD Method

To obtain a two-stage method, s = 5 is considered in the order conditions up to trees
of order nine in Table 2.

b1 + b2 + b3 + b4 + b5 = 1,

b1c1 + b2c2 + b3c3 + b4c4 + b5c5 = −1,

b1c
2
1 + b2c

2
2 + b3c

2
3 + b4c

2
4 + b5c

2
5 = 4

3
,
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Table 4 Coefficients of two-stage method (HMFDs2)

-3 0 0 0 0 0
-2 0 0 0 0 0
-1 0 0 0 0 0
0 0 0 0 0 0
1 − 1

9887
1

8879
87793536
87786673 − 7871

87786673 0
− 1

720
31
180

97
120

31
180 − 1

720

b1c
3
1 + b2c

3
2 + b3c

3
3 + b4c

3
4 + b5c

3
5 = −2,

b1c
4
1 + b2c

4
2 + b3c

4
3 + b4c

4
4 + b5c

4
5 = 33

10
,

b1c
5
1 + b2c

5
2 + b3c

5
3 + b4c

5
4 + b5c

5
5 = −35

6
.

The system of equations above coupled with (29), λ = 0, 1, is solved. A unique set of
coefficients of the two-stage method is obtained as given in Table 4.

7 Stability and Convergence Analysis

The update stage of the HMFD method (4), which is represented by its autonomous
form (9), can be written as follows:

4∑
i=0

γi yn−i − h4
s∑

i=0

bi f (Yi ) = 0. (30)

7.1 Zero Stability

The HMFD method is said to be zero stable if the roots ξ j , j = 1, 2, 3, 4, of the first
characteristics polynomial χ(ξ), which is given by

χ(ξ) =
4∑

i=0

γiξ
4−i = 0, (31)

satisfy
∣∣ξ j

∣∣ ≤ 1, j = 1, 2, 3, 4 and for the roots with
∣∣ξ j

∣∣ = 1, the multiplicity does
not exceed 1 (see [15,16]).

7.2 Consistency

The HMFD method is said to be consistent if it has order p ≥ 1.
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Remark We note that the first characteristics polynomial associated with (31) is

χ(ξ) = ξ4 − 4ξ3 + 6ξ2 − 4ξ + 1 = 0,

which implies that ξ = 1 four times. Therefore, the HMFD method is zero stable. We
also note from Table 2 that the minimum order p of the method is 4, which implies
that it’s consistent. Hence, we conclude that the HMFD method is convergent.

8 Numerical Experiment

Presented in this section is numerical experiment, in which the proposed methods
alongside some existing codes are applied on several test problems. Efficiency of the
codes is measured by plotting the log10 of maximum errors recorded with different
step lengths h in a given interval [a,b] against total function call for each code. While
step length h is used in the integration with one-stage method, 2h, 3h and 4h are used
for two-stage, three-stage and four-stage methods, respectively. The acronyms below
are used in the paper:

• HMFDs1: the proposed one-stage explicit HMFD method derived in Sect. 6 of
this paper;

• HMFDs2: the proposed two-stage explicit HMFD method derived in Sect. 6 of
this paper;

• RKFDs3: three-stage explicit RKFD method presented in [11];
• HMs4: four-stage hybridmethod for special second-order ODEs presented in [17];
• THMs3: three-stage explicit hybrid method given in [18];
• AWM: collocation method for solving fourth-order ODEs obtained in [6];
• JTR: Fourth-order ODEs integrator proposed in [8].

8.1 Implementation

To implement the proposed schemes in this paper, three starting points of the solution
in addition to the given initial condition of the problem are required. These starting
points can be obtained by any one-step scheme, for instance, RKFDs3 scheme in [11].
Once the staring points are generated, the next thing is to compute the components
of vector Y, update of the solution (yn+1) and the error (en+1) of the method in the
step. To compute these quantities at the next grid point, a fixed step length h is added
to the previous grid point (xn+1 = xn + h). Here, only Y4 and Y5 are required to be
computed if we are implementing the proposed HMFDs2 for example, because Y1,
Y2, Y3 are readily available from the previous step, that is,

for n = 3 : Y 3
1 = y0 (given initial condition);

Y 3
2 = y1 (computed by RKFDs3);

Y 3
3 = y2 (computed by RKFDs3);

y3 (computedbyRK FDs3);
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Y 3
4 = y3 + ... + h4

3∑
j=1

a4, j f (x3 + c j h,Y 3
j );

Y 3
5 = y3 + ... + h4

4∑
j=1

a5, j f (x3 + c j h,Y 3
j );

y4; x4 = x3 + h; e4 = |y(x4) − y4|;

for n = 4 : Y 4
1 = y1 (already computed by RKFDs3 in the previous step);

Y 4
2 = y2 (already computed by RKFDs3 in the previous step);

Y 4
3 = y3 (already computed by RKFDs3 in the previous step);

Y 4
4 = y4 + ... + h4

3∑
j=1

a4, j f (x4 + c j h,Y 4
j );

Y 4
5 = y4 + ... + h4

4∑
j=1

a5, j f (x4 + c j h,Y 4
j );

y5; x5 = x4 + h; e5 = |y(x5) − y5|;
...

The procedure continues until the value of xn ≥ b, where b is an upper limit of
solution interval [a, b]. Maximum value of the errors (en) computed at all steps is then
recorded.

8.2 Test Problems

Problem 1

y′′′′ = −4y, 0 ≤ x ≤ 10,

y(0) = 1, y′(0) = 1, y′′(0) = 2, y′′′(0) = 2,

y(x) = exp(x) sin(x). Source: [11]

Problem 2

y′′′′ = y2 + cos2(x) + sin(x) − 1, 0 ≤ x ≤ 5,

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = −1,

y(x) = sin(x). Source: [11]

Problem 3

y′′′′ = 3 sin(y)
(
3 + 2 sin2(y)

)
cos7(y)

, 0 ≤ x ≤ π

8
,
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Fig. 1 Efficiency curves for problem 1, h = 2−i , i = 2, ..., 6

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1,

y(x) = sin−1(x). Source: [11]

Problem 4 the ill-posed problem of a beam on elastic foundation:

y′′′′ = x − y, 0 ≤ x ≤ 5,

y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0,

y(x) = 1 − 1/2 e−1/2
√
2x cos

(
1/2

√
2x

)
− 1/2 e1/2

√
2x cos

(
1/2

√
2x

)
.

Source: [11, 12]

Problem 5

y′′′′
1 = e3x y2, y1(0) = 1, y′

1(0) = −1, y′′
1 (0) = 1, y′′′

1 (0) = −1,

y′′′′
2 = 256e−x y3, y2(0) = 1, y′

2(0) = −4, y′′
2 (0) = 16, y′′′

2 (0) = −64,

y′′′′
3 = 81e−x y4, y3(0) = 1, y′

3(0) = −3, y′′
3 (0) = 9, y′′′

3 (0) = −27,

y′′′′
4 = 16e−x y1, y4(0) = 1, y′

4(0) = −2, y′′
4 (0) = 4, y′′′

4 (0) = −8,

y1(x) = e−x , y2(x) = e−4x , y3(x) = e−3x , y4(x) = e−2x , 0 ≤ x ≤ 2.

Source: [11, 12]

The test problems are first transformed to equivalent systems of second-order equa-
tions forHMs4 andTHMs3 to be applied. Figures 1, 2, 3, 4 and 5 show the outcome of
numerical experiment where the computational efficiency of the proposed methods is
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Fig. 2 Efficiency curves for problem 2, h = 2−i , i = 2, ..., 6
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Fig. 3 Efficiency curves for problem 3, h = 2−i , i = 4, ..., 8

compared with the existing methods in the literature. For all the test problems solved,
efficiency and accuracy of the proposed methods in this paper are more pronounced,
especially for the two-stage method (HMFDs2).

Tables 5, 6, 7, 8 and9 showcomparisonof numerical results of the proposedmethods
and those of fourth- order ODEs integrators of linear multistep type presented in [6]
and [8], where maximum errors (|y(xn) − yn|) for each method in the given intervals
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Fig. 4 Efficiency curves for problem 4, h = 2−i , i = 2, ..., 6
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Fig. 5 Efficiency curves for problem 5

for each step-size h are recorded. It is obvious that for all the problems solved, our
method records the smallest errors except for a few cases where the errors are almost
equal with those of the multistep methods.
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Table 5 Results for problem 1 h Method Max.Error, x ∈ [0, 10]

1 HMFDs2 1.94729 × 10−01

AWM 3.71395 × 10+01

JTR 6.58401 × 10−01

1/2 HMFDs2 7.90676 × 10−03

AWM 6.70258 × 10−01

JTR 2.63731 × 10−02

1/4 HMFDs2 3.30070 × 10−04

AWM 4.98146 × 10−02

JTR 1.10349 × 10−03

1/8 HMFDs2 7.42000 × 10−06

AWM 3.19211 × 10−03

JTR 2.48100 × 10−05

1/16 HMFDs2 3.66031 × 10−07

AWM 1.98860 × 10−04

JTR 4.56625 × 10−07

Table 6 Results for problem 2 h Method Max.Error, x ∈ [0, 5]

1/2 HMFDs2 1.14600 × 10−05

AWM 1.16425 × 10−03

JTR 6.66600 × 10−05

1/4 HMFDs2 2.69815 × 10−07

AWM 8.82900 × 10−05

JTR 1.47237 × 10−02

1/8 HMFDs2 3.55471 × 10−09

AWM 5.66000 × 10−06

JTR 1.21883 × 10−02

1/16 HMFDs2 3.65268 × 10−11

AWM 3.50063 × 10−07

JTR 9.49966 × 10−03

1/32 HMFDs2 2.39235 × 10−13

AWM 2.16257 × 10−08

JTR 7.99706 × 10−03
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Table 7 Results for problem 3 h Method Max.Error, x ∈ [0, π/4]

1/8 HMFDs2 5.88720 × 10−04

AWM 1.59700 × 10−05

JTR 6.25610 × 10−04

1/16 HMFDs2 3.02000 × 10−06

AWM 6.08000 × 10−06

JTR 3.04000 × 10−06

1/32 HMFDs2 5.82518 × 10−08

AWM 5.16395 × 10−07

JTR 5.84913 × 10−08

1/64 HMFDs2 6.23889 × 10−10

AWM 2.60858 × 10−08

JTR 6.25523 × 10−10

1/128 HMFDs2 8.03367 × 10−12

AWM 1.44112 × 10−09

JTR 8.03988 × 10−12

Table 8 Results for problem 4 h Method Max.Error, x ∈ [0, 10]

1 HMFDs2 1.99866 × 10−01

AWM 1.84775 × 10+00

JTR 6.69368 × 10−01

1/2 HMFDs2 2.62223 × 10−03

AWM 5.17977 × 10−02

JTR 8.76415 × 10−03

1/4 HMFDs2 3.58600 × 10−05

AWM 1.94907 × 10−03

JTR 1.19840 × 10−04

1/8 HMFDs2 5.18747 × 10−07

AWM 2.60858 × 10−04

JTR 1.73000 × 10−06

1/16 HMFDs2 7.77573 × 10−09

AWM 8.60000 × 10−06

JTR 2.59933 × 10−08

123



A Class of Hybrid Methods for Direct Integration of Fourth… 1009

Table 9 Results for problem 5 h Method Max.Error, x ∈ [0, 2]

1/16 HMFDs2 3.06000 × 10−06

AWM 2.40340 × 10−04

JTR 3.42000 × 10−06

1/32 HMFDs2 5.89104 × 10−08

AWM 1.88300 × 10−05

JTR 3.89350 × 10−04

1/64 HMFDs2 1.02158 × 10−09

AWM 1.31000 × 10−06

JTR 3.79050 × 10−04

1/128 HMFDs2 1.68130 × 10−11

AWM 8.68127 × 10−08

JTR 3.68740 × 10−04

1/256 HMFDs2 2.69602 × 10−13

AWM 5.57561 × 10−09

JTR 3.62040 × 10−04

9 Conclusion

Aclass of four-step hybridmethods (HMFD) for direct numerical integration of special
fourth-order ODEs is proposed. This class of hybrid methods is similar to the class of
two-step hybrid methods for solving special second-order ODEs directly [14]. Unlike
RKFDmethods [11], HMFDmethods do not depend on the derivatives of the solution.
Using the theory of B-series with fourth-order ODEs trees that first appeared in [11],
algebraic order conditions of the HMFD methods are derived. The order conditions
are used to construct a one-stage and two-stage methods. Numerical results presented
in Figs. 1, 2, 3, 4 and 5 reveal that the new methods proposed in this paper are more
accurate and efficient when compared with the hybrid methods for solving special
second-order ODEs aswell as the RKFDmethods recently proposed in [11]. Similarly,
the results in Tables 5, 6, 7, 8 and 9 suggest the superiority of the proposed schemes
in this paper over the linear multistep schemes presented in [6] and [8].
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