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Abstract This paper considers different routes to generalized symmetries for some
ecological equations that arise in spatial theory.Twoprimarymethods for the derivation
of generalized symmetries are the standard Lie invariance condition with vector fields
dependent onderivatives and, secondly, a recursive operator. The former is less efficient
especially if it includes derivatives that become increasingly higher in order, and this
necessarily complicates the nature of the computations. The latter involves a nontrivial
analysis to define a recursion operator, if one exists, but is successful in providing
higher-order analogs of the equation or equivalently, higher-order symmetries. A linear
Kierstead–Slobodkin and Skellammodel is shown to possess a recursion operator that
renders the equation completely integrable, by verifying the presence of infinitely
many higher-order symmetries. Moreover, we apply the scheme of the characteristic
approach to establish nontrivial conserved vectors frommultipliersΛ(t, x, u, ux , ut ),
that are analogous to integrating factors.
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1 Introduction

In 1977, Olver [1] pioneered a study of recursion operators for several evolution equa-
tions that possess infinitely many symmetries. One such discussion revolved around
the higher-order analogs of the KdV equation

ut = uxxx + uux ,

which could be reinterpreted as “higher-order symmetries.” The operator itself was
due to Lenard [2]

R = D + 1

2
u + 1

2
ux D

−1,

where D denotes the total derivative with respect to x unless stated otherwise, namely
D = ∂x +ux∂u +uxx∂ux +uxxx∂uxx +· · · . Inspired by these works, we obtain higher-
order analogs of a special diffusion equation by formulating a recursion operator.

Symmetry methods feature in the analysis of phenomena that arise in physical
and mathematical fields. For example, several studies were devoted to fundamental
equations in physics, general relativity, biology and financial mathematics, see [3–
6] and references therein. These days the determination of point symmetries can be
done mechanically by a number of symbolic computer programs, e.g., to list just a
few: Macsyma [7], Mathematica [8,9] and Maple have an automated routine as well.
We point out here that point symmetries depend only on the independent variables
(xk = (x1, . . . x p)) of a system and its associated dependent variables only (ul =
(u1, . . . uq)) and excludes derivatives of the dependent variable, that is X = ξ k(x, u)+
ηl(x, u), while generalized symmetries, also commonly referred to as Lie Bäcklund
symmetries, include derivatives of the dependent variable. The aim of this paper is
also to study some properties surrounding generalized symmetries that arise from
techniques apart from recursions.

At this point it is appropriate to summarize several strategies to construct higher-
order symmetries: a) The standard way of computing Lie point symmetries can be
extended to include derivative dependent terms, thereby resulting in higher-order Lie
Bäcklund symmetries. b) Implement the multiplier or characteristic approach [10] to
construct multipliers (integrating factors) of an equation. In this case the multiplier
itself is a symmetry of the underlying equation and can be defined in such a way as
to consist of higher-order terms. The advantage of this method is that every multiplier
provides a conserved quantity. Obviously such a conservation law is not Noetherian
and does not stem from a variational principle. For further discussion of this method
we refer the reader to recent literature on the subject [11–15]. Last but not least, (c) a
recursion operator, if it exits, generates infinite hierarchies of higher-order symmetries.
Historically, recursive operators were found by guesswork [1], although it can debated
that this is simply a practice of searching for a pattern in a perceptive fashion. By far,
(c) is exceedingly sought after, more useful and increasingly more efficient.

An important problem in analytical theories is the integrability of partial differential
equations (PDEs). From the mathematical point of view their importance is due to
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the following circumstances. Complete integrability provides important information
about the nature of the solutions of PDEs. Once ascertained that a PDE is completely
integrable, numerousmethods then exist for solving, for instance themethod of inverse
scattering transform. These reasons have motivated many investigations regarding
integrability, including this work.

2 Some Diffusive Equations

We nowmention some important PDEs that have received much attention in the litera-
ture and also the equations that underpin this study. Reaction–diffusion problems have
been studied extensively in fundamental areas of engineering, mathematics, biology,
population ecology and many others. Numerous models exist to explain spatial theory
and population dynamics alone. The expansion ofmuskrat populations in Europe insti-
gated mathematical attempts to model the problem which lead to reaction–diffusion
equations [16]. A typical reaction–diffusion model, with u as the population density
at spatial coordinates and time t , is

ut = (C(u)ux )x + (C(u)uy)y + f (u), (1)

where C(u) describes the diffusivemovement, while reaction and population dynamics
is represented by f (u). Emphasis is also placed on reaction–diffusionmodels in which
a combination of population dynamics such as movement and multi-species interac-
tions is considered [17]. The notion of a correlated random walk [17] by species gave
rise to a telegraph PDE model [18]:

ut = s2

2λ
(uxx + uyy) − 1

2λ
utt , (2)

where 2λs a measure of the correlation between directions of travel from one step to
the next and s is the velocity. The Fisher model [19] is arguably the most important
reaction–diffusion model, which represents Brownian random dispersal and logistic
population growth:

ut = ru
(
1 − u

K

)
+ B(uxx + uyy), (3)

where r is the population’s growth rate, B is the diffusion constant that measures the
rate of dispersal and the carrying capacity is represented by K . Prior to these models,
early PDE models of population ecology such as

ut = B(uxx + uyy), (4)

were used to analyze the dispersion of numerous organisms in mark-recapture studies
(e.g., [20]), whereby the simplistic conjecture is assumed that expects organisms to
have Brownian movement, the rate of which is invariant in space and time [17,21].
To build on this model one considers when organisms adapt to external stimuli or are
moved by rainwater or airstream currents, and therefore, convection or drift terms are
added to (4), which leads to the model [22]
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ut = B(uxx + uyy) − wxux − wyuy, (5)

wherewx andwy are convection velocities. The Lie point symmetries of (5) are easily
obtainable and are surprisingly many, viz. we find a ten-dimensional algebra:

Γ1 = ∂y, Γ2 = ∂x , Γ3 = ∂t , Γ4 = u∂u,

Γ5 = t∂x + 1

2

u
(
twy − x

)

B
∂u, X6 = t∂y + 1

2

u (twx − y)

B
∂u,

Γ7 = y∂x − x∂y − 1

2

u
(
wx x − wy y

)

B
∂u,

Γ8 = 1

2
x∂x + 1

2
y∂y + t∂t − 1

4

u
((

w2
x + w2

y

)
t − wx y − wyx

)

B
∂u,

Γ9 = 1

2
t x∂x + 1

2
t y∂y + 1

2
t2∂t

−1

8

u
(
t2w2

x + t2w2
y − 2twx y − 2twyx + 4Bt + x2 + y2

)

B
∂u,

Γ∞ = F(t, x, y)∂u,

(6)

where F(t, x, y) is the infinite symmetry that is the infinite-dimensional abelian subal-
gebra of solutions which is a solution of Eq. (5). We remark that since Eq. (5) is linear,
it naturally admits the linear symmetry Γ4 and the infinite symmetry Γ∞ [23]. Sev-
eral PDEs have been designed to model interactions between conspecifics, whereby
attraction or repellence between species leads to a simple diffusion equation being
replaced by a biased nonlinear diffusive equation [17,24]:

ut = Buxx + (kuux )x , (7)

where again u(t, x) is the density of population, and k is a measure of the tendency to
travel away from conspecifics (k > 0) and is a measure of the tendency to travel near
conspecifics (k < 0). Such a model admits a four-dimensional Lie algebra of point
symmetries,

Σ1 = ∂t , Σ2 = ∂x , Σ3 = 1
2 x∂x + t∂t , Σ4 = 1

2kx∂x + (ku + B) ∂u . (8)

In the next section we consider the higher-order properties of (7) using the idea of mul-
tipliers and Lie Bäcklund symmetries. Lastly in Sect. 4 we find and apply a recursion
operator to a second ecological equation to prove that it is completely integrable.

3 Generalized Symmetries of a Nonlinear Diffusion Equation

If a vector field with components ξ j , ηi relies on the following derivatives, where u(s)

represents the sth derivative of u with respect to x
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(x̄) j = x j + εξ j
(
x, u(s)

) + O(ε2), j = 1, . . . , n,

(x̄)i = ui + εηi
(
x, u(s)

) + O(ε2), i = 1, . . . ,m
(9)

then the resulting symmetries are said to be of higher order. Without loss of gener-
ality, the symmetry generators in a higher-order context are usually expressed in the
evolutionary or characteristic form, videlicet

X̄ = φi (x, u(s))∂ui , assuming that ξ j = 0. (10)

Hence, suppose we restrict our vector field to the form

X̄ = φ(x, t, u, ux , uxx ), (11)

which is to be the higher-order symmetry generator of Eq. (7). The infinitesimal
criterion of invariance is given by

X̄
[
Eq. (7)

] |Eq.(7)= 0, (12)

and therefore, higher-order symmetries of our equation are given by the determining
equations, for the simplest scenario B = k = 1,

φuxx ,uxx + φuxx ,uxx u = 0,
2φuxx ,uux uxx + 2φuxx ,uuux + 2φuxx ,ux uuxx − 2φuxx ux + 2φx,uxx u

+ 2φx,uxx + 2φuxx ,uux = 0,
2φux ,uuuxuxx − φux uxuxx + φu,uu2x − 3φuxx u

2
xx + φx,x + φuxx

+2φx,uuux + φu,uuu2x + φux ,ux uu
2
xx

+ 2φux ,uuxuxx + 2φxux + 2φx,ux uuxx + φx,xu + φuu2x − φt + 2φx,uux+
φux ,ux u

2
xx + 2φx,ux uxx = 0.

(13)
The solution of the system (13) gives the following four higher-order symmetries:

X̄1 = ux∂u,
X̄2 = (uxx − 2u − 2)∂u,
X̄3 = (uuxx + u2x + uxx )∂u,
X̄4 = (uuxx t + u2x t + u + 1)∂u .

(14)

As an alternative, we now utilize the characteristic approach to determine whether
such an approach yields a larger collection of higher-order symmetries. Note that the
evolutionary symmetries X̄1−4 do not normally yield conservation laws. To this end
an exploration of multipliers has the benefit of leading to conserved vectors.

3.1 The Characteristic Approach

Information about conservation laws is important to any symmetry study of a PDE.
These conservation laws are of paramount importance, and it is well known that they
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show a vital part in mathematical physics as they define critical physical properties of
the modeled process. Conservation laws are also applicable when eliminating numer-
ical errors of PDEs [25]. Once a multiplier is found, conserved vectors may be derived
systematically by using a homotopy operator (see details and references in [26,27]);
however, in some cases it is simple to construct the conserved vectors by elemen-
tary manipulations. The explicit relation between multipliers and conserved densities
is summarized by Anco and Bluman [28]. To apply this approach consider a multi-
plier that contains the dependent variable, the independent variables and derivatives
of dependent variables up to some fixed order, i.e., let Λ = Λ(t, x, u, ux , ut ) of Eq.
(7) have the property that

Λ
[
Eq. (7)

] = DxT x + DtT t , (15)

for all functions u(t, x), where the total derivative operative is defined as

Di = ∂

∂xi
+ uα

i
∂

∂uα
+ uα

i j
∂

∂uα
j

+ · · · . (16)

The right-hand side of (15) is a divergence expression, and the conserved vector
T = (T x , T t ) has components T j ( j = x, t). The determining equations for the
multipliers Λ are obtained from the expressions

δ

δu

[
Λ(Eq. 7)

] = 0, (17)

where
δ

δu
are the Euler–Lagrange operators given by

δ

δuα
= ∂

∂uα
+

∑
s≥1

(−1)s Di1 · · · Dis
∂

∂uα
i1···is

, (18)

which annihilate divergence expressions. Solving Eq. (17) yields,

u2x (ku + B)Λuu + 2ux (ku + B)Λux + (ku + B)Λxx

+
(
ku2x + 2uxx (ku + B)

)
Λu + Λt = 0. (19)

Solving for Λ, we find the solution (C1,C2 are arbitrary constants):

Λ(t, x, u, ux , ut ) = C1x + C2. (20)

Hence, the solutions of the determining system are the multipliers,

Λ1 = 1 and Λ2 = x,

which we note are not higher order in the end, but each yields a nontrivial generalized
biased diffusion conservation law
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T t
1 = −u and T x

1 = (B + ku)ux ,

and

T t
2 = −xu and T x

2 = −1

2
ku2 + Bxux + u(kxux − B),

respectively. Next we shift our focus to a special evolution equation for which we
prove that it possesses an infinite hierarchy of symmetries.

4 The Kierstead–Slobodkin and Skellam Problem

In this section we consider the linear Kierstead–Slobodkin [29] and Skellam [16]
problem, commonly known as the KiSS model, and extend our study to the nonlinear
model. Such a model is also described as the basic critical patch equation. Determina-
tion of critical patch size to guarantee the sustenance of the population is an important
study. The rate at which a population exits the area, the population dynamics in the
patch, the spatial area and the region surrounding the patch are some of the factors
that influence the critical patch size.

A generalized (1 + 2) KiSS model is expressed as

ut = B
(
uxx + uyy

) + r F(u)ρ. (21)

Here, ρ > 0 is the critical exponent parameter that determines whether the model is
linear (ρ = 1) or nonlinear (ρ ≥ 2), and r is the growth rate. An investigation of
several special cases that produce interesting symmetries is presented in Table 1.

As mentioned before, the linear symmetry and the infinite symmetry are added
to Table 1 whenever Eq. (21) is a linear model. Our interest lies in the higher-order
symmetries, and it turns out that we are able to find a infinite sequence of symmetries
for this particular model.

4.1 Higher-Order Symmetries Via Recursion Operators

In this subsection we are concerned about determining an infinite series of higher-
order symmetries by defining a recursion operator. A study by [30] studied higher-
order symmetries as the fundamental feature of completely integrable equations and
proposed that an equation is completely integrable if and only if it admits infinitely
many time-independent Lie Bäcklund symmetries. Motivated by this consideration,
we define a recursion operator for the diffusive KiSS model to prove its complete
integrability. In practice, and for the sake of simplicity, we study the PDE in (1 + 1)
dimensions. We stipulate the form of the model by the selection of the free function
F(u) = u and assume that all parameters are nonzero, specifically B = r = ρ = 1.

For the convenience of the reader we present the basic theoretical framework of
recursive operators. For a polynomial system that arises from evolution equations

ut = A(u(s)), (22)
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Table 1 Classification of Lie point symmetries of model (21)

Case Lie symmetry ρ F(u)

I X1 = ∂t , X2 = ∂x , X3 = ∂y , X4 = u∂u ,

X5 = y∂x − x∂y , 1 u

X6 = t∂x − 1
2
ux
B ∂u , X7 = t∂y − 1

2
uy
B ∂u ,

X8 = t∂t + 1
2 x∂x + 1

2 y∂y + urt∂u ,

X9 = 1

2
t2∂t + 1

2
xt∂x + 1

2
yt∂y+

1

8

u
(
Brt24 − 4Bt − x2 − y2

)

B
∂u

II X1, X2, X3, X5, n u

X10 = t∂t + 1
2 x∂x + 1

2 y∂y − u
n−1 ∂u (n �= 1)

III X1, X2 1 Arbitrary

IV X1, X2, 1 ebu

X11 = t∂t + x
2 ∂x − 1

b ∂u (b �= 0 is const.)

V X1, X2, X4, − 0a

X12 = t∂t + x
2 ∂x − 2Bt∂x + xu∂u

X13 = 1
2 t

2∂t + 1
2 t x∂x +

(
t
4 − x2

8B

)
u∂u

a This is equivalent to Eq. (4)

a higher-order symmetry Y (u) leaves the above PDE invariant under the substitution
u → u + εY up to order ε, and must satisfy the relation [1]

DtY (u) = A′(u)[Y (u)],

where the right-hand side is equivalent to the adjoint Fréchet derivative

∂

∂ε
A (u + εY ) |ε=0 .

A recursion operator, R, links higher-order symmetries [1]

Y (p+q) = RY (p), p = 1, 2, . . . (23)

where q = 1 and Y (p) is the p−th higher-order symmetry.
To return to our model, we let

ut = Y (u) = uxx + u. (24)

We define the recursion operator to beR = D; therefore, the infinite series of gener-
alized symmetries

Y (p)(u) = RpY,
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can be written in evolution form ut = Y (p)(u). The first few of these are

ut = Y (0)(u) = uxx + u,

ut = Y (1)(u) = uxxx + ux ,
ut = Y (2)(u) = uxxxx + uxx , etc.,

(25)

which preserve the flows of the KiSS equation, and we conclude that we have infinite
symmetries of the equation.

5 Comments and Conclusions

A recursion operator not only provides a connection between the generalized symme-
tries of an equation but is also an important tool to prove the existence of an infinite
series of flows—a strong indicator of complete integrability. In fact any equation that
passes the Painlevé test or possesses a recursion operator is a candidate for being solv-
able by the inverse scattering transformation [30]. However, it is worth mentioning
that recursive operators do not yield an exhaustive list of all possible higher-order
symmetries. In this work we verified the presence of infinitely many generalized sym-
metries, all of which preserve the linear KiSS equation and thus proved that it belongs
to a class of evolution equations that are completely integrable.

Furthermore, multipliers and Lie Bäcklund transformations were obtained for a
nonlinear diffusion equation. The multipliers were defined to contain terms up to
first order in derivatives, and we found two multipliers that lead to two nontrivial
conservation laws.
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