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Abstract A common question in the study of graph decompositions is when does a
graphG decompose the complete graph or the complete graphwith a 1-factor removed
or added. It is known that a σ -tripartite labeling of a tripartite graph G with n edges
can be used to obtain a cyclic G-decomposition of K2nt+1 for every positive integer
t . Moreover, it can be used to obtain a cyclic G-decomposition of both K2nt+2 − I
and K2nt + I , where I is a 1-factor. We show that if G is an odd prism on 10 or more
vertices or an even Möbius ladder, then G admits a σ -tripartite labeling.
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1 Introduction

For integers r and s, we denote the set {r, r + 1, . . . , s} by [r, s] (if r > s, then
[r, s] = ∅). Let N denote the set of nonnegative integers, Z+ denote the set of positive
integers, and Zn denote the group of integers modulo n. Call a graph G tripartite if
the chromatic number of G is at most 3. Thus, bipartite graphs can be considered
tripartite.
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Let m be a positive integer and let V (Km) = [0,m − 1]. The length of an edge
{i, j} in Km is min{|i − j |,m − |i − j |}. Note that if m is odd, then Km consists of
m edges of length i for i ∈ [1, m−1

2 ]. However, if m is even, then Km consists of m
edges of length i for i ∈ [1, m

2 − 1] and of only m
2 edges of length m

2 . In this case, the
edges of length m

2 form a 1-factor in Km . Throughout this manuscript, if m is even,
we will denote the 1-factor formed by the set of edges of length m

2 in Km by I .
Let V (Km) = Zm and letG be a subgraph of Km . By clicking G, wemean applying

the permutation i �→ i + 1 to V (G). Note that clicking an edge does not change its
length. Let H and G be graphs such that G is a subgraph of H . A G-decomposition of
H is a set � = {G1,G2, . . . ,Gt } of pairwise edge-disjoint subgraphs of H each of
which is isomorphic to G and such that E(H) = ⋃t

i=1 E(Gi ). A G-decomposition
of Km is also known as a (Km,G)-design. A (Km,G)-design � is cyclic if clicking
is an automorphism of �. The study of graph decompositions is generally known as
the study of graph designs, or G-designs. For surveys on G-designs, see [1] and [2].

Let G be a graph with n edges. A primary question in the study of graph designs is:
for what values of v does there exist a (Kv,G)-design? Another question of interest is
the existence of (Kv ± I,G)-designs where v is even. For most studied graphs G, it is
often the case that if v ≡ 1 (mod 2n), then there exists a (Kv,G)-design. Similarly,
if v ≡ 2 (mod 2n) or v ≡ 0 (mod 2n), then there often exists a (Kv − I,G)-design
in the former and a (Kv + I,G)-design in the latter. A common approach to finding
these designs is through the use of graph labelings.

1.1 Graph Labelings

For a graph G, a one-to-one function f : V (G) → N is called a labeling (or a val-
uation) of G. In a seminal paper on the topic [11], Rosa introduced a hierarchy of
labelings. Let G be a graph with n edges and no isolated vertices and let f be a label-
ing of G. Let f (V (G)) = { f (u) : u ∈ V (G)}. Define a function f̄ : E(G) → Z

+ by
f̄ (e) = | f (u) − f (v)|, where e = {u, v} ∈ E(G). We will refer to f̄ (e) as the label
of e. Let f̄ (E(G)) = { f̄ (e) : e ∈ E(G)}. Consider the following conditions:

(�1) f (V (G)) ⊆ [0, 2n],
(�2) f (V (G)) ⊆ [0, n],
(�3) f̄ (E(G)) = {x1, x2, . . . , xn}, where for each i ∈ [1, n] either xi = i or xi =

2n + 1 − i ,
(�4) f̄ (E(G)) = [1, n].
If in addition G is bipartite with bipartition {A, B} of V (G) consider also

(�5) for each {a, b} ∈ E(G) with a ∈ A and b ∈ B, we have f (a) < f (b),
(�6) there exists an integer λ such that f (a) ≤ λ for all a ∈ A and f (b) > λ for all

b ∈ B.

Then a labeling satisfying the conditions:

(�1), (�3) is called a ρ-labeling;
(�1), (�4) is called a σ -labeling;
(�2), (�4) is called a β-labeling.
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A β-labeling is necessarily a σ -labeling, which in turn is a ρ-labeling. Suppose G is
bipartite. If a ρ-, σ -, or β-labeling of G satisfies condition (�5), then the labeling is
ordered and is denoted by ρ+, σ+, or β+, respectively. If in addition (�6) is satisfied,
the labeling is uniformly ordered and is denoted by ρ++, σ++, or β++, respectively.

A β-labeling is better known as a graceful labeling, and a uniformly ordered β-
labeling is an α-labeling as introduced in [11]. Labelings of the types above are called
Rosa-type labelings because of Rosa’s original article [11] on the topic. (See [4] for
a recent comprehensive survey of Rosa-type labelings.) A dynamic survey on general
graph labelings is maintained by Gallian [8].

Labelings are critical to the study of cyclic graph decompositions as seen in the
following theorem from [11].

Theorem 1 Let G be a graph with n edges. There exists a cyclic G-decomposition of
K2n+1 if and only if G admits a ρ-labeling.

If G admits a σ -labeling instead, then cyclic G-decompositions of K2n+2 − I and
of K2n + I can also obtained. Theorem 2 appears as Theorem 3.5 in [4]. We provide
a proof of Theorem 3 for the sake of completeness.

Theorem 2 Let G be a graph with n edges. If G admits a σ -labeling, then there also
exists a cyclic G-decomposition of K2n+2 − I .

Theorem 3 Let G be a graph with n edges. If G admits a σ -labeling, then there exists
a cyclic G-decomposition of K2n + I .

Proof Let G, n and I be as in the statement of the theorem. Let V (K2n) = Z2n . Note
that K2n + I is the multigraph obtained form K2n by making each of the edges of
length n have multiplicity 2. Thus, for each i ∈ [1, n], the number of edges of length
i in K2n + I is 2n. Let h be a σ -labeling of G. Let G0 be the subgraph of K2n + I
obtained by identifying vertex v ∈ V (G) with i ∈ V (K2n) if h(v) = i . Thus, G0 is an
embedding of G in K2n so that there is an edge in G0 of length i for each i ∈ [1, n].
For t ∈ [1, 2n − 1], let Gt be the subgraph of K2n + I obtained by clicking G0 a total
of t times. Then � = {Gt : t ∈ Z2n} is a cyclic G-decomposition of K2n + I . 	


If G admits an α-labeling, then we have the following powerful result of Rosa [11].

Theorem 4 Let G be a bipartite graph with n edges. If G admits an α-labeling, then
there exists a cyclic G-decomposition of K2nt+1 for all positive integers t .

We illustrate howTheorem4works. Let h be anα-labeling of a graphGwithn edges
and bipartition (A, B). Let A = {u1, u2, . . . , ur } and B = {v1, v2, . . . , vs}. Let t be
a positive integer. For 1 ≤ i ≤ t , let Gi be a copy of G with bipartition (A, Bi ) where
Bi = {vi,1, vi,2, . . . , vi,s} and vi, j corresponds to v j in B. LetG(t) = G1∪G2∪ . . .∪
Gt . Thus, G(t) has nt edges and is bipartite with bipartition (A, B1 ∪ B2 ∪ . . . ∪ Bt ).
Define a labeling f ′ of G(t) as follows: f ′(u j ) = f (u j ) for each u j ∈ A and
f ′(vi, j ) = f ( j) + (i − 1)n for 1 ≤ i ≤ t and 1 ≤ j ≤ s. It is easy to see that f ′ is an
α-labeling of G(t), and thus, Theorem 1 applies. Since f ′ is necessarily a σ -labeling,
Theorems 2 and 3 also apply, and we have the following.
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680 W. Wannasit, S. El-Zanati

Corollary 5 Let G be a bipartite graph with n edges. If G admits an α-labeling, then
there exist cyclic G-decompositions of K2nt+2 − I and of K2nt + I for all positive
integers t .

From a graph decompositions perspective, Theorem 2 offers a slight advantage over
Theorem 1. In the case G is bipartite, Theorem 4 offers a great advantage over the first
two. However, there are many classes of bipartite graphs (see [4]) that do not admit
α-labelings. Theorem 4 was extended to cover graphs that admit ρ+-labelings in [5].

Theorem 6 Let G be a bipartite graph with n edges. If G admits a ρ+-labeling, then
there exists a cyclic G-decomposition of K2nt+1 for all positive integers t .

Again, since Theorem 6 is ρ-labeling based, it does not guarantee the existence of
decomposition results involving the addition or removal of a 1-factor. Two labelings
that lead to results similar to those of Theorems 4 and 6 were recently introduced for
tripartite graphs in [3]. One of them is called a ρ-tripartite labeling and the other a
σ -tripartite labeling. Both lead to cyclic G-decompositions of K2nt+1, but only the
σ -labeling-based one leads to results involving the addition or removal of a 1-factor.
In this manuscript, we focus on the σ -labeling-based one.

Let G be a tripartite graph with n edges having the vertex tripartition {A, B,C}. A
σ -tripartite labeling of G is a one-to-one function h : V (G) → [0, 2n] that satisfies
the following conditions:

(s1) h is a σ -labeling of G.
(s2) If {a, v} ∈ E(G) with a ∈ A, then h(a) < h(v).
(s3) If e = {b, c} ∈ E(G) with b ∈ B and c ∈ C , then there exists an edge

e′ = {b′, c′} ∈ E(G) with b′ ∈ B and c′ ∈ C such that |h(c′) − h(b′)| +
|h(c) − h(b)| = n.

(s4) If a ∈ A and v ∈ B ∪ C , then h(a) − h(v) 
= n.
(s5) If b ∈ B and c ∈ C , then |h(b) − h(c)| /∈ {n, 2n}.

Note that e and e′ in (s3) need not to be distinct. Also note that there need not be an
edge {a, v} in (s4) nor an edge {b, c} in (s5). The following theorem from [3] shows
that a σ -tripartite labeling yields results similar to those from α-labelings.

Theorem 7 Let G be a tripartite graph with n edges. If G admits a σ -tripartite label-
ing, then there exists a cyclic G-decomposition of K2nt+1 for all positive integers t .

Again, we illustrate how Theorem 7 works. Let G have n edges and let h be a σ -
tripartite labeling ofG with vertex tripartition {A, B,C} as in the above definition. Let
B1, B2, . . . , Bt be t vertex-disjoint copies of B, and let C1,C2, . . . ,Ct be t vertex-
disjoint copies of C . The vertex in Bi corresponding to b ∈ B will be called bi .
Similarly, the vertex inCi corresponding to c ∈ C will be called ci . Let B∗ = ⋃t

i=1 Bi
andC∗ = ⋃t

i=1 Ci .We define a newgraphG∗ with vertex set A
⋃

B∗ ⋃
C∗ and edges

{a, vi }, 1 ≤ i ≤ t , whenever a ∈ A and {a, v} is an edge of G, and {bi , ci }, 1 ≤ i ≤ t ,
whenever {b, c} is an edge of G with b ∈ B and c ∈ C . Clearly G∗ has nt edges and
G divides G∗. Define a labeling h∗ on G∗ by
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Fig. 1 A σ -tripartite labeling of a graph G with 4 edges and the 3 copies of G used to yield cyclic
G-decompositions of K25, of K24 + I , and of K26 − I

h∗(v) =

⎧
⎪⎨

⎪⎩

h(v) v ∈ A,

h(b) + (i − 1)n v = bi ∈ Bi ,

h(c) + (t − i)n v = ci ∈ Ci .

The labeling h∗ is a σ -labeling of G∗ and the result follows by Theorem 1. Moreover,
we can use Theorems 2 and 3 to obtain cyclic G-decompositions of K2nt+2 − I and
of K2nt + I as well. The K2nt+2 − I result appears as Corollary 5 in [3].

Corollary 8 Let G be a graph with n edges. If G admits a σ -tripartite labeling, then
there exist cyclic G-decompositions of K2nt+2 − I and of K2nt + I for every positive
integer t .

In Fig. 1, we demonstrate the use of Theorem 7 in the case t = 3 by showing
a σ -tripartite labeling of the graph G consisting of a triangle with a pendent edge.
The labeling of G on the left can be used to yield cyclic G-decompositions of K9, of
K8 + I , and of K10 − I . The labeling of the three copies of G on the right can be used
to yield cyclic G-decompositions of K25, of K24 + I , and of K26 − I .

Some Rosa-type labelings of various cubic graphs have been investigated. It is
known that all bipartite prisms [6,7] andbipartiteMöbius ladders [9] admitα-labelings.
In [17], it is shown that ifG is cubic and bipartite and if every component ofG is either
a prism, aMöbius ladder, or has order at most 14, thenG admits an α-labeling. Hence,
if such a bipartite G has n edges, then it cyclically decomposes K2nt+1, K2nt + I , and
K2nt+2− I for every positive integer t . In [16], it is shown that ifG is an odd prism, an
even Möbius ladder, or a connected cubic tripartite graph of order at most 10, then G
admits a ρ-tripartite labeling. Hence, such a G of size n would cyclically decompose
K2nt+1 for every positive integer t . However, no G-decompositions of K2nt + I or
K2nt+2 − I can be obtained from this labeling. In [15], it is shown that every cubic
graph of order at most 12, other than 2K4 and 3K4, admits a β-labeling. Vietri [13,14]
has shown that certain classes of generalized Petersen graphs are graceful. It is also
known that 2K4 does not admit a ρ-labeling, but 3K4 does.

In this article, we show that if G is an odd prism on 10 or more vertices or an even
Möbius ladder, then G admits a σ -tripartite labeling, and hence, such a G of size n
would cyclically decompose K2nt + I and K2nt+2− I , in addition to K2nt+1, for every
positive integer t .
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1.2 Additional Definitions and Notation

We denote the path with vertices x0, x1, . . . , xk , where xi is adjacent to xi+1, 0 ≤ i ≤
k − 1, by (x0, x1, . . . , xk). In using this notation, we are thinking of traversing the
path from x0 to xk so that x0 is the first vertex, x1 is the second vertex, and so on. Let
G1 = (x0, x1, . . . , x j ) and G2 = (y0, y1, . . . , yk). If G1 and G2 are vertex-disjoint
except for x j = y0, then byG1+G2 wemean the path (x0, x1, . . . , x j , y1, y2, . . . , yk).
If the only vertices they have in common are x0 = yk and x j = y0, then by G1 + G2
we mean the cycle (x0, x1, . . . , x j , y1, y2, . . . , yk−1, x0).

Let P(2k) be the path with 2k edges and 2k + 1 vertices 0, 1, . . . , 2k given by
(0, 2k, 1, 2k − 1, 2, 2k − 2, . . . , k − 1, k + 1, k). Note that the set of vertices of this
graph is A ∪ B, where A = [0, k], B = [k + 1, 2k], and every edge joins a vertex
from A to one from B. Furthermore, the set of labels of the edges of P(2k) is [1, 2k].

Let a and b be nonnegative integers and k, d1, and d2 be positive integers such that
a+kd1 < b. Let P̂(2k, d1, d2, a, b) be the pathwith 2k edges and 2k+1 vertices given
by (a, b+(k−1)d2, a+d1, b+(k−2)d2, a+2d1, . . . , a+(k−1)d1, b, a+kd1). Note
that P̂(2k, 1, 1, 0, k + 1) is the graph P(2k). Note that this graph P̂(2k, d1, d2, a, b)
has the following properties:

P1: P̂(2k, d1, d2, a, b) is a path with first vertex a, second vertex b + (k − 1)d2,
and last vertex a + kd1.

P2: Each edgeof P̂(2k, d1, d2, a, b) joins a vertex from A = {a+id1 : 0 ≤ i ≤ k}
to a vertex with a larger label from B = {b + id2 : 0 ≤ i ≤ k − 1}.

P3: The set of edge labels of P̂(2k, d1, d2, a, b) is {b − a − kd1 + i(d1 + d2) :
0 ≤ i ≤ k − 1} ∪ {b − a − (k − 1)d1 + i(d1 + d2) : 0 ≤ i ≤ k − 1}.

The path P̂(12, 2, 4, 10, 30) is shown in Fig. 2 below.

2 σ -Tripartite Labelings of Some Cubic Graphs

We will show that odd prisms and even Möbius ladders admit σ -tripartite labelings.

2.1 σ -Tripartite Labelings of Odd Prisms

By the prism Dn (n ≥ 3)wemean the Cartesian product of a cycle with n vertices and
a path with 2 vertices: Cn × P2. For convenience, we let Dn = Cn ∪ C ′

n ∪ F , where

Fig. 2 Path P̂(12, 2, 4, 10, 30) 10 12 14 16 18 20 22

50 46 42 38 34 30

123



On σ -Tripartite Labelings of Odd Prisms and Even… 683

Fig. 3 Prism D7
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Fig. 4 A σ -tripartite labeling of D5, D7 and D9

Cn = (v1, v2, . . . , vn, v1),C ′
n = (v′

1, v
′
2, . . . , v

′
n, v

′
1), and F = {{vi , v′

i } : 1 ≤ i ≤ n}.
We shall refer toCn as the outer cycle, toC ′

n as the inner cycle, and to F as the spokes.
We note that D2n+1 (for n > 1) is necessarily tripartite with tripartition {A, B,C}
where A = {v′

1} ∪ {v2i+1 : 2 ≤ i ≤ n} ∪ {v′
2i : 2 ≤ i ≤ n}, B = {v2i : 1 ≤ i ≤

n} ∪ {v′
2i+1 : 1 ≤ i ≤ n}, and C = {v1, v3, v′

2}. Figure 3 shows the prism D7. In
this figure, the vertices in A are shown with white circles while the vertices in B are
shown with black circles and the vertices of C are shown with white squares. The
edges between sets B and C are shown in thick lines. We will adopt this convention
in all our figures. It is easy to see that D3 cannot admit a σ -tripartite labeling. We will
show that Dn admits a σ -tripartite labeling for all odd integers n ≥ 5.

Lemma 9 The prism D3 does not admits a σ -tripartite labeling.

Proof If {A, B,C} is a vertex tripartition of D3, then the number of edges between B
and C is necessarily 3. Since the number of edges of D3 is odd, it is impossible for
D3 to admit a σ -tripartite labeling.

Lemma 10 The prism Dn admits a σ -tripartite labeling for all n ∈ {5, 7, 9}.
Proof We give σ -tripartite labelings of D5, D7, and D9 in Fig. 4. 	
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684 W. Wannasit, S. El-Zanati

Theorem 11 The prism Dn admits a σ -tripartite labeling for all odd n ≥ 5.

Proof The cases with n ≤ 9 are covered in Lemma 10. We separate the rest of the
proof into 3 cases.

Case 1 n ≡ 1 (mod 6).
Let n = 6t +1 where t ≥ 2. Thus, |V (Dn)| = 12t +2 and |E(Dn)| = 18t +3. Define
a one-to-one function f : V (D6t+1) → [0, 36t + 6] as follows:

f (v1) = 18t − 1,

f (v2) = 18t,

f (v3) = 36t + 2,

f (v4) = 18t + 2,

f (vi ) = i + 2, vi ∈ A1 = {vi : i odd, 5 ≤ i ≤ 6t − 1},
f (vi ) = 18t − 2i + 10, vi ∈ B1 = {vi : i even, 6 ≤ i ≤ 2t + 4},
f (vi ) = 18t − 2i + 4, vi ∈ B2 = {vi : i even, 2t + 4 < i ≤ 6t − 2},
f (v6t ) = 18t − 5,

f (v6t+1) = 1,

f (v′
1) = 0,

f (v′
2) = 18t + 3,

f (v′
3) = 18t + 1,

f (v′
4) = 5,

f (v′
5) = 12t − 3,

f (v′
i ) = i + 2, v′

i ∈ A′
1 = {v′

i : i even, 6 ≤ i ≤ 6t},
f (v′

i ) = 18t − 2i + 10, v′
i ∈ B ′

1 = {v′
i : i odd, 7 ≤ i ≤ 2t + 3},

f (v′
i ) = 18t − 2i + 4, v′

i ∈ B ′
2 = {v′

i : i odd, 2t + 3 < i ≤ 6t − 1},
f (v′

6t+1) = 18t − 7.

Note that A = {v6t+1, v
′
1, v

′
4} ∪ A1 ∪ A′

1, B = {v2, v4, v6t , v′
3, v

′
5, v

′
6t+1} ∪ B1 ∪ B2 ∪

B ′
1 ∪ B ′

2 and C = {v1, v3, v′
2}. Thus, the domain of f is indeed V (D6t+1). Next, we

confirm that f is one-to-one. We compute

f (A1) = {7, 9, . . . , 6t + 1},
f (A′

1) = {8, 10, . . . , 6t + 2},
f (B1) = {18t − 2, 18t − 6, . . . , 14t + 2},
f (B2) = {14t − 8, 14t − 12, . . . , 6t + 8},
f (B ′

1) = {18t − 4, 18t − 8, . . . , 14t + 4},
f (B ′

2) = {14t − 6, 14t − 10, . . . , 6t + 6}.
Note that f is piecewise strictly increasing by 2 or strictly decreasing by 4 and that
all labels are distinct. Thus, f is one-to-one. Moreover, f (A) ⊆ [0, 6t + 2] and
f (B ∪ C) ⊆ [6t + 6, 36t + 2].
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To help compute the edge labels, we will describe f (V (D6t+1)) in terms of the
P̂(2k, d1, d2, a, b) path notation. For convenience, we will identify the vertices of
C6t+1 and C ′

6t+1 with their labels. We have f (C6t+1) = G1 + G2 + (6t + 1, 18t −
5, 1, 18t − 1, 18t, 36t + 2, 18t + 2, 7), where

G1 = P̂(2(t), 2, 4, 7, 14t + 2),

G2 = P̂(2(2t − 3), 2, 4, 2t + 7, 6t + 8).

By P3, the resulting edge label sets are:

f̄ (E(G1)) = {12t − 5 + 6i : 0 ≤ i ≤ t − 1} ∪ {12t − 3 + 6i : 0 ≤ i ≤ t − 1}
= {� ≡ 1 (mod 6) : 12t − 5 ≤ � ≤ 18t − 11}

∪ {� ≡ 3 (mod 6) : 12t − 3 ≤ � ≤ 18t − 9},
f̄ (E(G2)) = {7 + 6i : 0 ≤ i ≤ 2t − 4} ∪ {9 + 6i : 0 ≤ i ≤ 2t − 4}

= {� ≡ 1 (mod 6) : 7 ≤ � ≤ 12t − 17}
∪ {� ≡ 3 (mod 6) : 9 ≤ � ≤ 12t − 15}.

Moreover, edge labels 12t − 6, 18t − 6, 18t − 2, 1, 18t + 2, 18t, and 18t − 5 occur
on the path (6t + 1, 18t − 5, 1, 18t − 1, 18t, 36t + 2, 18t + 2, 7).

Similarly, we have f (C ′
6t+1) = G ′

1 + G ′
2 + (6t + 2, 18t − 7, 0, 18t + 3, 18t +

1, 5, 12t − 3, 8), where

G ′
1 = P̂(2(t − 1), 2, 4, 8, 14t + 4),

G ′
2 = P̂(2(2t − 2), 2, 4, 2t + 6, 6t + 6).

By P3, the resulting edge label sets are:

f̄ (E(G ′
1)) = {12t − 2 + 6i : 0 ≤ i ≤ t − 2} ∪ {12t + 6i : 0 ≤ i ≤ t − 2}

= {� ≡ 4 (mod 6) : 12t − 2 ≤ � ≤ 18t − 14}
∪ {� ≡ 0 (mod 6) : 12t ≤ � ≤ 18t − 12},

f̄ (E(G ′
2)) = {4 + 6i : 0 ≤ i ≤ 2t − 3} ∪ {6 + 6i : 0 ≤ i ≤ 2t − 3}

= {� ≡ 4 (mod 6) : 4 ≤ � ≤ 12t − 14}
∪ {� ≡ 0 (mod 6) : 6 ≤ � ≤ 12t − 12}.

Moreover, edge labels 12t − 9, 18t − 7, 18t + 3, 2, 18t − 4, 12t − 8, and 12t − 11
occur on the path (6t + 2, 18t − 7, 0, 18t + 3, 18t + 1, 5, 12t − 3, 8).
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For each spoke {vi , v′
i }, the labels on the spokes are given by

f̄ ({vi , v′
i }) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18t − 1 for i = 1,

3 for i = 2,

18t + 1 for i = 3,

18t − 3 for i = 4,

12t − 10 for i = 5,

18t − 3i + 8 for 6 ≤ i ≤ 2t + 4,

18t − 3i + 2 for 2t + 5 ≤ i ≤ 6t − 1,

12t − 7 for i = 6t,

18t − 8 for i = 6t + 1.

Thus, the set of edge labels on the spokes is

f̄ (E(F)) = {� ≡ 2 (mod 3) : 12t − 4 ≤ � ≤ 18t − 10}
∪ {� ≡ 2 (mod 3) : 5 ≤ � ≤ 12t − 13}
∪ {18t − 1, 3, 18t + 1, 18t − 3, 12t − 10, 12t − 7, 18t − 8}.

It is easy to verify now that each � ∈ [1, 18t + 3] occurs on exactly one edge
in D6t+1. Hence, the defined labeling is a σ -labeling, and condition (s1) for a σ -
tripartite labeling is satisfied. Condition (s2) also holds since f (A) ⊆ [0, 6t + 2]
and f (B ∪ C) ⊆ [6t + 6, 36t + 2]. Condition (s3) holds since | f (v1) − f (v2)| +
| f (v2) − f (v3)| = 18t + 3, | f (v3) − f (v4)| + | f (v2) − f (v′

2)| = 18t + 3, and
| f (v3)− f (v′

3)|+| f (v′
2)− f (v′

3)| = 18t+3, number of edges of D6t+1. Condition (s4)
clearly holds. Also | f (b) − f (c)| ∈ {18t + 3, 36t + 6}, where b ∈ B and c ∈ C , is
impossible since | f (b)− f (c)| ∈ {1, 2, 3, 18t, 18t +1, 18t +2}. Thus, condition (s5)
holds, and we have a σ -tripartite labeling of D6t+1. Figure 5 shows a σ -tripartite
labeling of D13.

Case 2 n ≡ 3 (mod 6).
Let n = 6t −3 where t ≥ 3. Thus, |V (Dn)| = 12t −6 and |E(Dn)| = 18t −9. Define
a one-to-one function f : V (D6t−3) → [0, 36t − 18] as follows:

f (v1) = 18t − 9,

f (v2) = 18t − 10,

f (v3) = 36t − 22,

f (v4) = 18t − 12,

f (vi ) = i − 1, vi ∈ A1 = {vi : i odd, 5 ≤ i ≤ 6t − 3},
f (vi ) = 18t − 2i − 4, vi ∈ B1 = {vi : i even, 6 ≤ i ≤ 2t},
f (vi ) = 18t − 2i − 5, vi ∈ B2 = {vi : i even, 2t < i ≤ 4t − 2},
f (vi ) = 18t − 2i − 6, vi ∈ B3 = {vi : i even, 4t − 2 < i ≤ 6t − 4},
f (v′

1) = 0,
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Fig. 5 A σ -tripartite labeling of
D13 74
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Fig. 6 A σ -tripartite labeling of
D15
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f (v′
2) = 18t − 13,

f (v′
3) = 18t − 11,

f (v′
i ) = i − 1, v′

i ∈ A′
1 = {v′

i : i even, 4 ≤ i ≤ 6t − 4},
f (v′

i ) = 18t − 2i − 4, v′
i ∈ B ′

1 = {v′
i : i odd, 5 ≤ i ≤ 2t − 1},

f (v′
i ) = 18t − 2i − 5, v′

i ∈ B ′
2 = {v′

i : i odd, 2t − 1 < i ≤ 4t − 3},
f (v′

i ) = 18t − 2i − 6, v′
i ∈ B ′

3 = {v′
i : i odd, 4t − 3 < i ≤ 6t − 3}.

Note that A = {v′
1} ∪ A1 ∪ A′

1, B = {v2, v4, v′
3} ∪ B1 ∪ B2 ∪ B3 ∪ B ′

1 ∪
B ′
2 ∪ B ′

3 and C = {v1, v3, v′
2}. If we proceed as in Case 1, it is easy to ver-

ify that we have a σ -tripartite labeling of D6t−3. Figure 6 shows a σ -tripartite
labeling of D15.
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Case 3 n ≡ 5 (mod 6).
Let n = 6t −1 where t ≥ 2. Thus, |V (Dn)| = 12t −2 and |E(Dn)| = 18t −3. Define
a one-to-one function f : V (D6t−1) → [0, 36t − 6] as follows:

f (v1) = 18t − 7,

f (v2) = 18t − 6,

f (v3) = 36t − 10,

f (v4) = 18t − 4,

f (vi ) = i + 2, vi ∈ A1 = {vi : i odd, 5 ≤ i ≤ 6t − 3},
f (vi ) = 18t − 2i + 1, vi ∈ B1 = {vi : i even, 6 ≤ i ≤ 2t + 2},
f (vi ) = 18t − 2i − 2, vi ∈ B2 = {vi : i even, 2t + 2 < i ≤ 6t − 4},

f (v6t−2) = 18t − 14,

f (v6t−1) = 1,

f (v′
1) = 0,

f (v′
2) = 18t − 3,

f (v′
3) = 18t − 5,

f (v′
4) = 5,

f (v′
i ) = i + 2, v′

i ∈ A′
1 = {v′

i : i even, 6 ≤ i ≤ 6t − 2},
f (v′

i ) = 18t − 2i + 1, v′
i ∈ B ′

1 = {v′
i : i odd, 5 ≤ i ≤ 2t + 3},

f (v′
i ) = 18t − 2i − 2, v′

i ∈ B ′
2 = {v′

i : i even, 2t + 3 < i ≤ 6t − 3},
f (v′

6t−1) = 18t − 12.

We have that A = {v6t−1, v
′
1, v

′
4} ∪ A1 ∪ A′

1, B = {v2, v4, v6t−2, v
′
3, v

′
6t−1} ∪ B1 ∪

B2 ∪ B ′
1 ∪ B ′

2 and C = {v1, v3, v′
2}. If we proceed as in case 1, it is easy to verify

that we have a σ -tripartite labeling of D6t−1. Figure 7 shows a σ -tripartite labeling of
D11. 	


Fig. 7 A σ -tripartite labeling of
D11
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Fig. 8 Möbius ladder M10
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2.2 σ -Tripartite Labelings of Even Möbius Ladders

For n ≥ 3, let v1, v2, . . . , vn and v′
1, v

′
2, . . . , v

′
n denote the consecutive vertices of two

disjoint paths with n vertices. TheMöbius ladder Mn is the graph obtained by joining
vi to v′

i for i = 1, 2, . . . , n and by joining v1 to v′
n and vn to v′

1. For convenience, we
let Mn = Pn ∪ P ′

n ∪ F ∪ H , where Pn = (v1, v2, . . . , vn), P ′
n = (v′

1, v
′
2, . . . , v

′
n),

F = {{vi , v′
i } : 1 ≤ i ≤ n} and H = {{v1, v′

n}, {vn, v′
1}}. We shall refer to Pn as the

outer path, to P ′
n as the inner path, and to F as the spokes. Figure 8 shows the Möbius

ladder M10. We note that M2n (with n ≥ 2) is necessarily tripartite with tripartition
{A, B,C}, where A = {v′

1, v
′
4} ∪ {v2i−1, v

′
2i : 3 ≤ i ≤ n}, B = {v2} ∪ {v′

2i−1, v2i :
2 ≤ i ≤ n}, and C = {v1, v3, v′

2}. We will show that Mn admits a σ -tripartite labeling
for all even integers n ≥ 4.

Lemma 12 The Möbius ladder Mn admits a σ -tripartite labeling for all n ∈
{4, 6, 8, 10, 12}.
Proof We give σ -tripartite labelings of M4, M6, M8, M10, and M12 in Fig. 9. 	


Theorem 13 TheMöbius ladder Mn admits a σ -tripartite labeling for all even n ≥ 4.

Proof The cases with n ≤ 12 are covered in Lemma 12. We separate the rest of the
proof into 3 cases.
Case 1 n ≡ 0 (mod 6).
Let n = 6t where t ≥ 3. Thus, |V (Mn)| = 12t and |E(Mn)| = 18t . Define a
one-to-one function f : V (M6t ) → [0, 36t] as follows:

f (v1) = 18t,

f (v2) = 18t − 1,

f (v3) = 36t − 4,

f (vi ) = i − 1, vi ∈ A1 = {vi : i odd, 5 ≤ i ≤ 6t − 1},
f (vi ) = 18t − 2i + 5, vi ∈ B1 = {vi : i even, 4 ≤ i ≤ 2t},
f (vi ) = 18t − 2i + 4, vi ∈ B2 = {vi : i even, 2t < i ≤ 4t},
f (vi ) = 18t − 2i + 3, vi ∈ B3 = {vi : i even, 4t < i ≤ 6t},
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Fig. 9 σ -tripartite labelings of M4, M6, M8, M10, and M12

f (v′
1) = 0,

f (v′
2) = 18t − 4,

f (v′
3) = 18t − 2,

f (v′
i ) = i − 1, v′

i ∈ A′
1 = {v′

i : i even, 4 ≤ i ≤ 6t},
f (v′

i ) = 18t − 2i + 5, v′
i ∈ B ′

1 = {v′
i : i odd, 5 ≤ i ≤ 2t + 1},

f (v′
i ) = 18t − 2i + 4, v′

i ∈ B ′
2 = {v′

i : i odd, 2t + 1 < i ≤ 4t − 1},
f (v′

i ) = 18t − 2i + 3, v′
i ∈ B ′

3 = {v′
i : i odd, 4t − 1 < i ≤ 6t − 1}.

Note that A = {v′
1} ∪ A1 ∪ A′

1, B = {v2, v′
3} ∪ B1 ∪ B2 ∪ B3 ∪ B ′

1 ∪ B ′
2 ∪ B ′

3, and
C = {v1, v3, v′

2}. Thus, the domain of f is indeed V (M6t ). Next, we confirm that f
is one-to-one. We compute

f (A1) = {4, 6, . . . , 6t − 2},
f (A′

1) = {3, 5, . . . , 6t − 1},
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f (B1) = {18t − 3, 18t − 7, . . . , 14t + 5},
f (B2) = {14t, 14t − 4, . . . , 10t + 4},
f (B3) = {10t − 1, 10t − 5, . . . , 6t + 3},
f (B ′

1) = {18t − 5, 18t − 9, . . . , 14t + 3},
f (B ′

2) = {14t − 2, 14t − 6, . . . , 10t + 6},
f (B ′

3) = {10t + 1, 10t − 3, . . . , 6t + 5}.

Note that f is piecewise strictly increasing by 2 or strictly decreasing by 4 and that
all labels are distinct. Thus, f is one-to-one. Moreover, f (A) ⊆ [0, 6t − 1] and
f (B ∪ C) ⊆ [6t + 3, 36t − 4].
To help compute the edge labels, we will describe f (M6t ) in terms of the

P̂(2k, d1, d2, a, b) path notation. For convenience, we will identify the vertices of
P6t and P ′

6t with their labels. We have f (P6t ) = (18t, 18t − 1, 36t − 4, 18t − 3, 4)+
G1 + G2 + G3 + (6t − 2, 6t + 3), where

G1 = P̂(2(t − 2), 2, 4, 4, 14t + 5),

G2 = P̂(2(t), 2, 4, 2t, 10t + 4),

G3 = P̂(2(t − 1), 2, 4, 4t, 6t + 7).

By P3, the resulting edge label sets are:

f̄ (E(G1)) = {12t + 5 + 6i : 0 ≤ i ≤ t − 3} ∪ {12t + 7 + 6i : 0 ≤ i ≤ t − 3}
= {� ≡ 5 (mod 6) : 12t + 5 ≤ � ≤ 18t − 13}

∪ {� ≡ 1 (mod 6) : 12t + 7 ≤ � ≤ 18t − 11},
f̄ (E(G2)) = {6t + 4 + 6i : 0 ≤ i ≤ t − 1} ∪ {6t + 6 + 6i : 0 ≤ i ≤ t − 1}

= {� ≡ 4 (mod 6) : 6t + 4 ≤ � ≤ 12t − 2}
∪ {� ≡ 0 (mod 6) : 6t + 6 ≤ � ≤ 12t},

f̄ (E(G3)) = {9 + 6i : 0 ≤ i ≤ t − 2} ∪ {11 + 6i : 0 ≤ i ≤ t − 2}
= {� ≡ 3 (mod 6) : 9 ≤ � ≤ 6t − 3}

∪ {� ≡ 5 (mod 6) : 11 ≤ � ≤ 6t − 1}.

Moreover, edge labels 1, 18t − 3, 18t − 1, and 18t − 7 occur on the path (18t, 18 −
1, 36t − 4, 18t − 3, 4) and the edge label 5 occurs on the edge {6t − 2, 6t + 3}.

Similarly, we have f (P ′
6t ) = (0, 18t − 4, 18t − 2, 3) + G ′

1 + G ′
2 + G ′

3, where

G ′
1 = P̂(2(t − 1), 2, 4, 3, 14t + 3),

G ′
2 = P̂(2(t − 1), 2, 4, 2t + 1, 10t + 6),

G ′
3 = P̂(2(t), 2, 4, 4t − 1, 6t + 5).
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By P3, the resulting edge label sets are:

f̄ (E(G ′
1)) = {12t + 2 + 6i : 0 ≤ i ≤ t − 2} ∪ {12t + 4 + 6i : 0 ≤ i ≤ t − 2}

= {� ≡ 2 (mod 6) : 12t + 2 ≤ � ≤ 18t − 10}
∪ {� ≡ 4 (mod 6) : 12t + 4 ≤ � ≤ 18t − 8},

f̄ (E(G ′
2)) = {6t + 7 + 6i : 0 ≤ i ≤ t − 2} ∪ {6t + 9 + 6i : 0 ≤ i ≤ t − 2}

= {� ≡ 1 (mod 6) : 6t + 7 ≤ � ≤ 12t − 5}
∪ {� ≡ 3 (mod 6) : 6t + 9 ≤ � ≤ 12t − 3},

f̄ (E(G ′
3)) = {6 + 6i : 0 ≤ i ≤ t − 1} ∪ {8 + 6i : 0 ≤ i ≤ t − 1}

= {� ≡ 0 (mod 6) : 6 ≤ � ≤ 6t}
∪ {� ≡ 2 (mod 6) : 8 ≤ � ≤ 6t + 2}.

Moreover, edge labels 18t−4, 2, and 18t−5 occur on the path (0, 18t−4, 18t−2, 3).
For each spoke {vi , v′

i }, the labels on the spokes are given by

f̄ ({vi , v′
i }) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

18t for i = 1,

3 for i = 2,

18t − 2 for i = 3,

18t − 3i + 6 for 4 ≤ i ≤ 2t + 1,

18t − 3i + 5 for 2t + 1 < i ≤ 4t,

18t − 3i + 4 for 4t < i ≤ 6t.

Thus, the set of edge labels on the spokes is

f̄ (E(F)) = {� ≡ 0 (mod 3) : 12t + 3 ≤ � ≤ 18t − 6}
∪ {� ≡ 2 (mod 3) : 6t + 5 ≤ � ≤ 12t − 1}
∪ {� ≡ 1 (mod 3) : 4 ≤ � ≤ 6t + 1} ∪ {18t, 3, 18t − 2}.

Moreover, edge labels 12t + 1 and 6t + 3 occur on the edges {v1, v′
6t } and {v′

1, v6t }.
It is easy to verify now that each � ∈ [1, 18t] occurs on exactly one edge in M6t .

Hence, the defined labeling is a σ -labeling and condition (s1) for a σ -tripartite labeling
is satisfied. Condition (s2) also holds since f (A) ⊆ [0, 6t + 2] and f (B ∪ C) ⊆
[6t + 3, 36t]. Condition (s3) holds since | f (v1) − f (v2)| + | f (v3) − f (v4)| = 18t ,
| f (v2)− f (v3)|+| f (v2)− f (v′

2)| = 18t , and | f (v2)− f (v′
3)|+| f (v3)− f (v′

3)| = 18t ,
the number of edges of M6t . Condition (s4) clearly holds. Also | f (b) − f (c)| ∈
{18t, 36t}, where b ∈ B and c ∈ C , is impossible since | f (b)− f (c)| ∈ {1, 2, 3, 18t−
1, 18t − 2, 18t − 3}. Thus, condition (s5) holds, and we have a σ -tripartite labeling
of M6t . Figure 10 shows a σ -tripartite labeling of M18.
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Fig. 10 A σ -tripartite labeling of M18

Case 2 n ≡ 2 (mod 6).
Let n = 6t + 2 where t ≥ 2. Thus, |V (Mn)| = 12t + 4 and |E(Mn)| = 18t + 6.
Define a one-to-one function f : V (M6t+2) → [0, 36t + 12] as follows:

f (v1) = 18t + 2,

f (v2) = 18t + 3,

f (v3) = 36t + 8,

f (v4) = 18t + 5,

f (vi ) = i + 2, vi ∈ A1 = {vi : i odd, 5 ≤ i ≤ 6t + 1},
f (vi ) = 18t − 2i + 10, vi ∈ B1 = {vi : i even, 6 ≤ i ≤ 2t + 4},
f (vi ) = 18t − 2i + 7, vi ∈ B2 = {vi : i even, 2t + 4 < i ≤ 6t},

f (v6t+2) = 18t − 3,

f (v′
1) = 0,

f (v′
2) = 18t + 6,

f (v′
3) = 18t + 4,

f (v′
4) = 5,

f (v′
i ) = i + 2, v′

i ∈ A′
1 = {v′

i : i even, 6 ≤ i ≤ 6t},
f (v′

i ) = 18t − 2i + 10, v′
i ∈ B ′

1 = {v′
i : i odd, 5 ≤ i ≤ 2t + 3},

f (v′
i ) = 18t − 2i + 7, v′

i ∈ B ′
2 = {v′

i : i odd, 2t + 3 < i ≤ 6t − 1},
f (v′

6t+1) = 18t − 5,

f (v′
6t+2) = 1.

Note that A = {v′
1, v

′
4, v

′
6t+2} ∪ A1 ∪ A′

1, B = {v2, v4, v6t+2, v
′
3, v

′
6t+1} ∪ B1 ∪ B2 ∪

B ′
1 ∪ B ′

2, and C = {v1, v3, v′
2}. If we proceed as in Case 1, it is easy to verify that we

have a σ -tripartite labeling of M6t+2. Figure 11 shows a σ -tripartite labeling of M14.
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Fig. 11 A σ -tripartite labeling of M14

Case 3 n ≡ 4 (mod 6).
Let n = 6t − 2, where t ≥ 3. Thus, |V (Mn)| = 12t − 4 and |E(Mn)| = 18t − 6.
Define a one-to-one function f : V (M6t−2) → [0, 36t − 12] as follows:

f (v1) = 18t − 6,

f (v2) = 18t − 7,

f (v3) = 36t − 16,

f (vi ) = i − 1, vi ∈ A1 = {vi : i odd, 5 ≤ i ≤ 6t − 3},
f (vi ) = 18t − 2i − 1, vi ∈ B1 = {vi : i even, 4 ≤ i ≤ 2t},
f (vi ) = 18t − 2i − 3, vi ∈ B2 = {vi : i even, 2t < i ≤ 4t − 2},
f (vi ) = 18t − 2i − 5, vi ∈ B3 = {vi : i even, 4t − 2 < i ≤ 6t − 4},

f (v6t−2) = 12t − 2,

f (v′
1) = 0,

f (v′
2) = 18t − 10,

f (v′
3) = 18t − 8,

f (v′
i ) = i − 1, v′

i ∈ A′
1 = {v′

i : i even, 4 ≤ i ≤ 6t − 2},
f (v′

i ) = 18t − 2i − 1, v′
i ∈ B ′

1 = {v′
i : i odd, 5 ≤ i ≤ 2t − 1},

f (v′
i ) = 18t − 2i − 3, v′

i ∈ B ′
2 = {v′

i : i odd, 2t − 1 < i ≤ 4t − 3},
f (v′

i ) = 18t − 2i − 5, v′
i ∈ B ′

3 = {v′
i : i odd, 4t − 3 < i ≤ 6t − 3}.

Note that A = {v′
1} ∪ A1 ∪ A′

1, B = {v2, v6t−2, v
′
3} ∪ B1 ∪ B2 ∪ B3 ∪ B ′

1 ∪ B ′
2 ∪ B ′

3,
and C = {v1, v3, v′

2}. If we proceed as in Case 1, it is easy to verify that we have a
σ -tripartite labeling of M6t−2. Figure 12 shows a σ -tripartite labeling of M16. 	


Because it is known that bipartite prisms and bipartite Möbius ladders admit α-
labelings and in light of our results here, we have the following.
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Fig. 12 A σ -tripartite labeling of M16

Corollary 14 If G of size n is a prism (other than D3) or a Möbius ladder, then there
exists a cyclic G-decomposition of K2nt+1, of K2nt + I , and of K2nt+2 − I for all
positive integers t .
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