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Abstract This paper focuses on the global stability of an epidemic model with vac-
cination, treatment and isolation. The basic reproduction number R0 is derived. By
constructing suitable Lyapunov functions, sufficient conditions for the global asymp-
totic stability of equilibria are obtained. Numerical simulations are performed to verify
and complement the theoretical results. Furthermore, we consider the uncertainty and
sensitivity analysis of the basic reproduction number R0. The results show that the
transmission rate, the fraction of infected receives treatment, vaccination rate, the
isolation rate are crucial to prevent the spread of infectious diseases. These suggest
that public health workers design the control strategies of disease should consider the
influence of vaccination, treatment and isolation.

Keywords Lyapunov function · Globally asymptotically stable · Vaccination ·
Treatment · Sensitivity and uncertainty analysis

Mathematics Subject Classification 93D05 · 92B05 · 34D23

Communicated by Syakila Ahmad.

This research was partially supported by NSFC Grants Nos. 11671206, 11271190.

B Zhipeng Qiu
smoller_1@163.com

1 School of Science, Nanjing University of Science and Technology, Nanjing 210094,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-017-0519-3&domain=pdf


886 Q. Cui et al.

1 Introduction

Infectious diseases have had a profound impact on the evolution of human and cultural
development. Understanding the transmission mechanism of infectious diseases can
lead the public heath workers design better policies to prevent the spread of these
diseases. Recently, various epidemic models have been proposed and investigated to
get insight into the transmission mechanism of infectious diseases (see, for example,
[5,15] and the references cited therein). These models can contribute to the design and
analysis of epidemiological surveys, suggest crucial data should be collected, identify
trends, make general forecasts and estimate the uncertainty in forecasts [5].

There aremany literatures focused on the effect of prevention and control measures,
such as vaccination, antiviral use, quarantine and isolation (see, for example, [2–4,6,
8,10,11] and the references cited therein). Obviously, these models provided useful
information in comparing, planing, implementing, evaluating, and optimizing various
detection, prevention, therapy and control programs. However, most of these studies
concentrated on the influence of either vaccination or antiviral or isolation. Recently,
there exist several studies including both vaccination and antiviral used, for example,
the model studied by Qiu et al. in [11]. The results showed that higher levels of
treatment may lead to an increase in epidemic size, so they suggested that antiviral
treatment should be implemented appropriately. In this paper, we extent their model
by including an insolation class. The new model allows us to investigate the optimal
control strategy under the influence of vaccination, treatment and isolation.

Therefore, based on the transfer diagram as shown in Fig. 1, the epidemic model
with vaccination, treatment and isolation can be demonstrated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − λ(t)S − (μ + d)S + εR + αV,

dV

dt
= μS − (α + d)V,

dIu
dt

= (1 − f )λ(t)S − (δu + γu + d)Iu,

dIt
dt

= f λ(t)S − (δt + γt + d)It,

dQ

dt
= δu Iu + δt It − (γq + d)Q,

dR

dt
= γu Iu + γt It + γqQ − (ε + d)R,

(1.1)

Fig. 1 Diagram of transitions
between epidemiological classes
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where S(t), V (t), Iu(t), It(t), Q(t) and R(t) denote susceptible, vaccinated, untreated
infectious, treatment infectious, isolation and recovered population at time t ≥ 0,
respectively. The function λ(t) = β Iu+σ It

N represents the rate at which a susceptible
individual becomes infected, and the total population number N = S + V + Iu +
It + Q + R; parameters � is a constant recruitment rate into the susceptible class;
d is natural death rate; μ is vaccinated rate; α is immunity wanes rate; ε is the lose
immunity rate; f (0 ≤ f ≤ 1) is the fraction of infected receives treatment; σ is
reduced factor of transmission rate by an individual who received treatment; δu and
δt are, respectively, isolation rate of untreated and treated infectious; γu, γt and γq are
recovery rate of untreated infectious, treated infectious and isolation, respectively.

Our paper focuses on investigating the global dynamics of model (1.1) that incorpo-
rates vaccination, treatment and isolation. By constructing suitable Lyapunov function,
we derive sufficient conditions ensuring existence and uniqueness of a globally asymp-
totically stable steady state. To evaluate the optimal control strategies, we also discuss
the sensitivity and uncertainty analysis of model parameters. The organization of this
paper is as follows. We derive the equilibria and the basic reproduction number in
Sect. 2 and perform global stability of equilibria in Sect. 3. Numerical simulations
and sensitivity analysis are stated in Sect. 4. The final section has a summary of our
observations and conclusions.

2 Equilibria and Basic Reproduction Number

Notice that the total population number N satisfies the equation dN
dt = �−dN ,which

implies that N (t) → �
d as t → ∞. Therefore, the biologically feasible region


 =
{

(S, V, Iu, It, Q, R) ∈ R
6+| 0 ≤ S + V + Iu + It + Q + R ≤ �

d

}

is a positively invariant with respect to model (1.1).
Following the approach of van den Driessche and Watmough [1], the basic repro-

duction number can be expressed as

R0 = (1 − f )Ru + fRt, (2.1)

where

Ru = β(α + d)

(μ + α + d)(δu + γu + d)
and Rt = σβ(α + d)

(μ + α + d)(δt + γt + d)
.

Biologically, Ru and Rt represent the numbers of secondary infectious produced by
untreated and treated cases, respectively, during the period of infection in a susceptible
population. Fractions 1

δu+γu+d and 1
δt+γt+d represent the mean duration of untreated

and treatment infection, respectively, and α+d
μ+α+d is the fraction of the population

that is susceptible. Note that each infected individual may either receive treatment
with probability f or remain untreated with probability 1 − f . Thus, R0 represents
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the number of secondary cases during the period of infection in a population where
control measures (vaccination, treatment and isolation) are implemented.

The equilibria of model (1.1) satisfies the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� − β
Iu + σ It

N
S − (μ + d)S + εR + αV = 0,

μS − (α + d)V = 0,

(1 − f )β
Iu + σ It

N
S − (δu + γu + d)Iu = 0,

fβ
Iu + σ It

N
S − (δt + γt + d)It = 0,

δu Iu + δt It − (γq + d)Q = 0,

γu Iu + γt It + γqQ − (ε + d)R = 0,

N = S + V + Iu + It + Q + R.

(2.2)

Following (2.2), one can verify that model (1.1) always admit a disease-free equilib-
rium E0 = (S0, V0, 0, 0, 0, 0) in the absence of infectious disease, where

S0 = α + d

μ + α + d
N0, V0 = μ

μ + α + d
N0, N0 = �

d
.

If Iu > 0 or It > 0, it follows from the third and fourth equations of (2.2) that

∣
∣
∣
∣
∣
∣

(1 − f )β d
�
S − (δu + γu + d) (1 − f )σβ d

�
S

fβ d
�
S f σβ d

�
S − (δt + γt + d)

∣
∣
∣
∣
∣
∣
= 0. (2.3)

Direct calculation implies that

S = (δu + γu + d)(δt + γt + d)

(1 − f )β d
�

(δt + γt + d) + f σβ d
�

(δu + γu + d)
� S∗.

Then, substitute S∗ back into (2.2), and the expressions for V, Iu, It, Q and R will
be derived, that is, apart from the disease-free equilibrium E0, the model also has a
unique positive endemic equilibrium. For ease of notations, denote

a = f (δu + γu + d)

(1 − f )(δt + γt + d)
, b = δu + aδt

γq + d
.

Thus, we have the following result for model (1.1).

Theorem 1 There always exists disease-free equilibrium E0 = (S0, V0, 0, 0, 0, 0),
where

S0 = α + d

μ + α + d
N0, V0 = μ

μ + α + d
N0, N0 = �

d
,
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whereas ifR0 > 1, there exists a unique endemic equilibrium E∗ = (S∗, V ∗, I ∗
u , I ∗

t ,

Q∗, R∗), where

S∗ = (δu + γu + d)(δt + γt + d)N0

(1 − f )β(δt + γt + d) + f σβ(δu + γu + d)
,

V ∗ = μ

α + d
S∗, I ∗

u = (ε + d)(R0 − 1)N0
α+d

μ+α+d (β + aσβ) + ε(1 + a + b)R0
,

I ∗
t = aI ∗

u , Q∗ = bI ∗
u , R∗ = N0 − S∗ − V ∗ − I ∗

u − I ∗
t − Q∗.

3 Dynamical Behaviors

Since the total population number N (t) satisfies N (t) → �/d � N0 as t → ∞, based
on the results of Mischaikow et al. in [9] and Tieme in [13], the dynamical behaviors
of model (1.1) can be transferred to consider the following limit system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − β

Iu + σ It
N0

S − (μ + d)S + εR + αV,

dV

dt
= μS − (α + d)V,

dIu
dt

= (1 − f )β
Iu + σ It

N0
S − (δu + γu + d)Iu,

dIt
dt

= fβ
Iu + σ It

N0
S − (δt + γt + d)It,

dQ

dt
= δu Iu + δt It − (γq + d)Q,

dR

dt
= γu Iu + γt It + γqQ − (ε + d)R.

(3.1)

Inwhat following, we first consider the global dynamics of disease-free equilibrium
E0 for model (3.1).

Theorem 2 IfR0 < 1 and α ≥ ε, the disease-free equilibrium E0 is globally asymp-
totically stable.

Proof From Theorem 2 in van den Driessche andWatmough [1], E0 is locally asymp-
totically stable if R0 < 1, but unstable if R0 > 1. It is left to show that all solutions
converge to the disease-free equilibrium when R0 < 1.

Notice that the variable V in the S equation of (3.1) can be replaced by N0 − S −
Iu − It − Q − R, and we can rewrite dS

dt as follows

dS

dt
= � − β

Iu + σ It
N0

S − (μ + d)S + εR + α(N0 − S − Iu − It − Q − R). (3.2)

It then follows from Eq. (3.2) and α ≥ ε that

S′ ≤ (α + d)N0 − (μ + α + d)S. (3.3)
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Define an auxiliary system

u′ = (α + d)N0 − (μ + α + d)u. (3.4)

It is easily to show that (3.4) has a globally asymptotically stable equilibrium u∗ = S0,
that is, limt→∞ u(t) = S0. By standard comparison theorem, for sufficiently small
ε > 0, there exists a t0 > 0 such that S(t) < S0 + ε for all t ≥ t0. IfR0 < 1, Eq. (2.1)
implies Ru < 1 and Rt < 1. Therefore, we can choose arbitrary constant ε such that

β
S0 + ε

N0
< δu + γu + d, βσ

S0 + ε

N0
< δt + γt + d. (3.5)

Considering the Lyapunov function W = Iu + It and differentiating W along the
model (3.1) yield

dW

dt
= β

Iu
N0

S − (δu + γu + d)Iu + β
σ It
N0

S − (δt + γt + d)It

≤
(
β S0+ε

N0
− (δu + γu + d)

)
Iu +

(
βσ S0+ε

N0
− (δt + γt + d)

)
It.

(3.6)

It follows from (3.6) that R0 < 1 implies dW/dt ≤ 0 with dW/dt = 0 if and only
if Iu = It = 0. Then, the only invariant set where dW/dt = 0 is the singleton E0.
Therefore, by LaSalle’s invariance principle Theorem [7], E0 is globally asymptoti-
cally stable in 
. This completes this proof. 	


In order to obtain the global stability of endemic equilibrium E∗, we first give the
following analytic result regarding the persistence of model (3.1).

Theorem 3 If R0 > 1, then the model (3.1) is uniformly persistent, i.e., there exists
a constant η > 0 which is independent of the initial value in 
, such that

lim inf
t→∞ S(t) > η, lim inf

t→∞ V (t) > η, lim inf
t→∞ Iu(t) > η,

lim inf
t→∞ It(t) > η, lim inf

t→∞ Q(t) > η, lim inf
t→∞ R(t) > η.

Weomit the proof of Theorem3, as it can be easily verified by applying the Theorem
4.6 in [14] and using a similar argument as in the proof of Theorem 2.3 in [15]. This
theorem illustrates that the basic reproduction numberR0 is a threshold parameter of
the disease dynamics.

Theorem 4 If R0 > 1, then the endemic equilibrium E∗ is globally asymptotically
stable under the conditions ε = 0 and aσ = 1.

Proof For model (3.1), let us consider the following Lyapunov function

W (t) = 2S∗
1g

(
S

S∗

)

+ 2V ∗g
(

V

V ∗

)

+ I ∗
u

(1 − f )
g

(
Iu
I ∗
u

)

+ I ∗
t

f
g

(
It
I ∗
t

)

. (3.7)
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Here, g(x) = x − 1 − ln x for x ∈ (0,+∞) and g(x) ≥ 0 with g(x) = 0 if and only
if x = 1.

For ease of presentation, let

W1 = S∗g
(

S

S∗

)

, W2 = V ∗g
(

V

V ∗

)

, W3 = I ∗
u g

(
Iu
I ∗
u

)

and W4 = I ∗
t g

(
It
I ∗
t

)

.

For clarity, we first derivative Wi , i = 1, 2, 3, 4 along the solution of (3.1) and then
combined together to derive dW

dt .
Since the endemic equilibrium E∗ satisfies Eqs. (2.2), differentiating W1 along

model (3.1) drives

dW1

dt
=

(

1 − S∗
S

) (

−β
d

�
(SIu − S∗ I∗u + σ SIt − σ S∗ I∗t )

)

+
(

1 − S∗
S

)
(−(μ + d)(S − S∗) + α(V − V ∗)

)

= − β
d

�
S∗ I∗u

(
SIu
S∗ I∗u

− Iu
I∗u

+ S∗
S

− 1

)

− β
d

�
S∗σ I∗t

(
SIt
S∗ I∗t

− It
I∗t

+ S∗
S

− 1

)

− (μ + d)S∗
(
S∗
S

+ S

S∗ − 2

)

+ αV ∗
(

V

V ∗ − S∗V
SV ∗ + S∗

S
− 1

)

= − β
d

�
S∗ I∗u

(
SIu
S∗ I∗u

− Iu
I∗u

+ ln
S∗
S

)

− β
d

�
S∗σ I∗t

(
SIt
S∗ I∗t

− It
I∗t

+ ln
S∗
S

)

−�g

(
S∗
S

)

− (μ + d)S∗g
(

S

S∗
)

+ αV ∗g
(

V

V ∗
)

− αV ∗g
(
S∗V
SV ∗

)

. (3.8)

Similar computations for W2,W3 and W4 yield that

dW2

dt
=

(

1 − V ∗

V

)

(μS − (α + d)V )

= μS∗g
(

S

S∗

)

− μS∗g
(
SV ∗

S∗V

)

− (α + d)V ∗g
(

V

V ∗

)

,

(3.9)

dW3

dt
=

(

1 − I ∗
u

Iu

)(

(1 − f )β
d

�
(SIu − S∗ I ∗

u + σ SIt

− σ S∗ I ∗
t ) − (δu + γu + d)(Iu − I ∗

u )
)

= (1 − f )β
d

�
S∗ I ∗

u

(
SIu
S∗ I ∗

u
− S

S∗ − Iu
I ∗
u

+ 1

)

+ (1 − f )β
d

�
S∗σ I ∗

t

(
SIt
S∗ I ∗

t
− SI ∗

u It
S∗ Iu I ∗

t
− Iu

I ∗
u

+ 1

)

(3.10)
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and
dW4

dt
=

(

1 − I ∗
t

It

)(

fβ
d

�
(SIu − S∗ I ∗

u + σ SIt − σ S∗ I ∗
t )

− (δt + γt + d)(It − I ∗
t )

)

= fβ
d

�
S∗ I ∗

u

(
SIu
S∗ I ∗

u
− SIu I ∗

t

S∗ I ∗
u It

− It
I ∗
t

+ 1

)

+ fβ
d

�
S∗σ I ∗

t

(
SIt
S∗ I ∗

t
− S

S∗ − It
I ∗
t

+ 1

)

.

(3.11)

Combing Eqs. (3.8)–(3.11) together and then rearranging the terms, we have

dW

dt
= − 2�g

(
S∗
S

)

− 2dS∗g
(

S

S∗
)

− 2dV ∗g
(

V

V ∗
)

− 2μS∗g
(
SV ∗
S∗V

)

− 2αV ∗g
(
S∗V
SV ∗

)

+ β
d

�
S∗ I∗u

(

2 − S

S∗ − SIu I∗t
S∗ I∗u It

+ Iu
I∗u

− It
I∗t

− 2 ln
S

S∗
)

+β
d

�
S∗σ I∗t

(

2 − S

S∗ − SI∗u It
S∗ Iu I∗t

− Iu
I∗u

+ It
I∗t

− 2 ln
S

S∗
)

≤ β
d

�
S∗ I∗u

(

−g

(
S

S∗
)

− g

(
SIu I∗t
S∗ I∗u It

)

+ Iu
I∗u

− It
I∗t

− ln
Iu
I∗u

+ ln
It
I∗t

)

+β
d

�
S∗σ I∗t

(

−g

(
S

S∗
)

− g

(
SI∗u It
S∗ Iu I∗t

)

− Iu
I∗u

+ It
I∗t

+ ln
Iu
I∗u

− ln
It
I∗t

)

≤ β
d

�
S∗ I∗u

(
Iu
I∗u

− It
I∗t

− ln
Iu
I∗u

+ ln
It
I∗t

)

+ β
d

�
S∗σ I∗t

(
It
I∗t

− Iu
I∗u

+ ln
Iu
I∗u

− ln
It
I∗t

)

.

(3.12)

It follows from the expressions of I ∗
u and I ∗

t and the condition aσ = 1 that

β
d

�
S∗ I ∗

u

(
Iu
I ∗
u

− It
I ∗
t

− ln
Iu
I ∗
u

+ ln
It
I ∗
t

)

+β
d

�
S∗σ I ∗

t

(
It
I ∗
t

− Iu
I ∗
u

+ ln
Iu
I ∗
u

− ln
It
I ∗
t

)

=0.

Therefore, dW/dt ≤ 0 for all (S, V, Iu, It, Q, R) ∈ int
 (int
 be the interior of 
)
and dW/dt = 0 if and only if S = S∗, V = V ∗, Iu = I ∗

u , It = I ∗
t . Substituting these

relations into the last two equations of (3.1) yields that the only invariant set of this
case is the singleton {E∗}. Based on the LaSalle’s invariance principle [7], then E∗ is
globally asymptotically stable in int
. This completes this proof. 	


4 Numerical Simulations and Sensitivity Analysis

To complement the mathematical analysis carried out in the previous section, we now
investigate some of the numerical properties of model (3.1). We take the parameter
values in the simulation as: β = 0.5, σ = 0.3, d = 1/70, f = 0.72, γu = 0.05,
γt = 0.07, γq = 0.1, δu = 0.05, δt = 0.09 and �/d = 10000. We change the vacci-
nation coverage μ and other three parameter values to study the dynamical behaviors
for model (1.1).
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Fig. 2 Time plots of the model (1.1) with different initial values under the conditions α ≥ ε and aσ = 1.
Here, α = 0.01, ε = 0, σ = 0.59, β = 0.5, d = 1/70, f = 0.72, γu = 0.05, γt = 0.07, γq = 0.1,
δu = 0.05, δt = 0.09 and �/d = 10000. a u = 0.04, b u = 0.01

If we choose α = 0.01, ε = 0 and σ = 0.59, one can easily verify that these
parameter values satisfy the conditions given in Theorems 2 and 4. The time plots
of this case are shown in Fig. 2. As proved in Theorem 2, Fig. 2a illustrates that
all the trajectories of model (1.1) converge to the disease-free equilibrium E0 =
(3778, 6222, 0, 0, 0, 0) if R0 = 0.923 < 1. While if R0 = 1.731 > 1, Fig. 2b
shows that all the trajectories converge to the unique endemic equilibrium E∗ =
(4092, 1685, 148, 249, 261, 3565), which testifies the validity of Theorem 4.

Notice that the main theoretical results in this paper are derived by suitable Lya-
punov functions. As we all know, Lyapunov function (also called the Lyapunov’s
second method for stability) is an important method to study the stability of dynamical
systems. For most epidemic models, this method can only provide sufficient condi-
tions for the stability due to the complexity of models. Generally, we can conjecture
that the equilibria may be global asymptotically stability and numerical simulations
are usually used to verify the rationality of this conjecture. For model (1.1), if numer-
ical simulations show that the equilibria is global asymptotically stability for any
parameter values, then this conjecture may be true. Without loss of generality, we
choose α = 0.01, ε = 0.02 and σ = 0.36 which do not meet the conditions listed
in Theorems 2 and 4. The corresponding time plots are shown in Fig. 3. We can
observe from this figure that all the trajectories trend to the disease-free equilibrium
E0 = (3778, 6222, 0, 0, 0, 0) if R0 = 0.744 < 1 and trend to the unique endemic
equilibrium E∗ = (5080, 2092, 195, 329, 344, 1960) if R0 = 1.394 > 1. Hence,
the disease-free equilibrium of model (1.1) may be global asymptotically stability
if R0 < 1 and the endemic equilibrium may be global asymptotically stability if
R0 > 1.

Because the basic reproduction number R0 is the threshold quantity that deter-
mines when an infection invades and persists in a population, in what following,
we focus on the sensitivity analysis and uncertainty analysis [12] of the basic
reproduction numberR0. The sensitivity analysis helps identify the important param-
eters in controlling the disease spreading while uncertainty analysis helps evaluate
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894 Q. Cui et al.

Fig. 3 Time plots of the model (1.1) with different initial values if the conditions α ≥ ε and aσ = 1 are
not satisfied. Here, α = 0.01, ε = 0.02, σ = 0.36 and other parameter values are same as shown in Fig.2.
a u = 0.04, b u = 0.01

the robustness of the system under the parameter uncertainty of different lev-
els.

For uncertainty analysis, we use the Latin hypercube samplingmethod in this paper.
If a parameter is given a range and a center, we assume that this parameter satisfies
triangular distribution, while if only a range is given to a parameter, we assume that this
parameter follows the uniform distribution in that range. In this paper, we assume that
parameters β ∈ (0, 5) with center 0.5, σ ∈ (0, 1) with center 0.003 and d ∈ (60, 100)
year with center 70 year,μ ∈ (0, 0.3) and other parameters all assumed in the range (0,
0.5). With each parameter’s distribution, 1000 values are chosen randomly using Latin
hypercube sampling method. Histogram of the distribution ofR0 is shown in Fig. 4b,
which is generated from (2.1) using Latin hypercube sampling with 1000 samples.
We observe from this histogram that 85.5% of the distribution of R0 is greater than
1. We also obtain that the mean and the standard deviation of the basic reproduction
number R0 are 3.75 and 4.12, respectively.

To identify the relationship between the parameters and the basic reproduction
number, we used the partial rank correlation (PRCCs) method in this paper to find
statistical influence of R0. Partial rank correlation is computed to identify and mea-
sure the statistical influence of parameters β, σ, α, μ, f, γu, γt, δu, δt, d and R0. As
shown in Fig.4a, when random sampling is considered, the transmission rate β is
highly positively correlated with R0 and the corresponding value is +0.700003 and
the fraction of infected receives treatment f is highly negatively correlated with
R0 and the corresponding value is −0.589121. Moderate positive correlation has
been observed between α and R0 and the corresponding value is +0.478532 and
moderate negative correlation has been observed among μ, γu, δu and R0 and the
corresponding values are −0.370877,−0.499092,−0.502705, respectively. Weak
correlation exists among γt, δt and R0, and the corresponding values are, respec-
tively, −0.236385and − 0.272603. Hence, the transmission rate β and the treatment
probability f are the most influential parameters in determining the value of basic
reproduction number R0.
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Fig. 4 Sensitivity analysis and uncertainty analysis of the basic reproduction numberR0. Figure a shows
the sensitivity indices ofR0 and b shows histogram obtained fromLatin hypercube sampling using a sample
size of 1000 for R0

5 Conclusions

In this paper, we study the global stability of an epidemic model with vaccination,
treatment and isolation. By constructing suitable Lyapunov function, we obtain that
ifR0 < 1 and α ≥ ε, then the disease-free equilibrium E0 is globally asymptotically
stable. If R0 > 1, there exists a unique endemic equilibrium E∗ which is globally
asymptotically stable in the interior of the feasible region
 under conditions ε = 0 and
aσ = 1. Numerical simulations shown in Figs.2(c-d) extend these results to disease-
free equilibrium E0 is globally asymptotically stable as R0 < 1 and E∗ is globally
asymptotically stable as R0 > 1.

Through partial rank correlation (PRCCs) and the Latin hypercube sampling
method, the sensitivity and uncertainty analysis of R0 based on variation parame-
ters β, σ, α, μ, f, γu, γt, δu, δt and d have been obtained. The result presented in Fig.4
shows that transmission rate β and treatment probability f are crucial to stop the
spread of diseases. It also shows the basic reproduction number R0 is more sensitive
to the isolation rate (δu) and the recovery rate (γu) of untreated infectious individuals
than the isolation rate (δt) and the recovery rate (γt) of treated infectious individuals;
meanwhile, R0 is also sensitive to vaccination rate μ. These results imply that the
vaccination, treatment and isolation are all play an important role in preventing the
spread of an infectious disease.
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