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Abstract In this paper, we investigate the class of von Neumann regular modules
over commutative rings. More precisely, we introduce a characterization of regular
modules, and then,we study someproperties of thesemodules in viewpoint of this char-
acterization. Among other things, we show that the Nakayama’s Lemma and Krull’s
intersection theorem hold for this class of modules. Also, some explicit expressions
for submodules of regular modules are introduced.
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1 Introduction

A (not necessary commutative) ring R is called (von Neumann) regular if for each
element a of R there exists an element x of R such that axa = a. The notion of
regularity has been extended to modules by D. Fieldhouse [5] and R. Ware [21]. The
former author considered arbitrary modules over rings with identity element while the
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latter author dealt with projectivemodules only. Their definitions agree for projectives.
Fieldhouse [5] called a module M over a (not necessary commutative) ring R regular
if each submodule N of M is pure in M , i.e., the inclusion 0 → N → M remains
exact upon tensoring by any (right) R-module. Regular modules have been studied
under different definitions by Ware [21], Zelmanowitz [23], and Ramamurthi and
Rangaswamy [20]. We follow the definition used in [5] and [8].

Definition 1.1 A left R-module is (vonNeumann) regular if every submodule is pure.

Remark 1.2 Every regular ring R as R-module is regular. Over any ring R, a semisim-
ple module is regular (by a semisimple module we mean one which is a direct sum of
simple submodules); see [8]. It is known (see [4] or [6]) that over a (not necessarily
commutative) local ring each regular module is semisimple. Cheatham [4] proves that
over a Noetherian ring each regular module is semisimple.

In this paper, we are going to investigate regular modules over commutative rings.
In Sect. 2, we introduce a characterization of regular modules (Theorem 2.3). Some
properties of regular modules are explored in viewpoint of this characterization. In
Sect. 3, among other things, we show that the Nakayama’s Lemma and Krull’s inter-
section theorem hold for regular modules. Section 4 is devoted to find some explicit
expressions for submodules of regular modules.

2 A New Characterization of von Neumann Regular Modules

Unless otherwise stated, after this point, we assume that R is a commutative ring with
nonzero identity and all R-modules are unitary. Also, M is an R-module and N is
a submodule of M . The basic properties of commutative regular rings are collected
together in the following lemma. For a treatment of more general case, we refer the
reader to [7].

Lemma 2.1

(1) R is regular if and only if every R-module is flat.
(2) R/

√
0 is regular if and only if every prime ideal of R is maximal.

(3) R is regular if and only if Rm is a field for each maximal ideal m.
(4) Every homomorphic image of a regular ring is regular.
(5) If a local ring is regular, then it is a field.
(6) Over a commutative regular ring, each module has a maximal submodule.

It is well known that a commutative ring S is a regular ring if and only if every ideal
in S coincides with its radical (for example, see [16, Theorem 49]). This motivates us
to introduce a characterization of regular modules (see Theorem 2.3).

We begin by recalling some definitions. A proper submodule L of M is said to be
prime if rm ∈ L , where r ∈ R and m ∈ M \ L , then r ∈ (L :R M) (see [12,18]). If
L is prime, then ideal p := (L : M) is a prime ideal of R. In this case, L is said to be
p-prime. The set of all prime submodules of M is called the prime spectrum of M and
is denoted by Spec(M). Similarly, the collection of all p-prime submodules of M for
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any p ∈ Spec(R) is designated by Specp(M). The set of all prime submodules of M
containing N is denoted by V (N ). The radical of N , denoted by radM (N ) or briefly
rad(N ), is defined to be the intersection of all prime submodules of M containing N .
In the case where there are no such prime submodules, rad(N ) is defined as M . If
rad(N ) = N , we say that N is a radical submodule (see [13,17]). The saturation of N
with respect to a prime ideal p of R, denoted by Sp(N ), is the kernel of the composite
homomorphism

M → M/N → Mp/Np

where the first homomorphism is the canonical homomorphism (see [3, p.69]). More
precisely,

Sp(N ) = {
m ∈ M

∣∣ sm ∈ N for some s ∈ R \ p} .

The following lemma is proved in [15, Proposition 5.1] and is quite useful for our
purpose.

Lemma 2.2 Let Y be a set of prime ideals of a ring R which contains all the maximal
ideals, M an R-module, and N < M. Then, N = ⋂

p∈Y Sp(N ).

Now, we can introduce one of the main results of this paper.

Theorem 2.3 An R-module M is regular if and only if rad(N ) = N for all proper
submodule N of M.

Proof Let M be regular and N be a proper submodule of M . Then, by Lemma 2.2 we
have N = ∩p∈Max(R)Sp(N ). According to [15, Theorem 2.1], we can write

N =
⋂

p∈Supp(M/N )∩Max(R)

Sp(N ). (2.1)

Let p ∈ Supp(M/N ) ∩ Max(R). Then, Np is a proper submodule of the Rp-module
Mp. By [5, Theorem 11.2], Mp is regular, and so Remark 1.2 implies that Mp is
semisimple. Therefore, Np is intersection of some maximal (so prime) submodules.
Hence, in the light of [14, Proposition 1], it is easy to see that Sp(N ) is a radical
submodule of M . This fact together with Eq. (2.1) shows that N = rad(N ).

Conversely, let N be a submodule of M and I be an ideal of R. Then, it is enough
for us to show that I M ∩ N = I N (see [5, Proposition 8.1]). By definition of prime
submodules, it is clear that V (I M ∩ N ) = V (I N ). Thus, by assumption we have

I M ∩ N = rad(I M ∩ N ) = rad(I N ) = I N .

This completes the proof. ��
Example 2.4 By Theorem 2.3, every cosemisimple module is regular, since an R-
module M is cosemisimple if and only if every proper submodule of M is an
intersection of maximal (so prime) submodules (see [22, Proposition 23.1]).
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The following theorem was proved in [5], but we provide a new proof by means of
Theorem 2.3.

Theorem 2.5 The following conditions are equivalent:

(1) R is a regular ring.
(2) Every R-module is regular.

Proof (1) ⇒ (2) Let R be a regular ring and M be an R-module. Suppose that N
is a proper submodule of M . Then, by Lemma 2.2 we have N = ∩p∈Max(R)Sp(N ).
According to [15, Theorem 2.1], we can write

N =
⋂

p∈Supp(M/N )∩Max(R)

Sp(N ).

Let p ∈ Supp(M/N ) ∩ Max(R). Then, Np is a proper submodule of the Rp-module
Mp. By Lemma 2.1(3), Rp is a field, and so Np is a prime submodule. Now, [14,
Proposition 1] shows that Sp(N ) is a prime submodule of M . This yields that N =
rad(N ). Now, the result follows from Theorem 2.3.

(2) ⇒ (1) This is true by [16, Theorem 49], because every radical submodule of
R-module R is a radical ideal of R. ��

According to Theorem 2.3, we will provide a new proof for [5, Theorems 8.4 and
11.2].

Proposition 2.6 Let M be a regular R-module and S be a multiplicatively closed
subset of R. Then, the following statements hold.

(1) S−1M is a regular S−1R-module.
(2) Any submodule of M is regular.
(3) Any homomorphic image of M is regular.

Proof (1) Let G be a proper submodule of S−1M . Obviously, G ⊆ radS−1M (G). Let
m/s ∈ radS−1M (G), where m ∈ M and s ∈ S. Then, for each prime submodule
P minimal over G we havem/1 ∈ P . Now, suppose that Q is a prime submodule
of M minimal over Gc := f −1(G), where f denotes the canonical map M →
S−1M .
We claim that S−1Q is a prime submodule of S−1M minimal over G. Recall that
by [14, Proposition 1], S−1Q is a prime submodule of S−1M and Q = (S−1Q)c.
If there exists a prime submodule H of S−1M such that G ⊆ H ⊆ S−1Q, then
by [14, Proposition 1] we have Gc ⊆ Hc ⊆ Q. Hence, Hc = Q, by minimality
of Q, and so H = S−1Q.
Therefore, m/1 ∈ S−1Q. Since Q is prime, we infer that m ∈ Q. This implies
thatm ∈ radM (Gc) = Gc, by Theorem 2.3. Consequently,m/s ∈ S−1(Gc) = G.
This yields that G = radS−1M (G). Now, the result follows from Theorem 2.3.

(2) Let M be a regular R-module and N be a submodule of M . If N = M , then we
are done. So, we assume that N is proper. Let L be a proper submodule of N .
Then, by assumption, there is a family {Pλ}λ∈� of prime submodules of M such
that L = ⋂

λ∈� Pλ. If Pλ ∩ N = N for each λ ∈ �, then
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N = radM (N ) ⊆
⋂

λ∈�

Pλ = L ⊆ N ,

a contradiction. This yields that

�′ := {
λ ∈ �

∣∣ Pλ ∩ N �= N
} �= ∅.

It is easy to see that {Pλ ∩ N | λ ∈ �′} ⊆ Spec(N ). Now, one can easily show
that

L =
⋂

λ∈�′
(Pλ ∩ N ).

Consequently, N is a regular R-module.
(3) It is enough for us to show thatM/N is a regular R-module for each submodule N .

For this aim, suppose that L/N is a proper submodule ofM/N . Then, radM (L) =
L and we have

radM/N (L/N ) = radM (L)/N = L/N .

This completes the proof. ��
In particular, every ideal of a regular ring is regular. This provides an ample source

of regular modules.

Corollary 2.7 The following statements are equivalent:

(1) M is a regular R-module.
(2) M/N is a regular R-module for each submodule N of M.

Proof Use Proposition 2.6. ��
Also by Proposition 2.6, we have the following corollary.

Corollary 2.8 Let {Mi }i∈I be a collection of R-modules. If
⊕

i∈I Mi is a regular
module, then each Mi (i ∈ I ) is a regular module.

If R is a ring with a free regular module M , then we deduce from Corollary 2.8 that
R is a regular ring. Now, we show that if M is a flat R-module, then we can say more
than Corollary 2.7, as the next proposition illustrates.

Proposition 2.9 Let M be a flat R-module. Then, the following statements are equiv-
alent:

(1) M is a regular R-module.
(2) Every homomorphic image of M is flat.
(3) Every homomorphic image of M is regular.
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Proof In [11, p.133], it is proved that for a flat R-module M and a submodule N of
M , M/N is flat if and only if I M ∩ N = I N for every ideal I of R. Thus, by [5,
Proposition 8.1] M/N is flat if and only if N is pure. Therefore, the results follows
from Proposition 2.6 and Theorem 2.3. ��

As we mentioned in Lemma 2.1, the dimension of any regular ring is zero. Here,
we show that this is also true for regular modules.

Theorem 2.10 Let M be a regular R-module such thatAss(M) �= ∅. Then,Ass(M) ⊆
Max(R). In particular, we have dim(M) = 0.

Proof Let p ∈ Ass(M). Then, there is a nonzero element m ∈ M such that Rm ∼=
R/p. By Proposition 2.6, R/p is a regular R-module. Hence, [8, Lemma 1] implies
that R/p is a regular domain. Since every prime ideal of a regular ring is maximal,
we conclude that p is a maximal ideal of R. Thus, Ass(M) ⊆ Max(R). Therefore,
Ass(M) = Supp(M) and so dim(M) = 0. ��

It would be desirable to show that every nonzero regular R-module has at least one
associated prime ideal, but we have not been able to do this.

Theorem 2.11 Let M be a nonzero regular R-module. Then, M is Noetherian if and
only if it is Artinian.

Proof Since M is regular, we have

(0) = rad(0) =
⋂

P is minimal in Spec(M)

P.

Let M be Artinian and P be a minimal prime submodule of M over (0). By [1,
Corollary 2.4], m := (P : M) is a maximal ideal of R and mM ⊆ P �= M . Thus,
mM is a prime submodule of M (see [12, Proposition 2]). Therefore, P = mM by
minimality of P . Hence, there is a collection {mλ}λ∈� ofmaximal ideals of R such that⋂

λ∈�(mλM) = 0. Since M is Artinian, there is a finite subset �′ := {m1, . . . ,mn}
of � such that

⋂n
i=1(mi M) = 0. Consequently,

M = M/rad(0) = M/

n⋂

i=1

(mi M)

is annihilated by m1m2 · · ·mn . This implies that M is a Noetherian R-module.
Conversely, suppose that M is Noetherian. Then, M has finitely many minimal

prime submodules over (0) (see [19, Theorem 4.2]), say P1, . . . , Pt . By [12, Theo-
rem 1], Corollary 2.7, and Theorem 2.10, {(Pi : M)} = Ass(M/Pi ) ⊆ Max(R) for
each 1 ≤ i ≤ t . Therefore,

M = M/rad(0) = M/

t⋂

i=1

Pi
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is annihilated by (P1 : M)(P2 : M) · · · (Pt : M). This implies that M is an Artinian
R-module. ��
Proposition 2.12 The following statements are equivalent:

(1) R is a regular ring.
(2) R possesses a projective regular module M such that Max(R) ⊆ Supp(M).

Proof (1) ⇒ (2) This is clear. (2) ⇒ (1) Recall from Lemma 2.1(3) that a ring R
is regular if and only if Rm is a field for each maximal ideal m ∈ Max(R). Let m
be a maximal ideal of R. In view of Proposition 2.6 and [9, Theorem 2], Mm is a
(nonzero) free regular Rm-module. By Corollary 2.8, we deduce that Rm is a regular
ring. According to Lemma 2.1(5), Rm is a field, as desired. ��

An example of a (commutative) ring R which is not regular but which possesses a
projective regular module can be find in [21, p.242].

3 The Nakayama’s Lemma

Nakayama’s lemma, which we now prove it for regular modules, is one of the key
tools in commutative algebra.

Lemma 3.1 Let M be a regular R-module and p ∈ Supp(M). Then, there exists a
prime submodule P of M such that p ⊆ (P : M).

Proof Let p ∈ Supp(M). Then, there is a nonzero elementm inM such thatAnn(m) ⊆
p. Thus, m /∈ pm. Hence, pm is a proper submodule of M and by assumption and
Theorem 2.3 there is a prime submodule P of M such that pm ⊆ P and m /∈ P . This
yields that p ⊆ (P : M). ��

Note that Lemma 3.1 shows that if M is a nonzero regular R-module, then
Specm(M) is non-empty for some maximal ideal m of R. Any theorem concerning
regular modules over an arbitrary ring is a generalization of a corresponding theorem
about modules over a regular ring (see Theorem 2.5). The following is such a result.
Recall that the intersection of all maximal ideals of R, the Jacobson radical of R, is
designated by Rad(R).

Theorem 3.2 (Nakayama’s Lemma) Let M be a regular R-module and I be an ideal
of R such that I ⊆ Rad(R). If I M = M, then M = 0.

Proof Suppose that M is nonzero. Then, there is a maximal ideal m of R such that
m ∈ Supp(M). By Lemma 3.1, there exists a prime submodule P of M such that
m = (P : M). Therefore, we have

M = I M ⊆ Rad(R)M ⊆ mM = (P : M)M ⊆ P �= M,

a contradiction. ��
Let us mention some consequences of Theorem 3.2.
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Corollary 3.3 Let M be a regular R-module and I be an ideal of R such that I ⊆
Rad(R). If M/I M is a finitely generated R-module, then so is M.

Proof Suppose that M/I M is generated by {gi + I M}ni=1 and let H := Rg1 + · · · +
Rgn . Now, if m ∈ M , then there are elements r1, . . . , rn ∈ R such that m + I M =∑n

i=1 ri (gi + I M). This implies thatm ∈ H + I M . Hence, H + I M = M . Therefore,
Theorem 3.2 yields that M = H and so M is finitely generated, as desired. ��

Corollary 3.3 shows that if R is a local ring with the unique maximal idealm and M
is a regular R-module such that M/mM is finitely generated, then the number of any
minimal generating set of M is equal to the vector dimension of vector space M/mM
over the field R/m.

Proposition 3.4 Let R be a local ring with the unique maximal ideal m and M be
a regular R-module. If there exists an R-module N such that M ⊗R N ∼= R, then
M ∼= R. In particular, N must then also be isomorphic to R.

Proof By assumption, we get

R/m ∼= R/m ⊗R (M ⊗R N ) ∼= M/mM ⊗R/m N/mN .

It follows from this that both M/mM and N/mN are one dimensional vector spaces
over R/m. ByCorollary 3.3,M is generated by a single elementm.Wehave a surjective
map R −→ M via 1 �→ m. The kernel of this map is Ann(m). Since Ann(m)

annihilates M ⊗ N , it must annihilates R. This implies that Ann(m) = (0), and
M ∼= R. ��
Proposition 3.5 Let M and L be two regular R-module. Then,

Supp(M ⊗ L) = Supp(M) ∩ Supp(L).

Proof Obviously, Supp(M ⊗ L) ⊆ Supp(M) ∩ Supp(L). Hence, let

p ∈ (Supp(M) ∩ Supp(L)) \ Supp(M ⊗ L).

Then, Mp �= 0, Lp �= 0 and (M ⊗ L)p = 0. This implies that

0 = (M ⊗R L)p ⊗Rp Rp/pRp
∼= Mp/pMp ⊗Rp/pRp Lp/pL p.

Therefore, for these vector spaces we have Mp/pMp = 0 or Lp/pLp = 0. By Propo-
sition 2.6, Mp and Lp are regular Rp-module. Hence, we deduce from Theorem 3.2
that Mp = 0 or Lp = 0, a contradiction. ��

Note that according to the proof of Proposition 3.5, its assertion is still true if at
least of M and L is finitely generated.

Theorem 3.6 Let f : R −→ S be a homomorphism of commutative rings and M a
regular S-module. If M ⊗R (Rp/pRp) = 0 for every p ∈ Spec(R), then M = 0.
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Proof If M �= 0, then there is a maximal idealm of S such that Mm �= 0. So by Propo-
sition 2.6 and Theorem 3.2, Mm/mMm �= 0. Let p = f −1(m). Then, Mm/pMm �= 0,
since pMm ⊆ mMm. Set T := S\m andG := R\p. Then, localizationG−1M = Mp

of M as an R-module and the localization ( f (G))−1M of M as a S-module coincide.
Since f (G) ⊆ T , we have

Mm = T−1M ∼= T−1(( f (G))−1M) = T−1(Mp).

Thus,

Mm/pMm = T−1(Mp/pMp) = T−1(M ⊗R (Rp/pRp)).

This implies that M ⊗R (Rp/pRp) �= 0. ��
Proposition 3.7 Let R be a local ring with the unique maximal ideal m and let M be
a regular R-module. If HomR(M, R/m) = 0, then M = 0.

Proof Assume that M �= 0. Since M is regular, Theorem 3.2 implies that M/mM �= 0
as a vector space over the field R/m. Let f : M/mM → R/m be a nonzero R/m-
homomorphism. If we compose this with the canonical map M → M/mM , we get
a nonzero R-homomorphism f : M → R/m, so we have HomR(M, R/m) �= 0, a
contradiction. ��
Proposition 3.8 Let M be an R-module and N be a regular R-module and f ∈
HomR(M, N ). Then, f is onto if and only if for each m ∈ Max(R), the induced map
f̄ : M/mM → N/mN is onto.

Proof Let C be the cokernel of f . Then, the exact sequence

M
f−→ N −→ C −→ 0

induces the sequence

M/mM
f̄−→ N/mN −→ C/mC −→ 0

which is exact. If f is onto, then C = 0, and so f̄ is onto. Conversely, if f̄ is onto
for some maximal ideal m of R, then mCm = Cm. By Proposition 2.6, Cm is a
regular Rm-module. Thus, Theorem 3.2 implies that Cm = 0. Since this is true for all
m ∈ Max(R), we infer that C = 0. ��
Theorem 3.9 Let R be a Noetherian local ring with the unique maximal ideal m. If
M is a nonzero regular injective R-module, then dim(R) = 0.

Proof Suppose, contrary to our claim, that dim(R) ≥ 1. By assumption and The-
orem 2.10, Ass(M) = {m}. So, M has a submodule G isomorphic to R/m. Since
dim(R) ≥ 1, there is a prime ideal p ⊂ m and so R/p admits a homomorphism
onto R/m. Hence, Hom(R/p, M) �= 0. Let a ∈ m \ p. Then, a is a nonzero divisor
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on R/p. Since M is injective, for any homomorphism h : R/p −→ M there is a
homomorphism g : R/p −→ M such that the following diagram is commutative.

0 R/p
a.

h

R/p

g

M

Hence, Hom(R/p, M) = aHom(R/p, M). By Proposition 2.6, Hom(R/p, M) is
a regular R-module. Now, Theorem 3.2 implies that Hom(R/p, M) = 0, a contradic-
tion. ��

We say a subset I ⊆ R acts t-nilpotently on M if, for every sequence a1, a2, ... of
elements in I and m ∈ M , we get aiai−1 · · · a1m = 0 for some i ∈ N depending on
m (see [22, p.257]).

Proposition 3.10 Let a regular R-module M satisfy descending chain condition for
cyclic submodules. Then, Rad(R) acts t-nilpotently on M.

Proof Let a1, a2, . . . be a sequence of elements in Rad(R) and m ∈ M . Consider
the descending chain of submodules Ra1m ⊇ Ra2a1m ⊇ Ra3a2a1m ⊇ · · · . By
assumption, there is i ∈ N such that

Raiai−1 · · · a1m = Rai+1ai · · · a1m ⊆ Rad(R)aiai−1 · · · a1m.

By Proposition 2.6 and Theorem 3.2, this means aiai−1 · · · a1m = 0. ��
Proposition 3.11 Let R be a regular ring, I ⊆ Rad(R) be an ideal of R and M be
an R-module. Then, I M = 0.

Proof Consider the following short exact sequence.

0 −→ I M −→ M −→ M/I M −→ 0.

By Lemma 2.1, R/I is a flat R-module, and so we obtain the following short exact
sequence:

0 −→ I M ⊗ R/I −→ M ⊗ R/I −→ M/I M ⊗ R/I −→ 0.

Thus, the following sequence is exact.

0 −→ I M/I 2M −→ M/I M −→ M/I M −→ 0.

Hence, we deduce that I M = I 2M . Now, Theorem 3.2 implies that I M = 0, since
I M is a regular R-module by Theorem 2.5. ��
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Let H be an R-module. Recall that an element a ∈ R is said to be H -regular if
ax �= 0 for all 0 �= x ∈ H . Also, a sequence a1, . . . , an of elements of R is an
H -sequence (or an H -regular sequence) if the following two conditions hold:

(1) a1 is H -regular, a2 is (H/a1H)-regular, . . ., an is (H/(a1, . . . , an−1)H)-regular;
(2) H/(a1, . . . , an)H �= 0 (see [2, Definition 1.1.1]).

Let R be a Noetherian local ring and M be a finitely generated R-module. Then,
every permutation of any M-sequence is an M-sequence (for example, see [2, Propo-
sition 1.1.6]). As our next result shows, when M is a regular R-module (where R is an
arbitrary ring), anM-sequence in the Jacobson radical is permutable. In theNoetherian
case, regular sequences are finite. We do not know this for regular modules. Hence,
the following proposition is to be interpreted as allowing infinite regular sequences if
they exist.

Proposition 3.12 Let M be a nonzero regular R-module and {xλ}λ∈� be elements in
Rad(R) constituting an M-sequence (finite or infinite). Then, any permutation of this
M-sequence is also an M-sequence.

Proof By [10, Theorem 118], it is enough for us to show that if a, b is an M-sequence
in Rad(R), then b is not a zero-divisor on M . Let C := (0 :M b). It is easy to see that
aC = C . Now, Theorem 3.2 implies that C = 0, as desired. ��
Corollary 3.13 Let R be a regular ring and M be an R-module. Then, any rearrange-
ment of an M-sequence in Jacobson radical of R is again an M-sequence.

Proof Use Theorem 2.5 and Proposition 3.12. ��
The Krull’s intersection theorem is one of the basic results in the theory of com-

mutative Noetherian rings. The object of Corollary 3.16 is to prove this theorem and
some of its consequence for the class of regular modules.

Proposition 3.14 Let M be a nonzero regular R-module. Then, we have

A :=
⋂ {

Q ∈ Specp(M)
∣∣ p ∈ Max(R)

} = 0.

Proof Note that by Lemma 3.1, Specm(M) is non-empty for some maximal ideal m
of R. Let x be a nonzero element in A. Then, there is a maximal ideal m of R such
that Ann(x) ⊆ m. This implies that x /∈ mx . So, mx is a proper submodule of M .
By Theorem 2.3, there is a prime submodule P of M such that x /∈ P and mx ⊆ P .
Hence, we conclude that P ∈ Specm(M). This contradicts x ∈ A and x /∈ P . ��
Corollary 3.15 Let R be a local ring with the unique maximal ideal m and M be a
nonzero regular R-module. Then, every proper submodule of M is prime.

Proof By Lemma 3.1, Specm(M) is non-empty. This implies that mM is a prime
submodule contained in every element of Specm(M) (see [12, Proposition 2]). We
infer from Proposition 3.14 that mM = 0. Thus, Ann(M) = m. Now, let N be a
proper submodule of M . Then, m = (N : M) and so N is a prime submodule by [12,
Proposition 2]. ��
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Corollary 3.16 Let M be a nonzero regular R-module. If r is in the Jacobson radical
Rad(R) of R, then

⋂∞
n=1 r

nM = 0.

Proof Let r ∈ Rad(R) and P ∈ Specm(M) for some maximal ideal m of R. Then,
for all n ∈ N we have

rnM ⊆ Rad(R)M ⊆ mM ⊆ P.

So, we infer from Proposition 3.14 that
⋂∞

n=1 r
nM = 0. ��

Corollary 3.17 Let M be a nonzero regular R-module, p be a non-maximal prime
ideal of R, and r be an element of Rad(R) \ p. Then, the only possible p-prime
submodule contained in rM is zero.

Proof Let P be a p-prime submodule ofM such that P ⊆ rM .We claim that r P = P .
Obviously, r P ⊆ P � M . Thus, r P is a proper submodule of the regular R-module
M . By Theorem 2.3, there is a family {Qλ}λ∈� of prime submodules of M such that

r P = rad(r P) =
⋂

λ∈�

Qλ.

So, it is enough for us to show that P ⊆ Qλ for each λ ∈ �. Suppose that, P � Qα

for some α ∈ �. Hence, there exists a ∈ P \ Qα . This implies that

ar ∈ r P =
⋂

λ∈�

Qλ ⊆ Qα.

Since Qα is prime, we deduce that r ∈ (Qα : M). Therefore, P ⊆ rM ⊆ Qα , a
contradiction. This shows that r P = P . Therefore, rn P = P for all n ∈ N. Now, by
Corollary 3.16, we conclude that

P ⊆
∞⋂

n=1

rnM = (0). ��

4 An Explicit Expression for Submodules of Regular Modules

It is well known that every submodule of a semisimple module is an intersection of
somemaximal submodules. In Theorem 2.3, we established a similar result for regular
modules where maximal submodules replaced with prime submodules. In this short
section, we proceed further and we will introduce, as one of the main results of the
paper, an explicit expression for submodules of regular modules.

Theorem 4.1 Let M be a nonzero R-module. Then, M is regular if and only if

N =
⋂

p∈Supp(M/N )

Sp(N + pM) (4.1)
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for all proper submodules N of M.

Proof Suppose that M is regular. Let N be a proper submodule of M and Min(N ) be
the set of all minimal prime submodules of M over N . We claim that

Min(N ) = {
Sp(N )

∣∣ p ∈ Supp(M/N )
} = {

Sp(N + pM)
∣∣ p ∈ Supp(M/N )

}
.

Suppose p ∈ Supp(M/N ). Then, Proposition 2.6 implies that Mp is a nonzero regular
Rp-module. Moreover, Corollary 3.15 yields that the proper submodule Np = Np +
pMp of Mp is pRp-prime. Now, by [14, Proposition 1], Sp(N ) = Sp(N + pM) is a
p-prime submodule of M . According to [15, Result 3], Sp(N ) = Sp(N + pM) is a
minimal prime submodule over N .

Now, let Q ∈ Min(N ) be a q-prime submodule of M . Then, N ⊆ Sq(N ) ⊆
Sq(N + qM) ⊆ Q. As we mentioned, Sq(N ) is a prime submodule of M . Hence,
Q = Sq(N ) = Sq(N + qM) by minimality of Q. Consequently,

N = rad(N ) =
⋂

P∈Min(N )

P =
⋂

p∈Supp(M/N )

Sp(N ) =
⋂

p∈Supp(M/N )

Sp(N + pM).

Conversely, suppose that (4.1) holds for all proper submodules N of M . Let N be a
proper submodule of M . If for all p ∈ Supp(M/N ), we have Sp(N + pM) = M , then
N = M , a contradiction. Suppose p ∈ Supp(M/N ) such that Sp(N + pM) �= M .
This implies that

Sp(N + pM)/N = Sp(p(M/N )) �= M/N .

In the light of [15, Corollary 3.7], we deduce that Sp(p(M/N )) is a prime submodule
of M/N . So, Sp(N + pM) is a prime submodule of M . Therefore, N is a radical
submodule of M , i.e., N = rad(N ). This completes the proof. ��
Remark 4.2 Note that the proof of Theorem 4.1 shows that if M is a nonzero regular
R-module, then

N =
⋂

p∈Supp(M/N )

Sp(N )

for all proper submodules N of M .

Corollary 4.3 Let M be a nonzero regular R-module. Then, the following statements
hold.

(1) For all proper submodules N of M, we have N = ⋂
p∈V (N :M) Sp(N ).

(2) Let I be an ideal of R. Then, I M = ⋂
p∈V (I ) Sp(I M). In particular,⋂

p∈Spec(R) Sp(0) = 0.
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Proof (1) Since Supp(M/N ) ⊆ V (N : M), by Remark 4.2 and Theorem 4.1 we
have

N ⊆
⋂

p∈V (N :M)

Sp(N ) ⊆
⋂

p∈Supp(M/N )

Sp(N ) = N .

(2) Since Supp(M/I M) ⊆ V (I M : M) ⊆ V (I ), the result follows from Theo-
rem 4.1. ��

When R is regular, we can say more than Theorem 4.1, as the next proposition
illustrates.

Proposition 4.4 Let R be a regular ring and N be a proper submodule of M. Then,
N = ⋂

p∈V (N :M)(N + pM).

Proof It follows fromTheorem 4.1 that N = ⋂
p∈Supp(M/N ) Sp(N+pM). It is enough

for us to show that for each p ∈ Supp(M/N ), N+pM is a p-prime submodule ofM . By
assumption and Theorem 2.5,M/N is a regular module, and so by Lemma 3.1 for each
p ∈ Supp(M/N ) there is a prime submodule P/N of M/N such that p ⊆ (P : M).
By Lemma 2.1, Spec(R) = Max(R) and so p = (P : M). This implies that

p ⊆ (pM : M) ⊆ (N + pM : M) ⊆ (P : M) = p ∈ Max(R).

Hence, we can infer from [12, Proposition 2] that N + pM is a p-prime submodule of
M , and whence, [15, Result 2] implies that Sp(N + pM) = N + pM . Therefore,

N ⊆
⋂

p∈V (N :M)

Sp(N + pM) ⊆
⋂

p∈Supp(M/N )

Sp(N + pM)

=
⋂

p∈Supp(M/N )

(N + pM) = N . ��
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