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Abstract In this paper, we studied a normality criterion concerning Hayman’s ques-
tion and proved: let n(≥2), k(≥1),m(≥0) be three integers, let h(z)( �≡0) be a
holomorphic function in a domain D with all zeros that have multiplicity at most
m, and let F be a family of functions meromorphic in a domain D, all of whose
zeros have multiplicity at least k +m. If, for any two functions f, g ∈ F , f n f (k) and
gng(k) share h(z) in D, then F is normal in D. The result gets rid of two conditions
“all zeros of h(z) have multiplicity divisible by n + 1” and “all poles of f (z) have
multiplicity at least m + 1” in the result due to Meng and Hu (Bull Malays Math Sci
Soc 38:1331–1347, 2015).
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1 Introduction

In this paper, we assume the reader is familiar with Nevanlinna theory of meromorphic
functions. Let D be a domain in C and let F be a family of meromorphic functions
in D. We say that F is normal in D (in the sense of Montel) if each sequence { fn} in
F has a subsequence { fn j } that converges locally uniformly in D, with respect to the
spherical metric, to a meromorphic function or ∞ (see [7,15,17]).

For simplicity, we take → to stand for convergence and ⇒ for convergence spher-
ically locally uniformly.

Let f (z) and g(z) be two meromorphic functions in a domain D, and let h(z) be
a holomorphic function in D. If f (z) − h(z) and g(z) − h(z) have the same zeros
ignoring multiplicity (counting multiplicity), then we say that f (z) and g(z) share
h(z) IM (CM) in D.

The following normality criterion was conjectured by Hayman [8] and proved by
several authors (see [1,4,6,10,16]).

Theorem 1 Let n be a positive integer, and letF be a family of meromorphic functions
in D. If, for each f ∈ F , f n f ′ �= 1, then F is normal in D.

For other related results, see Bergweiler and Langley [2], Pang and Zalcman [11],
Wu and Xu [14] and Tan et al. [13].

In 2008, Zhang [18] considered the case of shared value and obtained.

Theorem 2 Let F be a family of meromorphic functions in D, and let n(≥2) be a
positive integer. If, for any two functions f, g ∈ F , f n f ′ and gng′ share a nonzero
value a IM in D, then F is normal in D.

In 2015,Meng andHu [9] studied the case of f n f (k)(n ≥ 2) sharing a holomorphic
function and obtained

Theorem 3 Let k(≥1), n(≥2),m(≥0) be three integers, let h(z)( �≡0) be a holomor-
phic function in a domain D with all zeros that havemultiplicity atmostm and divisible
by n + 1, and let F be a family of meromorphic functions in domain D such that each
f ∈ F has zeros of multiplicity at least k +m and poles of multiplicity at least m + 1.
If, for any two functions f, g ∈ F , f n(z) f (k)(z) and gn(z)g(k)(z) share h(z) IM in
D, then F is normal in D.

By Theorems 2 and 3, it is nature to ask that: can we get rid of the condition “all
zeros of h(z) have multiplicity divisible by n+1” and “all poles of f have multiplicity
at least m + 1 in Theorem 3”?

In this paper, we studied the question and gave an affirmative answer to the question.

Theorem 4 Let k(≥1), n(≥2),m(≥0) be three integers, let h(z)( �≡0) be a holomor-
phic function in a domain D with all zeros that have multiplicity at most m, and let F
be a family of meromorphic functions in domain D such that each f ∈ F has zeros
of multiplicity at least k + m. If, for any two functions f, g ∈ F , f n(z) f (k)(z) and
gn(z)g(k)(z) share h(z) IM in D, then F is normal in D.
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In fact, we proved the following more general result:

Theorem 5 Let k(≥1), n(≥2),m(≥0) be three integers, let h(z)( �≡0) be a holomor-
phic function in a domain D with all zeros that have multiplicity at most m, and let F
be a family of meromorphic functions in a domain D such that each f ∈ F has zeros
of multiplicity at least k +m. If, for any two functions f, g ∈ F , f n(z) f (k)(z) − h(z)
has at most one distinct zero in D, then F is normal in D.

The following examples show that the conditions in Theorem 5 are necessary.

Example 1 [9] Let D = {z ∈ C| |z| < 1}, let h(z) ≡ 0 and let

F =
{
f j (z) = e jz | j = 1, 2, . . .

}
.

Obviously, f nj (z) f
(k)
j (z) − h(z) does not have zero in D for each positive

integer j . But the family F is not normal at z = 0. This shows that h(z) �≡ 0 is
necessary Theorem 5.

Example 2 Let D = {z ∈ C| |z| < 1}, let h(z) = 1
zn+k+1 and let

F =
{
f j (z) = 1

j z
| j = 1, 2, . . . , and jn+1 �= (−1)kk!

}
.

Obviously, f nj (z) f
(k)
j (z) − h(z) does not have zero in D for each positive integer j .

But the family F is not normal at z = 0. This shows that Theorem 5 is not valid if
h(z) is a meromorphic function in D.

Example 3 Let D = {z ∈ C| |z| < 1}, let h(z) = 1 and let

F =
{
f j (z) = j zk−1 | j = 1, 2, . . .

}
.

Then f nj (z) f
(k)
j (z)− h(z) does not have zero in D for each positive integer j . But the

family F is not normal at z = 0. This shows that the condition “all zeros of f have
multiplicity at least k + m ” in Theorem 5 is best.

Example 4 Let D = {z ∈ C| |z| < 1}. Let h(z) = 1 and

F = {
f j (z) = j z | j = 1, 2, . . .

}
.

Obviously, f 2j (z) f
′
j (z) − h(z) = j3z2 − 1 have exactly two distinct zeros in D for

each positive integer j . But the family F is not normal at z = 0. This shows that
the condition “ f n(z) f (k)(z) − h(z) has at most one distinct zero” in Theorem 5 is
necessary.
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2 Some Lemmas

For the proofs of our theorems, we require the following results.

Lemma 1 [12,17] LetF be a family of meromorphic functions in the unit diskΔ such
that all zeros of functions inF have multiplicity≥ l. Let α be a real number satisfying
−l < α < 1. Then F is not normal in any neighborhood of z0 ∈ Δ if and only if there
exist

(a) points z j ∈ Δ, z j → z0;
(b) functions f j ∈ F; and
(c) positive numbers ρ j → 0

such that g j (ξ) = ρα
j f j (z j +ρ jξ) ⇒ g(ξ) spherically uniformly on compact subsets

ofC, where g(ξ) is a non-constant meromorphic function inC satisfying that all zeros
of g have multiplicity at least l.

Lemma 2 [15] Let f1 and f2 be two non-constant meromorphic functions in C, then

N (r, f1 f2) − N

(
r,

1

f1 f2

)
= N (r, f1) + N (r, f2) − N

(
r,

1

f1

)
− N

(
r,

1

f2

)
.

The following Lemmawas proved by Zhang and Li [19] when f is a transcendental
meromorphic function, and by Meng and Hu [9] when f is a rational function.

Lemma 3 Let n(≥2), k(≥1) be three integers, let a �= 0 be a finite complex number,
and let f (z) be a non-constant meromorphic in C with all zeros that have multiplicity
at least k. Then f n(z) f (k)(z) − a have at least two distinct zeros.

Lemma 4 Let n(≥1), k(≥1), M(≥1) be three integers, let p(z) be a polynomial with
deg p = M, and let f (z) be a non-constant rational function in C with f (z) �= 0.
Then f n(z) f (k)(z) − p(z) has at least n + k + 1 distinct zeros.

The proof of Lemma 4 is almost the same with Chang [3] and Lemma 11 in Deng
etc. [5], we omit the detail.

Lemma 5 Let n(≥2), k(≥1),m(≥1) be three integers, let p(z) be a polynomial with
deg p = m, and let f (z) be a non-constant meromorphic in C with all zeros that have
multiplicity at least k + m. Then f n(z) f (k)(z) − p(z) has at least two distinct zeros.

Proof Set

1

f n+1 = f n f (k)

p f n+1 − p[ f n f (k)]′ − p′ f n f (k)

p f n+1

f n f (k) − p

p[ f n f (k)]′ − p′ f n f (k)
.
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Then by m(r, f (i)

f ) = S(r, f )(i ≥ 1), m(r, p) = m log r + O(1), m
(
r, 1

p

) = O(1),
Lemma 2 and Nevanlinna’s elementary theory, we get

(n + 1)m

(
r,

1

f

)
≤ m

(
r,

f n f (k)

p f n+1

)
+ m

(
r,

p
(
f n f (k)

)′ − p′ f n f (k)

p f n+1

)

+ m

(
r,

f n f (k) − p

p
[
f n f (k)

]′ − p′ f n f (k)

)
+ S (r, f )

≤ T

(
r,

f n f (k) − p

p
[
f n f (k)

]′ − p′ f n f (k)

)

− N

(
r,

f n f (k) − p

p
[
f n f (k)

]′ − p′ f n f (k)

)
+ S (r, f )

= m

(
r,

p
[
f n f (k)

]′ − p′ f n f (k)

f n f (k) − p

)

+ N

(
r,

p
[
f n f (k)

]′ − p′ f n f (k)

f n f (k) − p

)

− N

(
r,

f n f (k) − p

p
[
f n f (k)

]′ − p′ f n f (k)

)
+ S (r, f )

= m

⎛
⎜⎝r,

p
[
f n f (k)

p − 1
]′

f n f (k)

p − 1

⎞
⎟⎠

+ N

(
r, p

[
f n f (k)

]′ − p′ f n f (k)
)

+ N

(
r,

1

f n f (k) − p

)

− N

(
r,

1

p
[
f n f (k)

]′ − p′ f n f (k)

)

− N
(
r, f n f (k) − p

)
+ S (r, f )

≤ N (r, f ) + N

(
r,

1

f n f (k) − p

)

− N

(
r,

1

p
[
f n f (k)

]′ − p′ f n f (k)

)
+ m log r + S (r, f ) .

Let z1 is a zero of f with multiplicity l1 ≥ k+m. Then z1 is a zero of p[ f n f (k)]′ −
p′ f n f (k) with multiplicity at least (n + 1)l1 − k − 1.

Let z2 is a zero of f n f (k) − p with multiplicity l2. Obviously, we have

p[ f n f (k)]′ − p′ f n f (k) = p[ f n f (k) − p]′ − p′[ f n f (k) − p].
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Then z2 is a zero of p[ f n f (k)]′ − p′ f n f (k) with multiplicity at least l2 − 1.
Hence, we have

(n + 1) T (r, f ) ≤ N (r, f ) + (n + 1) N

(
r,

1

f

)
+ N

(
r,

1

f n f (k) − p

)

+m log r − N

(
r,

1

p
[
f n f (k)

]′ − p′ f n f (k)

)
+ S (r, f )

≤ N (r, f ) + (k + 1) N

(
r,

1

f

)
+ N

(
r,

1

f n f (k) − p

)

+m log r + S (r, f )

≤ N (r, f ) + k + 1

k + m
N

(
r,

1

f

)
+ N

(
r,

1

f n f (k) − p

)

+m log r + S (r, f ) . (2.1)

Suppose that f n(z) f (k)(z) − p(z) has at most one distinct zero.
Next we consider two cases.

Case 1 m ≥ 2. Then by (2.1), we have

T (r, f ) <

(
n − k + 1

k + m

)
T (r, f ) ≤ (m + 1) log r + S(r, f ).

Thus, f is a rational function with deg f < m + 1. Since all zeros of f have
multiplicity at least k +m ≥ 1+m, we deduce that f (z) �= 0. Then by Lemma 4, we
obtain that f n(z) f (k)(z)− p(z) has at least n+k+1 > 2 distinct zeros, a contradiction.
Case 2 m = 1.

If f n(z) f (k)(z) − p(z) �= 0, then by (2.1), we get T (r, f ) ≤ log r + S(r, f ).
It follows that f is a rational function with deg f ≤ 1. We deduce that f (z) �= 0,
since all zeros of f have multiplicity at least k + m ≥ 2, Then by Lemma 4, we get
f n(z) f (k)(z) − p(z) has at least n + k + 1 > 2 distinct zeros, a contradiction.
Thus f n(z) f (k)(z) − p(z) has exactly one distinct zero. By (2.1), we have

nT (r, f ) ≤ 2 log r + N (r, f ) + S(r, f ). (2.2)

If n ≥ 3, by (2.2), we obtain T (r, f ) ≤ log r+S(r, f ). It follows that f is a rational
function with deg f ≤ 1. Since all zeros of f have multiplicity at least k + m ≥ 2,
we obtain f (z) �= 0, then by Lemma 4, we get f n(z) f (k)(z) − p(z) has at least
n + k + 1 > 2 distinct zeros, a contradiction.

Thus n = 2. By (2.2) again, we get T (r, f ) ≤ 2 log r + S(r, f ). It follows that f is
a rational function with deg f ≤ 2. If k ≥ 2, since all zeros of f have multiplicity at
least k + m ≥ 3, we get f (z) �= 0, then by Lemma 4, we get a contradiction. Hence
k = 1, then f has one zero with multiplicity 2 at most. If f has no zero, then by
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Lemma 4, a contradiction. Thus, f (z) has exactly one distinct zero with multiplicity
2, and of the following forms:

A1: f (z) = a(z − α)2; A2: f (z) = a
(z − α)2

z − β
;

A3: f (z) = a(z − α)2

(z − β1)(z − β2)
; A4: f (z) = a

(z − α)2

(z − β)2
.

If f (z) has the form A1 or A2 or A4,we have N (r, f ) ≤ log r = 1/2T (r, f )+O(1).
Then by (2.2), we get T (r, f ) ≤ 4/3 log r + S(r, f ), this contradicts with T (r, f )
= 2 log r + O(1).

Then

f (z) = a(z − α)2

(z − β1)(z − β2)
. (2.3)

It follows from (2.3) that

f ′ (z) = a (z − α) [(2α − β1 − β2) z + 2β1β2 − α (β1 + β2)]

(z − β1)
2 (z − β2)

2 . (2.4)

By (2.3) and (2.4), we get

f 2(z) f ′(z) = a3(z − α)5 [(2α − β1 − β2) z + 2β1β2 − α(β1 + β2)]

(z − β1)4(z − β2)4
. (2.5)

Since deg p = m = 1, we may set p(z) = b(z − z0), where b �= 0 is a constant.
Since f n(z) f (k)(z) − p(z) has exactly one distinct zero, by (2.5), we may set

f 2(z) f ′(z) = b(z − z0) − b(z − w)9

(z − β1)4(z − β2)4
, (2.6)

where w �= α. Otherwise, if w = α, then by (2.5), we get α is a zero of ( f 2(z) f ′(z))′′
withmultiplicity 3. But from (2.6),we getα is a zero of ( f 2(z) f ′(z))′′ withmultiplicity
7, a contradiction.

Differentiating (2.5) two times, we obtain,

[ f 2(z) f ′(z)]′′ = (z − α)3g1(z)

(z − β1)6(z − β2)6
, (2.7)

where g1(z) is a polynomial with deg g1 ≤ 5.
On the other hand, differentiating (2.6) two times, we obtain,

[ f 2(z) f ′(z)]′′ = (z − w)7g2(z)

(z − β1)6(z − β2)6
, (2.8)

where g2(z) is a polynomial with deg g2 ≤ 4.
From (2.7)–(2.8), and w �= α, we get 7 ≤ deg g1 ≤ 5, a contradiction.
This completes the proof of Lemma 5.
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Lemma 6 Let n(≥2), k(≥1) be three integers, and let { f j } be a sequence of meromor-
phic functions in domain D, {h j (z)} be a sequence of holomorphic functions in D such
that h j (z) ⇒ h(z), where h(z) �= 0 be a holomorphic function. If, for each j ∈ N+,
all zeros of function f j (z) have multiplicity at least k, and f nj (z) f

(k)
j (z) − h j (z) has

at most one distinct zero in D, then { f j } is normal in D.

Proof Suppose that { f j } is not normal at z0 ∈ D. By Lemma 1, there exists a sequence
z j of complex numbers z j → z0, a sequence ρ j of positive numbers ρ j → 0 , and a
subsequence of { f j } (we may still denote by { f j }) such that

g j (ξ) = f j (z j + ρ jξ)

ρ
k

n+1
j

⇒g(ξ)

locally uniformly on compact subsets ofC, where g(ξ) is a non-constant meromorphic
function inC. ByHurwitz’s theorem, all zeros of g(ξ)havemultiplicity at least k. Then,
we have

gnj (ξ)g(k)
j (ξ) − h j (z j + ρ jξ) = f nj (z j + ρ jξ) f (k)

j (z j + ρ jξ) − h j (z j + ρ jξ)

⇒ gn(ξ)g(k)(ξ) − h(z0).

for all ξ ∈ C/{g−1(∞)}.
Obviously, gn(ξ)g(k)(ξ) − h(z0) �≡ 0. Otherwise, suppose that

gn(ξ)g(k)(ξ) − h(z0) ≡ 0, (2.9)

then we have g(ξ) �= 0 since h(z0) �= 0.
It follows from (2.9) that

1

gn+1(ξ)
≡ g(k)(ξ)

h(z0)g(ξ)
.

Then, we get

(n + 1)m

(
r,

1

g

)
= m

(
r,

g(k)

h(z0)g

)
= S(r, g).

It follows that T (r, g) = S(r, g) since g �= 0. Hence g is a constant, a contradiction.
Weclaim that gn(ξ)g(k)(ξ)−h(z0)has atmost one distinct zero.Otherwise, suppose

that ξ1, ξ2 are two distinct zeros of gn(ξ)g(k)(ξ)−h(z0). We choose a positive number
σ small enough such that D1 ∩ D2 = ∅ and gn(ξ)g(k)(ξ) − h(z0) has no other zeros
in D1

⋃
D2 except for ξ1 and ξ2, where D1 = {ξ : | ξ − ξ1 |< σ } and D2 = {ξ :

| ξ − ξ2 |< σ }.
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By Hurwitz’s theorem, for sufficiently large j there exist points ξ1, j → ξ1 and
ξ2, j → ξ2 such that

f nj (z j + ρ jξ1, j ) f
(k)
j (z j + ρ jξ1, j ) − h j (z j + ρ jξ1, j ) = 0;

f nj (z j + ρ jξ2, j ) f
(k)
j (z j + ρ jξ2, j ) − h j (z j + ρ jξ2, j ) = 0.

By the assumption in Lemma 6, f nj f (k)
j (z) − h j (z) has at most one zero in D, it

follows that z j + ρ jξ1, j = z j + ρ jξ2, j , that is ξ1, j = ξ2, j = (z0 − z j )/ρ j , which
contradicts with the facts D1 ∩ D2 = ∅.

The claim is proved.On the other hand, it follows fromLemma3 that gn(ξ)g(k)(ξ)−
h(z0) has at least two distinct zeros, a contradiction. Thus { f j } is normal in D.

3 Proof of Theorems

Proof of Theorem 5 By Lemma 6, it is enough to prove that F is normal at the point
z0, where h(z0) = 0. By making standard normalization, we may assume that z0 = 0,
and h(z) = ztb(z) where 1 ≤ t ≤ m is a positive integer, and b(0) = 1.

Suppose that F is not normal at z0 = 0. By Lemma 1, there exists a sequence
z j of complex numbers z j → 0, a sequence ρ j of positive numbers ρ j → 0, and a
sequence of functions { f j } ⊆ F such that

g j (ξ) = f j (z j + ρ jξ)

ρ
k+t
n+1
j

⇒g(ξ) (3.1)

locally uniformly on compact subsets ofC, where g(ξ) is a non-constant meromorphic
function inC. By Hurwitz’s theorem, all zeros of g(ξ) have multiplicity at least k+m.
Next we consider two cases.
Case 1 z j/ρ j → ∞. Set

Fj (ξ) = f j (z j + z jξ)

z
k+t
n+1
j

.

Then, we have

Fn
j (ξ)F (k)

j (ξ) − (1 + ξ)t b(z j + z jξ)

= f nj (z j + z jξ) f (k)
j (z j + z jξ) − h(z j + z jξ)

ztj
.

As the same argument as in Lemma 6, we deduce that Fn
j (ξ)F (k)

j (ξ) −
(1 + ξ)t b(z j + z jξ) has at most one distinct zero in Δ = {ξ :| ξ |< 1}.

Since all zeros of Fj have multiplicity at least k + m, and (1 + ξ)t b(z j + z jξ) →
(1 + ξ)t �= 0 when ξ ∈ Δ. Then by Lemma 6, {Fj } is normal in Δ.
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So, there exists a subsequence of functions [we still denote as Fj (ξ)] and a function
F(ξ) (a meromorphic function or ∞), such that Fj (ξ)⇒F(ξ).

If F(0) �= ∞, then it follows from k + m − 1 − k+t
n+1 > 0 that

g(k+m−1) (ξ) = lim
j→∞g(k+m−1)

j (ξ) = lim
j→∞

f (k+m−1)
j

(
z j + ρ jξ

)

ρ
k+t
n+1−(k+m−1)
j

= lim
j→∞

(
ρ j

z j

)k+m−1− k+t
n+1

F (k+m−1)
j

(
ρ j

z j
ξ

)
= 0,

for all ξ ∈ C/{g−1(∞)}.
Thus we deduce that g(k+m−1) ≡ 0. Hence g is a polynomial of degree at most

k +m − 1. Since all zeros of g have multiplicity at least k +m, it follows that g(ξ) is
a constant, a contradiction.

If F(0) = ∞, then by

1

Fj

(
ρ j
z j

ξ
) = z

k+t
n+1
j

f j
(
z j + ρ jξ

) → 1

F(0)
= 0,

when ξ ∈ C/{g−1(0)}, we obtain that,

1

g (ξ)
= lim

j→∞
ρ

k+t
n+1
j

f j
(
z j + ρ jξ

) = lim
j→∞

(
ρ j

z j

) k+t
n+1 z

k+t
n+1
j

f j
(
z j + ρ jξ

) = 0.

Thus g(ξ) ≡ ∞, which contradicts that g(ξ) is a non-constant meromorphic function.
Case 2 z j/ρ j → α, where α is a finite complex number. Then by (3.1), we have

gnj (ξ) g(k)
j (ξ) −

(
ξ + z j

ρ j

)t

b
(
z j + ρ jξ

)

= f nj
(
z j + ρ jξ

)
f (k)
j

(
z j + ρ jξ

) − h
(
z j + ρ jξ

)

ρt
j

⇒ gn (ξ) g(k) (ξ) − (ξ + α)t

for all ξ ∈ C/{g−1(∞)}.
Since for sufficiently large j , f nj (z j + ρ jξ) f (k)

j (z j + ρ jξ) − h(z j + ρ jξ) has one

distinct zero, it follows from the proof of Lemma 6 that gn(ξ)g(k)(ξ) − (ξ + α)t has
at most one distinct zero.

But from Lemma 5, gn(ξ)g(k)(ξ)− (ξ +α)t have at least two distinct zeros. Hence
g(ξ) is a constant, a contradiction.

This completes the proof of Theorem 5.
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Proof of Theorem 4 Let z0 ∈ D. We show that F is normal at z0. Let f ∈ F .
We consider two cases.

Case 1 f n(z0) f (k)(z0) �= h(z0). Then there exists a disk Dδ(z0) = {z: | z − z0 |< δ}
such that f n(z) f (k)(z) �= h(z) in Dδ(z0). Since for each pair of functions ( f, g) ∈ F ,
f n(z) f (k)(z) and gn(z)g(k)(z) share h(z) in D. Thus, for every g ∈ F , gn(z)g(k)

�= h(z) in Dδ(z0). By Theorem 5, F is normal in Dδ(z0). Hence F is normal at z0.
Case 2 f n(z0) f (k)(z0) = h(z0). Then there exists a disk Dδ(z0) = {z: | z − z0 |< δ}
such that f n(z) f (k)(z) �= h(z) in D0

δ (z0). Since for each pair of functions ( f, g) ∈ F ,
f n(z) f (k)(z) and gn(z)g(k) share h(z) in D. Thus, for every g ∈ F , gn(z)g(k) �= h(z)
in D0

δ (z0) and gn(z0)g(k)(z0) = h(z0). So, gn(z)g(k) − h(z) have only distinct zero
in Dδ(z0). By Theorem 5, F is normal in Dδ(z0). Hence F is normal at z0.

This completes the proof of Theorem 4.
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