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Abstract In this paper, we study the solute transport through a semi-infinite channel
filled with a fluid saturated sparsely packed porous medium. A small perturbation of
magnitude ε is applied on the channel’s walls on which the solute particles undergo
a first-order chemical reaction. The effective model for solute concentration in the
small-Péclet-number regime is derived using asymptotic analysis with respect to the
small parameter ε. The obtained mathematical model clearly indicates the effects of
porous medium, chemical reaction and boundary distortion. In particular, the effect of
porous medium parameter on the dispersion coefficient is discussed.

Keywords Solute dispersion · Porous medium · Chemical reaction · Small boundary
perturbation · Asymptotic analysis

1 Introduction

In this paper we consider the problem of the solute dispersion in the laminar flow in a
sparsely packed porous medium. In view of that, the concentration c∗(x∗, y∗, t∗) of a
solute dissolved in a fluid satisfies a convection–dispersion equation of the form (see,
e.g., [1]):

∂c∗

∂t∗
+ u∗

0(y
∗) ∂c∗

∂x∗ − D∗ ∂2c∗

∂(x∗)2
− D∗ ∂2c∗

∂(y∗)2
= 0 in �∗. (1)
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730 I. Pažanin

Here positive constant D∗ denotes the dispersion coefficient,while�∗ is a semi-infinite
2D symmetric channel given by

�∗ =
{
(x∗, y∗) ∈ R2 : 0 < x∗ < +∞,

∣∣y∗∣∣ < H − λ ϕ

(
x∗

H

)}
. (2)

Our intention is to consider a domain with slightly perturbed boundary so we take the
ratio ε = λ

H to be a small parameter, i.e., 0 < ε � 1. ϕ is assumed to be an arbitrary
smooth function ofO(1) magnitude. We suppose that the solute particles do not react
among themselves but they undergo a first-order chemical reaction at channel’s walls,
namely:

D∗ ∂c∗

∂y∗ = − β∗c∗ on �∗ =
{
(x∗, y∗) ∈ R2 : 0 < x∗ < +∞,

∣∣y∗∣∣ = H − λ ϕ

(
x∗

H

)}
,

(3)

where constant β∗ stands for the surface reaction coefficient. It is assumed that the
chemical processes under consideration have no effect on the density and hence pro-
duce no buoyancy forces. Consequently, no coupling with the momentum equations
is being modeled. For that reason, the fluid velocity u∗ = u∗

0(y)e1 is assumed to be
known in (1) and given as the zero-order asymptotic solution of the Darcy–Brinkman
equation provided in “Appendix”. Hereinafter, (e1, e2) denotes the standard Cartesian
basis.

Our main goal is to derive a simplified mathematical model for the solute concen-
tration and to detect the effects of porous medium, chemical reaction and boundary
perturbation on the solute dispersion. As presented, the problem is described by
the convection–dispersion equation for solute concentration associated with Robin
boundary condition describing the reaction mechanism. Naturally, one cannot expect
to derive the exact solution of the governing problem, so we employ a singular
perturbation technique with respect to the small parameter ε. We choose to work
in a non-dimensional setting in which two characteristic numbers naturally appear,
namely Péclet and Damkohler number. Motivated by the micro-fluidic applications
(see, e.g., [8]), we address the regime under small Péclet number and identify three
possible asymptotic models depending on the magnitude of the Damkohler number.
Then we analyze the critical one in which all the above mentioned effects are bal-
anced. To capture the effects of the boundary oscillations, we use the direct approach
(see [9,11,12]) and expand the unknowns in Taylor series near the perturbed boundary.
By doing that, we avoid tedious change of variable leading to a complicated rescaled
equation. As a result, we obtain the effective system in the form of the 1D parabolic
problem (see Sect. 4) being amenable for numerical simulations. In particular, the
effects of the porous structure, surface reaction coefficient and boundary distortion
are clearly visible. Moreover, the effective dispersion coefficient is deduced in the
explicit form and its behavior is discussed with respect to the porous medium param-
eter k. To conclude, it must be emphasized that this study is not limited to periodic
corrugations of the channel boundary, i.e., our result is valid for an arbitrary (smooth
enough) boundary perturbation function. In view of that, we believe that the findings
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A Note on the Solute Dispersion in a Porous Medium 731

presented in this paper could be instrumental from the practical point of view, namely
in micro-fluidic applications where the flow could be significantly affected by the
irregular wall roughness.

We finish this Sect. 1 by providing some bibliographic remarks on the subject. The
problem of solute transport has been of considerable interest for many years due to its
practical importance in chemical, mechanical and biological engineering. The pioneer
researcher is Taylor [19] who first discussed the dispersion of a passive solute in a vis-
cous fluid flowing through a circular pipe under laminar conditions. Rigorous deriva-
tion of the asymptotic model for a chemically reactive solute transport in a Poiseuille
flow through a narrow2-Dchannelwas brought byMikelić et al. [14]. The effects of the
curved geometry on solute dispersion through a distorted pipe have been investigated
by Nunge [16], Rosencrans [18] and Marušić-Paloka and Pažanin [10], etc.

In the context of porous medium flow, the breakthrough paper is due to Chan-
drasekhara et al. [6] in which deterministic model for the longitudinal dispersion is
proposed following the analysis of Taylor [19]. Channel walls are assumed to be flat
and no chemical reaction is considered in [6]. Afterward, numerous authors inves-
tigated the dispersion in porous media with and without reaction, both analytically
and numerically. We refer the reader to the review paper by Rudraiah and Ng [21]
(and the references therein) providing a nice overview of the results from the existing
literature (see also Pal [17]). We also emphasize the paper by Valdes-Parada et al. [23]
in which the upscaling process of mass transport with chemical reaction in porous
media has been analyzed. In particular, the dependence of the dispersion coefficient
on the particle Peclet number and Thiele moduli has been discussed in detail. Treat-
ments of the dispersion problem in a domain with irregularities have remained rather
neglected topic. It is due to the fact that introducing a small parameter as the perturba-
tion quantity in the domain boundary makes analysis very complicated because of the
tedious change of variable that needs to be performed. In case of Stokes flow (k = 0),
two results by Bolster et al. [4] and Woollard et al. [24] should be mentioned. In those
papers, the authors assume that the corrugations are described by a simple trigonomet-
ric function and study the problem numerically. To our knowledge, the present paper
brings the first analytical result on the effect of boundary perturbation (described by
an arbitrary shape function) on the solute dispersion in a porous medium. For that
reason, we believe that it could improve the known engineering practice.

2 Setting of the Problem

As explained in the Sect. 1, we consider the followingmodel of convection–dispersion
with chemical reaction occurring at the walls:

⎧⎨
⎩

∂c∗
∂t∗ + u∗

0(y
∗) ∂c∗

∂x∗ − D∗ ∂2c∗
∂(x∗)2 − D∗ ∂2c∗

∂(y∗)2 = 0 in �∗ × (0, T ∗),

D∗ ∂c∗
∂y∗ = −β∗c∗ on �∗ × (0, T ∗).

(4)

Here �∗ denotes our domain with slightly perturbed boundary given by (2), while
D∗ (dispersion parameter) and k∗ (surface reaction parameter) are given constants.
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732 I. Pažanin

The unknown function is a solute concentration c∗(x∗, y∗, t), while the fluid velocity
u∗
0(y

∗) is assumed to be known. T ∗ is an arbitrarily chosen positive number.
For the purpose of our analysis, it is convenient towork in a non-dimensional setting.

We adimensionalize system (4) in a standard way by dividing the space variables by
H , while for all other quantities we use reference values denoted by the subscript R.
Thus, we introduce

x = x∗

H
, y = y∗

H
, t = t∗

TR
, c = c∗

cR
, D = D∗

DR
, β = β∗

βR
, u = u∗

uR
,

where uR = δH2

μe
(see “Appendix”). As a result, we obtain the problem in non-

dimensional form

⎧⎨
⎩

∂c
∂t + uRTR

H u0(y)
∂c
∂x − DRTR

H2 D
(

∂2c
∂x2

+ ∂2c
∂y2

)
= 0 in � × (0, T ),

DDR
HβR

∂c
∂t = −βc on � × (0, T ),

(5)

with

� =
{
(x, y) ∈ R2 : 0 < x < +∞, |y| < 1 − εϕ (x)

}
, (6)

� =
{
(x, y) ∈ R2 : 0 < x < +∞, y = ±1 ∓ εϕ (x)

}
. (7)

Two characteristic numbers (that could depend on ε) naturally appear in the above
system, namely:

Peε = HuR

DR
(Péclet number), Daε = HβR

DR
(Damkohler number). (8)

Following Chandrasekhara et al. [6], in the sequel we assume that the longitudinal
dispersion is negligible with respect to its transverse counterpart, namely ∂2c

∂x2
� ∂2c

∂y2
.

Such situation naturally arises if the domain (pore) under consideration is narrow or
long (i.e., the longitudinal dimension is much larger than the transverse one), see,
e.g., Mikelić et al. [14]. Choosing the timescale TR = H

uR
, we arrive at the following

problem:

∂cε

∂t
+ u0(y)

∂cε

∂x
= D

Peε

∂2c

∂y2
in �ε+ × (0, T ), (9)

D
∂cε

∂y
= −βDaεcε on �ε+ × (0, T ), (10)

∂cε

∂y
(x, 0, t) = 0 for (x, t) ∈ (0,+∞) × (0, T ), (11)

cε(0, y, t) = 0 for (y, t) ∈ (0, 1) × (0, T ), (12)

cε(x, y, 0) = 1 for (x, y) ∈ �ε+, (13)
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where u0(y) = 1
k2

(
1 − cosh(ky)

cosh k

)
(see “Appendix”). Here we denote

�ε+ =
{
(x, y) ∈ R2 : 0 < x < +∞, 0 < y < 1 − εϕ (x)

}
, (14)

�ε+ =
{
(x, y) ∈ R2 : 0 < x < +∞, y = 1 − εϕ (x)

}
. (15)

Note that the boundary condition (11) results from the y-symmetry of the solution. To
close up the governing problem, we impose initial condition (13) and zero boundary
condition at x = 0.

It is important to observe that Péclet andDamkohler numbers can be compared with
small parameter ε in various ways leading to different asymptotic behaviors depending
on their orders of magnitude. As emphasized in the Introduction, in this work we want
to investigate the regime under small Péclet number. In view of that, we set

Peε = ε (16)

to simplify the notation. Consequently, the Peclet number will only be implicitly
included in the effective dispersion coefficient (46) through the appearance of the small
parameter ε. As discussed in the forthcoming section, depending on the magnitude of
Damkohler numberDaε, three different asymptotic models can be derived. It turns out
(see Remark 2) that the most interesting case occur when Daε = O(ε) since it leads
to the macroscopic model in which the chemistry balances with the flow. Therefore,
we restrict our attention to this situation and put

Daε = ε. (17)

3 Analysis

We first derive the effective boundary conditions at the upper boundary. To
simplify the notation, we assume that ϕ < 0 on (0, 1) implying �+ ={
(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1

} ⊂ �ε+. Consequently, the solution cε of (9)–
(13) is defined on �+ × (0, T ) so we are in position to directly expand velocity in
Taylor series with respect to y near the upper boundary. Without such assumption, we
would have to extend the solution to �+ and pollute the notation.

Remark 1 It must be emphasized that ϕ < 0 is just a technical assumption and that
the obtained results are valid for a general function ϕ. That is due to the fact that
it can be proved that our approximation (constructed directly without the change of
variables) is asymptotically the same as the one that could be built if we have first
passed to the ε-independent domain�+ = (0, 1)2 (by introducing the suitable change
of variables), with no constraint imposed on ϕ. This part is straightforward and can
be done following the same lines as in Marušić-Paloka [9] and Marušić-Paloka and
Pažanin [12].
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734 I. Pažanin

We expand the unknown solution in Taylor series with respect to y near the upper
boundary, namely:

cε(x, y, t) =
∞∑
i=0

1

i !
∂ i cε

∂yi
(x, 1, t)(y − 1)i . (18)

Taking into account (17), from (10) we deduce:

D

[
∂cε

∂y
(x, 1, t) − ε

∂2cε

∂y2
(x, 1, t)ϕ(x) + ε2

2

∂3cε

∂y3
(x, 1, t)ϕ(x)2 − · · ·

]

= −βε

[
cε(x, 1, t) − ε

∂cε

∂y
(x, 1, t)ϕ(x) + ε2

2

∂2cε

∂y2
(x, 1, t)ϕ(x)2 − · · ·

]

(19)

On the other hand, we postulate the asymptotic expansion as follows

cε(x, y, t) = c0(x, y, t) + +εc1(x,y, t) + ε2c2(x, y, t) + · · · . (20)

Substituting the above expansion in (19) yields

D

[
∂c0
∂y

(x, 1, t) + ε

(
∂c1
∂y

(x, 1, t) − ϕ(x)
∂2c0
∂y2

(x, 1, t)

)

+ ε2
(

∂c2
∂y

(x, 1, t) − ϕ(x)
∂2c1
∂y2

(x, 1, t) + 1

2
ϕ(x)2

∂3c0
∂y3

(x, 1, t)

)
+ · · ·

]

= −β

[
εc0(x, 1, t) + ε2

(
c1(x, 1, t) − ϕ(x)

∂c0
∂y

(x, 1, t)

)
+ · · ·

]
. (21)

Thus, we deduce the following boundary conditions at y = 1 satisfied by the unknown
functions in (20):

1 : ∂c0
∂y

(x, 1, t) = 0, (22)

ε : D
∂c1
∂y

(x, 1, t) = Dϕ(x)
∂2c0
∂y2

(x, 1, t) − βc0(x, 1, t), (23)

ε2 : D
∂c2
∂y

(x, 1, t) = Dϕ(x)
∂2c1
∂y2

(x, 1, t) − D

2
ϕ(x)2

∂3c0
∂y3

(x, 1, t) + (24)

+βϕ(x)
∂c0
∂y

(x, 1, t) − βc1(x, 1, t). (25)

Considering (16), we substitute the expansion (20) into Eq. (9) to obtain

ε−1 : ∂2c0
∂y2

= 0 in (0, 1), for (x, t) ∈ (0,+∞) × (0, T ). (26)
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Taking into account the boundary conditions (11) and (22), i.e.,

∂c0
∂y

(x, 1, t) = ∂c0
∂y

(x, 1, t) = 0 (27)

we conclude

c0 = c0(x, t). (28)

Remark 2 From the above analysis it is clear that, if we had assumed Daε � O (ε),
we would obtain c0 = 0. That would mean that the chemical reaction (taking place
at the upper wall) dominates the process keeping almost all solute in a small region
near the left entry. On the other hand, for Daε � O (ε), the effects of the chemical
reaction would be negligible. For that reason, we choose Daε = O (ε) [see (17)] as
the critical (and most interesting) case between those two cases.

The next term in the expansion (20) is given by [see (24)]:

1 : D
∂2c1
∂y2

= u0(y)
∂c0
∂x

+ ∂c0
∂t

in (0, 1), (29)

ε : D
∂c1
∂y

(x, 1, t) = −β c0(x, t), (30)

ε : ∂c1
∂y

(x, 0, t) = 0, (31)

for every (x, t) ∈ (0,+∞) × (0, T ). Inserting the Darcy–Brinkman velocity (see
“Appendix”) into Eq. (29), it can be rewritten as

D
∂2c1
∂y2

= 1

k2

(
tanh k

k
− cosh(ky)

cosh k

)
∂c0
∂x

+ ∂c0
∂t

+ 1

k2

(
1 − tanh k

k

)
∂c0
∂x

in (0, 1). (32)

The necessary condition for the existence of c1 satisfying (30)–(32) gives the equation
for c0:

1

k2

(
1 − tanh k

k

)
∂c0
∂x

+ ∂c0
∂t

+ β c0 = 0 in (0,+∞) × (0, T ).

(33)

This is a hyperbolic equation whose solution is discontinuous, due to the incompati-
bility of the initial and boundary data which need to be satisfied by c0. Consequently,
we cannot use it for the purpose of our analysis, since the asymptotic approximation
involves the derivatives of c0. To overcome this issue, we use the idea proposed by
Rubinstein and Mauri [20] (extensively used afterward, see, e.g., [10,14]) and assume
that
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736 I. Pažanin

1

k2

(
1 − tanh k

k

)
∂c0
∂x

+ ∂c0
∂t

+ β c0 = O(ε) in (0,+∞) × (0, T ). (34)

In view of that, Eq. (32) now becomes

D
∂2c1
∂y2

= 1

k2

(
tanh k

k
− cosh(ky)

cosh k

)
∂c0
∂x

− β c0 in (0, 1). (35)

for every (x1, t) ∈ (0,+∞) × (0, T ). Taking into account the boundary conditions
(30)–(31), we can easily solve the above equation to obtain

c1(x, y, t) = 1

Dk2

(
tanh k

k
· y

2

2
− 1

k2
cosh(ky)

cosh k

)
∂c0
∂x

− β c0
D

y2

2
+ A(x, t),

(36)

with A(x, t) being an arbitrary function. We choose A(x, t) such that
∫ 1
0 c1 dy = 0

leading to

c1(x, y, t) = 1

Dk2

[
tanh k

k
· y

2

2
− 1

k2
cosh(ky)

cosh k
+ tanh k

k

(
1

k2
− 1

6

)]
∂c0
∂x

− β c0
D

(
1

6
− y2

2

)
, (37)

for (x1, t) ∈ (0,+∞) × (0, T ). By assuming
∫ 1
0 c1 dy = 0, we simplify the resulting

equation for c0, see (41).
In view of (34), the problem for c2 is given by [see (25)]:

ε : D
∂2c2
∂y2

= 1

k2

(
1 − cosh(ky)

cosh k

)
∂c1
∂x

+ ∂c1
∂t

+ 1

ε

[
1

k2

(
1 − tanh k

k

)
∂c0
∂x

+ ∂c0
∂t

+ β c0

]
in (0, 1), (38)

ε2 : D ∂c2
∂y

(x, 1, t) = Dϕ(x)
∂2c1
∂y2

(x, 1, t) − β c1(x, t), (39)

ε2 : ∂c2
∂y

(x, 0, t) = 0, (40)

for every (x, t) ∈ (0,+∞) × (0, T ). The system (38)–(40) will be solvable if and
only if
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∂

∂t

∫ 1

0
c1 dy + 1

k2

∫ 1

0

(
1 − cosh(ky)

cosh k

)
∂c1
∂x

dy

+ 1

ε

[
1

k2

(
1 − tanh k

k

)
∂c0
∂x

+ ∂c0
∂t

+ β c0

]

= Dϕ(x)
∂2c1
∂y2

(x, 1, t) − β c1(x, t). (41)

It should be observed that the first term on the left-hand side in (41) vanishes since
c1 was computed such that

∫ 1
0 c1 dy = 0. It remains to compute the second term

by tedious, but direct integration using (37). Consequently, we obtain the effective
equation satisfied by c0:

∂c0
∂t

+ 1

k2

{(
1 − tanh k

k

)
(1 + εϕ(x)) + ε

β

D k

[
tanh k

(
11

6
+ 2

k2

)
− 2

k

]}
∂c0
∂x

+β

{
1 − ε

β

3D
+ εϕ(x)

}
c0

= ε
1

D k4

{
tanh2 k

(
2

k2
+ 1

k4
− 1

6

)
− 3

2k3
tanh k − 1

2k2

}
∂2c0
∂x2

. (42)

Endowing it with the initial and boundary condition at x = 0 [see (12)–(13)]:

c0(x, 0) = 1, c0(0, t) = 0, (43)

we deduce the effective problemdescribing the zero-order approximation for the solute
concentration.

4 Main Results and Discussion

The effective behavior of the system (9)–(13) for small ε is given by the following
parabolic problem satisfied by the solute concentration in (0,+∞) × (0, T ):

∂c0
∂t

+ 1

k2

{(
1 − tanh k

k

)
(1 + εϕ(x)) + ε

β

D k

[
tanh k

(
11

6
+ 2

k2

)
− 2

k

]}
∂c0
∂x

+β

{
1 − ε

β

3D
+ εϕ(x)

}
c0

= ε
1

D k4

{
tanh2 k

(
2

k2
+ 1

k4
− 1

6

)
− 3

2k3
tanh k − 1

2k2

}
∂2c0
∂x2

, (44)

c0(x, 0) = 1, c0(0, t) = 0,
∂c

∂x
∈ L2((0,+∞) × (0, T )). (45)

From the obtained simplified mathematical model (satisfied by the zero-order asymp-
totic approximation), we can clearly observe the effects of the porous medium
parameter k, chemical reaction and small perturbation of the boundary. Though all
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738 I. Pažanin

Fig. 1 Plot of dispersion coefficient versus porous medium parameter

the effects we seek for are present in the first part of the asymptotic solution, we can
compute the correctors in the asymptotic expansion (20) leading to a higher order of
accuracy. The first one c1 has already been computed and it is given in the explicit
form, see (37). The second one is described by the problem (38)–(40) which can be,
again, explicitly solved using (42). We leave that to a reader as an easy exercise.

It is important to note that from (44) we can recover the effective dispersion coef-
ficient [see (9)] as

Def f = ε2

D k4

{
tanh2 k

(
2

k2
+ 1

k4
− 1

6

)
− 3

2k3
tanh k − 1

2k2

}
. (46)

Figure 1 is a plot of the dispersion coefficient (46) versus porous medium parameter
k for ε = 0.05 and D = 10−5 (see [7]). It can be observed that the increase in the
dispersion coefficient is sharp in the early range of k, while the decrease is milder
afterward. For k > 2, the values of the dispersion coefficient stabilize and become
very small. Changing the magnitude of the small parameter ε dramatically influences
on the range of the dispersion coefficient, as seen from (46).

5 Conclusion

Understanding solute transport in porousmedia is important from the practical point of
view since we naturally come across such processes in biological, geological and arti-
ficial (industrial) media (see, e.g., [1] and references therein). In particular, the regimes
under small Péclet number are of considerable interest, for instance in micro-fluidic
applications (see, e.g., [8]). In this paper, we present a formal derivation of the effective
model for enhanced dispersion through a 2D channel filled with a porous medium. The
governing model is described by a (non-stationary) convection–dispersion equation
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A Note on the Solute Dispersion in a Porous Medium 739

with known Darcy–Brinkman velocity. A chemical reaction (with surface reaction
coefficient β) is considered at the channel boundary which has been perturbed by
the product of the small parameter ε and arbitrary smooth function ϕ. The analysis
addresses a regime under small Péclet number and employs a singular perturbation
technique.

We believe the result presented here provides a good platform for understanding
the influence of different parameters (porous structure, chemical reaction, boundary
distortion) on the solute dispersion through porous media. The fact that we have
derived the effective system in the form of the 1D parabolic problem is particularly
important with regards to numerical simulations. To conclude, since the problem under
consideration naturally appears in numerous applications,we hope that our result could
have an impact on the current engineering practice.

Acknowledgements The author has been supported by the Croatian Science Foundation (Project 3955:
Mathematical modeling and numerical simulations of processes in thin or porous domains). The author
would like to thank the referees for their helpful comments and suggestions that helped to improve the
paper.

A Appendix: Darcy–Brinkman Velocity

It is well known that the stationary flow of an incompressible, viscous fluid through
a porous media is described by the conservation of mass and conservation of linear
momentum principles. Conservation of mass is expressed by the continuity equation

divu∗ = 0 in �∗, (47)

satisfied by the fluid velocity, while different models have been proposed over the past
sixteen decades to describe the conservation of the linear momentum. Without any
doubt, the Darcy law [3] is the most popular one stating that the filtration velocity is
proportional to the driving pressure gradient. However, one of its major drawbacks
is that it cannot sustain the (physically relevant) no-slip boundary condition imposed
on an impermeable wall. Thus, if one wants to consider a sparse porous medium, the
Darcy–Brinkman equation [5] would represent a suitable choice (see, e.g., [2,13,22]):

μe �u∗ − μ

K
u∗ = ∇ p∗ in �∗. (48)

Here u∗ and p∗ denote (dimensional) filter velocity and pressure, μ is the physical
viscosity of the fluid, K stands for the permeability of the porous medium, while μe

denotes the effective viscosity for the Brinkman term. It should be mentioned that, in
Chandrasekhara et al. [6], it is assumed that μ = μe. However, in general, those two
viscosities are not equal (see, e.g., [13]). Being the second-order PDE for the velocity,
Eq. (48) can handle the presence of a boundary on which the no-slip condition for the
velocity can be imposed. Thus, the Darcy–Brinkman model represents an essential
generalization of the Darcy law which is capable of successfully describing numerous
situations naturally arising in industry and geophysical problems.
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For the sake of reader’s convenience, let us derive the zero-order asymptotic solution
of the system (47)–(48) entering in the starting convection–diffusion equation (1). It is
natural to assume that the flow is governed by a constant pressure gradient ∂p∗

∂x∗ = − δ

in the x∗-direction. Consequently, we deduce that the flow is purely in the longitudinal
direction, i.e., u∗ = u∗(x, y)e1. Introducing

x = x∗

H
, y = y∗

H
, u = u∗

δH2

μe

, (49)

we get the dimensionless form of Eqs. (47)–(48) as

div u = 0 in �, (50)

�u − k2 u = − 1 in �, (51)

Here

k = H

√
μ

μe K
(52)

is the non-dimensional parameter characterizing the porous medium which is propor-
tional to the inverse square root of the Darcy number Da = K

H2 . Note that k = 0
corresponds to classical Stokes flow. Now, we plug the expansion

u(x, y) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · (53)

in the Darcy–Brinkman Eq. (50) and also in the no-slip boundary condition

u = 0 for y = ±1 ∓ εϕ(x). (54)

Using Taylor series approach (see, e.g., [15] for details), from (54), we deduce

0 = u|y=1−εϕ(x) = u0|y=1 + ε
(
u1 − ϕ ∂u0

∂y

)
|y=1 + O(ε2), (55)

0 = u|y=−1+εϕ(x) = u0|y=−1 + ε
(
u1 + ϕ ∂u0

∂y

)
|y=−1 + O(ε2). (56)

After collecting the terms with equal powers of ε, we obtain

{
1 : �u0 − k2 u0 = − 1,
1 : u0 = 0 for y = ±1.

(57)

Due to the divergence-free condition (50), the solution of (57) is independent of x and,
thus, given by

u0(y) = 1

k2

(
1 − cosh(ky)

cosh k

)
. (58)
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Finally, applying (49) we can easily recover the dimensional velocity u∗
0 which enters

in the governing Eq. (1).
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