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Abstract In this paper, we use a generalized Brownian motion process to define an
analytic operator-valued Feynman integral. We then establish the existence of the
analytic operator-valued generalized Feynman integral. We next investigate a stability
theorem for the analytic operator-valued generalized Feynman integral.
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1 Introduction

Cameron and Storvick [1] introduced an analytic operator-valued function space
integral and showed that the integral satisfied an integral equation related to the
Schrodinger equation. The existence of this integral was established as an operator
from L, (R) to L>(R). Since then, Johnson and Lapidus [8] established the existence
of the operator-valued function space integral as a bounded linear operator on L, (R™)
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for certain functionals which only define finite Borel measures on the compact inter-
val [0, T] in R. These integrals are based on the Wiener integral associated with the
Wiener process.

On the other hand, Johnson [7] studied a bounded convergence theorem (stability
theorem) for the operator-valued Feynman integral of functionals of the form F(x) =
exp{ fOT 0(x(s))ds}. Chang et al. [2] established a stability theorems for the operator-
valued Feynman integral of certain functionals involving some Borel measures on an
interval (0, T') as a bounded linear operator from L1 (R) to Co(R). Moreover, Chang
and Lee [5] studied an analytic operator-valued generalized Feynman integral. The
integral investigated in [5] is based on the function space integral associated with a
generalized Brownian motion process.

The function space C, [0, T] induced by a generalized Brownian motion was
introduced by Yeh in [10] and was studied extensively in [3,4,6]. In this paper, we
define an analytic operator-valued generalized Feynman integral on the function space
Cau.»10, T]. We then establish the existence of the analytic operator-valued generalized
Feynman integral and investigate a stability theorem for the analytic operator-valued
generalized Feynman integral.

2 Definitions and Preliminaries

Let D = [0,T] and let (2, B, P) be a probability measure space. A real-valued
stochastic process Y on (2, B, P) and D is called a generalized Brownian motion
process if Y (0, w) = 0 almost everywhere and for0 =79 < f; < --- < t, < T, the
n-dimensional random vector (Y (¢, w), ..., Y(#,, w)) is normally distributed with
density function

. —1/2

K@i = [ @[] (@) - b))

j=1

n O S S 2
X exp _%Z((m a(tl)) (71171 a(tjfl)))

= b(1)) = blt;1)

where 7 = (91, ..., 1), no = 0, f= (t1,...,1,), a(t) is an absolutely continuous
real-valued function on [0, T] with a(0) = 0, a’(¢) € L2[0, T, and b(z) is a strictly
increasing, continuously differentiable real-valued function with 5(0) = O and &’ (¢) >
0 foreachr € [0, T].

As explained in [11, pp. 18-20], Y induces a probability measure x on the measur-
able space (R?, B) where R is the space of all real-valued functions x(¢), t € D,
and BP is the smallest o-algebra of subsets of R” with respect to which all the
coordinate evaluation maps e;(x) = x(¢) defined on RP are measurable. The triple
(RP, BP, 1) is a probability measure space. This measure space is called the function
space induced by the generalized Brownian motion process Y determined by a(-) and

b(-).
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We note that the generalized Brownian motion process Y determined by a(-)
and b(-) is a Gaussian process with mean function a(¢) and covariance function
r(s,t) = min{b(s), b(t)}. By [11, Theorem 14.2], the probability measure  induced
by Y, taking a separable version, is supported by C, 5[0, T] (which is equivalent
to the Banach space of continuous functions x on [0, 7] with x(0) = 0 under the
sup norm). Hence, (C, 5[0, T'], B(C,4 [0, T]), ) is the function space induced by
Y where B(Cy 5[0, T']) is the Borel o-algebra of C, [0, T']. We then complete this
function space to obtain (C, [0, T'], W(C, 5[0, T1), ) where W(C, 5[0, T]) is the
set of all u-Carathéodory measurable subsets of C, 5[0, T'].

We note that the coordinate process defined by e;(x) = x(¢) on C, [0, T]1x [0, T']
is also the generalized Brownian motion process determined by a(¢) and b(¢). For
more detailed studies about this function space C, [0, T'], see [3,6,10].

Next, we state the definition of the analytic operator-valued generalized Feynman
integral.

Definition 2.1 Let C be the set of complex numbers, let C;. = {A € C:Re(1) > 0}
and let @+ = {2 € C:Re(r) = 0,1 # 0}. Also, let C[0, T] denote the space of
real-valued continuous functions x on [0, T'], and given a real number «, let v, be the
measure on B(R) such that dv, = exp{an?}dn. Next let F be a C-valued functional
on C[0, T]. Foreach . > 0, ¢ € L2(R, vy) and & € R, assume that the functional
FOWV2x 46y 0120 (T)+ &) is pu-integrable with respect to x on Cy 5[0, T'], and
let

) © = [

Cab[0.T]

F (A_l/zx n 5) " (A‘l/zx(T) n s) d(x).

If I, (F)¥ isin L2(R, v_,) as a function of & and if the correspondence v — I, (F)y¥
gives an element of £ = L(L*(R, vy), L>(R, v_g)), the space of continuous linear
operators from LZ(R, Vy) to LZ(R, V_q), We say that the operator-valued function
space integral I, (F) exists. Next, suppose that there exists an L-valued function
which is analytic in C and agrees with 7, (F) on (0, 0o), then this £-valued func-
tion is denoted by /3"(F) and is called the analytic operator-valued function space
integral of F associated with A. Finally, suppose that there exists an operator ann in

L(LA(R, vy), L*(R, v_g)) for some « > 0 such that

as A — —iq through C,, then J ;H(F ) is called the analytic operator-valued general-
ized Feynman integral of F with parameter q.

-0
L2R,v_g)

Ly — I (FYY|

3 An Analytic Operator-Valued Function Space Integral

Throughout the rest of this paper, we consider functionals of the form
T
F(x) = f(/ 9(s,X(S))dn(S)>, (3.1
0
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where f is an analytic function on C and 6 is an appropriate C-valued function on
[0, T]xR. F(x)isavery important functional in quantum mechanics. We then estab-
lish the existence of the analytic operator-valued function space integral for functionals
F of the form (3.1).

Let M (0, T) denote the space of complex Borel measures n on the open interval
(0, T). Thenn € M(0, T) has a unique decomposition n = 8+ B4 into its continuous
part B and its discrete part B4 [9]. Let §; denote the Dirac measure at T € (0, T'). For
convenience, we let

n=p+ws, oeccC. (3.2)

Throughout the rest of this _paper, we use the following notations:
(1) For A € C4 and ¢ € L*(R, vg), let

5o\ 12 | )
(Co.k.)¥) ) = (H) /Rl/f(u)exp{ - ﬁ(ﬁ(u —§) —L) }du (3.3)

where K and L are real numbers with K > 0. Then Cg; g 1) is in L(L*(R, vy),
LA(R, v_y)).

(2) For each s € (0,7), let 8(s) denote the operator of multiplication from
L2(R, v_g) to LE(R, vg) given by

O)Y) (§) =0(s,6)¢y (), §€R. (3.4)

(3) Given a positive integer /1, let

Ay, (T) = {(sl,...,sll)|0<sl <SS <T<Sjqpp <-oo<spy < T}
and let

AZI(T)E{(sl,...,s11)|()<s1 <-ee<sy <T}.

Also, for (s, ..., s;,) € Ay;;(T) and a positive integer /5, let

A !
‘Cl];j = Coub(si)alsy)) ©0(s1) o+ 00(sj) 0 C(A,b(r)—b(Sj),a(r)—a(Sj)) o[0(7)]?
0 Cob(sj41)—b(r).alsji)—a(m) © Ojr1) 000y —1)
© C(sbtsi)—bCst, —satsiy—atsy, ) © €61 © Clb(my—bis).aT)—ats)):
3.5
Finally, for (s1,...,s,) € Ay (T), let
Ao
511 = C,b(s1),a(s1)) ©O(s1) 0 -+ 00(sy) o C(k,b(T)—b(sll),a(T)—a(sll))‘ (3.6)

For example, we see that for s; € A1.1(T) = {5110 <s1 <7 < T},

L =Cobtsnatsn) ©061) 0 Coubo)—bis.a—atsy © ()]
0 Cub(T)=b(x).a(T)—a(r))
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and for (s1, s2) € Ax(T),

L5 =Cbispasn) © 061) © Cabsy)—b(si).als2)—atsn)
0 0(52) o C(n,b(T)—b(s2),a(T)—a(s2))-

Hence using Egs. (3.3)—(3.6), we observe that for ¢ € L2(R, vy),

3 172
A

L£h o = - - / 0(s1, o(z, L&)

( 1;1 1/f) ) (j|=|l 27r(b(sj)—b(sj_1))) s (s1,u1) [0(z, u2)12 ¥ (u3)

2
X exp l Z [(ﬁuj _ a(;z;?sj_) (_\/;(’jjj_ll))_ a(sjil))] ] dujdupdus,

j=1

and

3 172 2
(L50v) ) = (1—[ b(sj)—b(sj 1)) /R311:[19(51’”j)¢(u3)

[(\/Xuj - a(Sj)) - (ﬁuj_l — a(sj-—l))]2
2(b(sj) — b(sj—1))

dudurdus

X exp —Z

j=1

where 5o = 0, a(sg) =0, up=&,sp =tands3 =T. B
Also we will use the following conventions: for all positive integer / and A € C_,
let

M\
B! (s,-;|x|)z< 2' ') /(e(sj,u])] (exp{M |x|‘/2}u,|}du, 3.7)

forsome M; > 0, j =1, ..., ;. Furthermore, in order to ensure that analytic operator-
valued generalized Feynman integral exists, we will assume that Bj. (sj; [A]), a(-) and
b(-) satisfy the following conditions: for j =1, ...,/jand s;; 41 =T,

(1) fo B! (55 121) dll(s) < o
1

@) wey=pe; 0 = Lin

a G| = |pen|m

for s;.‘ € (sj—1,s;) and some positive real numbers L ;, and M .
The next lemma plays a key role in the proof of Theorem 3.2.
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Lemma 3.1 Let E;\];j be given by Eq. (3.5). Then foralll, e N, £ e R, A € (é+ and
w e LZ(R’ UC{):

1
LZ |)\|2 4 M2
\(ﬁ,ﬁ;,»ow)(s)\s(“— exp § S+ M1 218 IV 2,

T

X Bi(s1; A -+ B2(T3 [A]) - By, (s1y5 |AD) (3-8)

for some o > 0.

Proof Using Eq. (3.3)—(3.5), we have that forall/ e N, £ e Rand A € @+

|y o ®©)

1/2 1/2 1/2
<L> X+ X # X+ X ;
27 b(sy) 27 (b(r) - b(Sj)) 2 (b(T) — b(Szl))

X f O(s1,ur) - [0, ue)]? -0y, ) ) (1)
RI1+2

1 2
X exp {—m («/X(ul —£&) —a(s|)> — ..

1
2(b(r) — b(s))
o

2(b(T) — b(si,))

LiaA\'"? LenlA\'? Lralrl\'"?
< X oo X X +oe X
- 2 2 2

X/ |9(Sl,141)|~~-‘[9(T,Mr)]l2 |0t un) | | 41|
RI+2

2
(Vi —up) = (a() = a6s)) =+

2
(ﬁ(um.l —up) — (a(T) — a(sll))> } duy -+ -dug -+ -dug 41

x exp{Mlnw/zuun +1E1) + Man A2 (uo| + Jur]) + -+ -
+ Mo M2 (e + Juj]) + - -

M7l MY (g 1] + Jug, |>}du1 coodug - dug 4

Lo (Lol 2
gexp{Ml,,lAIZISI}(ﬁ) /R|¢(u1,+1)|CXP{MTn|)»|1/2|Mll+1|}dull+1
Lt "2
><< : |> /|e(s1,u1>|exp{szMP/ziull}dul
2w R

Len|2[\'? ; 12
= / 1[0z, 1)1 exp{2Men A2 e [}du
2 R
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Ly, 1A\ U
X\ ——— 16/ Csty s w1y | exp{2My , 177 |y, [}du,
2 R !

1
L7, 1A\ 7 1/2 M7, 1
< (L) o P+ X
X Bi(sis M) -+ BE(T3 [A]) -+ By, (513 IAD),

which completes the proof of Lemma 3.1. O

In our next theorem, we establish the existence of the analytic operator-valued
function space integral for the functional F given by (3.1) with f(z) = z".

Theorem 3.2 Let 6 be a Borel measurable functionon [0, T] xR. Forn =1,2, ...,
let

T n
Fp(x) = </0 9(S,X(S))dn(S)> . (3.9)

Let 1) be given by (3.2). Then forall .. € C andy € L*(R, vy), the analytic operator-
valued function space integral of Fy, 12" (Fy), exists and is given by the formula

12
ISIGEEY ’”" Z i o )(S)d]_[ﬁ(s;) (3.10)

l+lh=n A[1 7(T)
L #0

where B(so) =0, s;,+1 =T and Ao, ;(T) is an empty set.

Proof Using Eq. (3.1) with f(z) = 7", (3.3), (3.4) and the Fubini theorem, we first
obtain that for all A > 0

(L(F)) (€) = / F(72x+6) v (37120 +6) du)
Cq,p[0,T]

T n
- / (/ 0 (s, 2125 (s) + g) dn(s)> v (A_l/zx(T) + s) dpe(x)
Cy,p[0,T] 0

T n
=/ (/ 0 (s,rl/2x(s)+g) dB(s) +w-0 (r,k_l/zx(r)+§>)
Capl0,71 \ Jo

X (rl/2x(r> + s) du(x)

_/ 3 " (/Te(s A—I/Zx(S)-f—é)dﬂ(s))ll
- Cal0.T1, I\ Jo ’

1+h=n
h#0

x (a) " (r, WV 2x(0) + 5))12 v (rl/zx(T) n s) dp(x)

1012
- i 2/ [/ 0 (sl,r‘/zx(sl) +g) x
! Ay (T) LICap[0.T]

ll+lz n
1 #0

0 (5.7 2x(5)) +£) [o (7.7 2y +£)]
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x 0 (sj41.27 () +£) x

x ( e X(sz)+€)w(/\_l/zx(T)+é)du(x)]dﬁ(s1)~-~d/3(sz1)

_ ""”lz Z /

Lhiov) (é)d]_[ﬁ(sn

l]+[2—n ll J(T)
[ #0

Next we will show that the existence of analytic operator-valued function space integral
I} (F,) exists. Using Eq. (3.8), we obtain that forall 1 € C,

102
= Z/ |('C11 3 J OI//)(§)|dH|,B|(S])

ll+lz n ! =1

[#0
1
L3 [A*\# M2 |A|
— Tn 1/2 Tn
= =2 e M, |A —_—
( - ) xp{ w22+ =2 }nwan(R,Va)
n'a)l2 d ;
> Z[ Bi(s1: ) x -+ x BE(es [A) x - -
l1+lh=n ! Apy; (1)
[ #0

X By, (s1y3 [ADAIBI(s1) - - - dI B[ (1)

1
L2 |)»|2 1 M?> [A|
- (Tn—a) exp {M1n|x|”2|5| + T—"}Ilwllm,m

2a
1 T I I
xn!lJ; W(/o B(s; Ikl)dlﬁl(S)> (wB(z; |A]) ]
'1&5”

:(Tn—a> exp{M1n|)»|1/2|§|+ o }“‘//”Lz(Rva)

n

T
« (/0 B(s; [MDdIBI(s) + wB(; |A|>>

1

L3 |A*\# M2 |A|

= (L2 ) exp { M A28+~ Il 2y
Ta 20

T n
X (/ B(s; |)L|)d|n|(s)> < 0. (3.11)
0

Therefore, the analytic operator-valued function space integral /" (F},) exists and is
given by Eq. (3.10).

Now we will show that 73" (F,) is an element of L(L*(R, vg), L*>(R, v_y)). Using
Egs. (3.10) and (3.11), it follows that
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|5 E 0 ey = [ 102 ED) ©F dv-aie)

1/2
L2 |)\.|2 T 2n M2 |)\'|
=<T" ||1/f||iz(m)( f B(s: |x|>d|n|<s)> exp § ——
T e 0 o

x/Rexp{MlnMH/ﬂa}dv_a@)

4L2 |)\|2 1/2 T 2n |k| M2n+M2n
§<272> W1 (/0 B(s; I?»I)dlnl(S)> exp | 1 (M M7,) |

o
(3.12)
Hence, we obtain that for all 1 € C,

1
2 2\ 4 T n ) 2
”Ifn(F”)”f(%) (/0 B(s: |A|>d|n|<s)> exp{w}.

o

Thus, the theorem is proved. O

Let f(z) = Z;’lil B,7" be an analytic function on C such that

D 1B (A < 00 (3.13)

n=1

forall A € @+, where

4L2 a2 % T n Al (M2 +M2
\Il,lf(|)»|)z(2+||) (/0 B (s: m)dw(s)) exp{w}

o
(3.14)
for all positive integers n and k. Let

T
Fx)=f </O 9(s7x(S))dn(S)> (3.15)

forx € C, 5[0, T].
Our aim in this section is to establish the existence of the analytic operator-valued
function space integral for the functionals F' given by (3.15).

Theorem 3.3 Let F be given by Eq. (3.15). Then for all » € C, and ¢ € L*>(R, vy),
the analytic operator-valued function space integral of F, I3"(F), exists and is given
by the formula

Y)Y =) B (F)y

n=1
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where I}"(Fy,) is given by Eq. (3.10). Furthermore, I}"(F) is an element of
LL*R, va), L*(R, v_g)).

Proof Since F(x) = Z;’lil BnFn(x), using (3.11) and (3.12) we have

ENF)y = Bul™(F)¥

n=1

and

o
I I)?n(F)WHLZ(R,Lu) = Z B W (ADIV 28

n=1

where \Il,}(|)»|) is given by Eq. (3.14) with k = 1. Next using the condition (3.13),
the analytic operator-valued function space integral /" (F) exists and ;" (F) is an
element of L(L2(R, vg), LZ(R, v_y)). o

4 An Analytic Operator-Valued Generalized Feynman Integral

In Sect. 3, we established the existence of the analytic operator-valued function space
integral for the functionals F given by Eq. (3.15). In this section, we establish the exis-
tence of the analytic operator-valued generalized Feynman integral for the functionals
F. To do this, in Theorem 4.1, we first obtain the analytic operator-valued generalized
Feynman integral for the functionals F;, given by (3.9).

Theorem 4.1 Let F,, be given by Eq. (3.9). Then for all g € R\{0}, the analytic
operator-valued generalized Feynman integral of Fy, J;“(Fn), exists and is given by
the formula

102
G EE = Y B Zf o )(S)d]_[ﬂ(w) @

Li+h=n Ay J(T)
[ #0

where B(so) =0, 5,11 =T and Ao, j(T) is an empty set.
Proof In order to establish Eq. (4.1), it suffices to show that
. 2
tim [ |(2E0) @0 = (500 ) [ dv-ate) =
A—>—iq JR

But, for all A € C,., we have

[ E0) ) = (5 E0) | = 21 cE0) o+ 2| (220 o)
(4.2)
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Using a similar method as those used in (3.12), we also see that |(I§“’(Fn))(1/f)|2 and
|(J§“’(Fn))(1//)|2 are in L' (R, v_g). Hence, the second expression in Eq. (4.2) is in

L! (R, v—_y). Thus, using the dominated convergence theorem, we obtain the desired
result. O

The next theorem is one of the main results in this paper.

Theorem 4.2 Let F be given by Eq. (3.15). Then for all g € R\{0}, the analytic
operator-valued generalized Feynman integral of F, J;‘“(F ), exists and is given by
the formula

TNFYY = B3 (F) Y (4.3)

n=1
where J;“(F,,) is given by Eq. (4.1). Furthermore, ann(F) is an element of
LIL*(R, v), LA(R, v—g)).

Proof Using (3.11) and (3.12) with A replaced with —ig, we obtain
o
T =Y B3 (Fa)y
n=1

and

where \11,1 (| —iq]) is given by Eq. (3.14) with k = 1. Next using the condition (3.13),
we conclude that the analytic operator-valued generalized Feynman integral J ;“(F )
exists and an"(F) is an element of £L(L2(R, vg), LZ(R, v_g)). O

JEF)Y

L2(R,v_g)

o
< D 1Bl (=i 1Vl 2w,
n=1

The next two lemmas play key roles in the proof of Theorem 4.5.

Lemma 4.3 Foreachk = 1,2, ... let F,fk) be given by (3.9) with 0 replaced with o,
Then for all g € R\{0}, the analytic operator-valued generalized Feynman integral
of F,fk), J;“(F,gk) ), exists and is given by the formula

15}
() = 3 e Z [ (1, 0v) (é)d]_[ﬂ(sz)

ll-‘rlz n ! ll (1)
1r#0

where El_lf?;k is given by the right-hand side of Eq. (3.5) with 6 replaced by 6",
Furthermore, we have

o (F(k)> v = i Bl (F,f“) v (4.4)

n=1

@ Springer



532 S. J. Chang et al.

where F® Cap[0, T1 — Cis given by

T
FO@) = ¢ ( / 0@ (s, x(s))dn(s)) (4.5)
0

foreachk =1,2,....
Proof The proof is straightforward by replacing 6 with 6 in Theorem 4.1. O

Lemma 4.4 Let F,Ek) be as in Lemma 4.3. Then for all g € R\{0} and ¥ € L*(R, vy),

|

Proof To establish Eq. (4.6) it will suffice to show that

T EYY = I F)Y

2R — 0 as k— oo. 4.6)
Vo

lim /R)(J;H(F,Sk))lff> © — (JanEov) (E)’zdu_a(é) =0

k— 00

for all y € L2(R, vy). But using similar methods as those used in (3.11), it follows
that for each n € N,

(e ) @ — (s cmow) @
<a|(zmrtw) @ +2|(sm ) @f

1/2
LZ 6]2 M2
<2 (T—) 19122 ., €XP {2M1n\/|Q||E| +—L2q)

o o

T
y (/O B®(s; | iql)dlnl(S)>

12
L2 q2 M2
+2 (;—a) V132, ) SXP <2M1n\/|q||5| + —Tq]

2n

o
2n

T
X </O B(s; | — iql)dlnI(S)> 4.7

where B®) is given by Eq. (3.7) with 6 replaced with 8. Also, the last expression of
(4.7)isin L%(R, v_g) and it dominates the sequence of functions |(ann(Fn(k))1p)(§ ) —

(J;“(Fn)t/f)(é)|2. Hence using the dominated convergence theorem, we obtain the
desired result. Furthermore, using similar methods as those used in (3.12) we have

INERYY < Wi = igD IV 2, “8)

LXR,v—q)
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and

7y |

1 .
I W, (I —igDIY 2w v,

where lI!,’f(| —iq|) is given by Eq. (3.14). O

We are now ready to establish our main result, namely the stability theorem for the
analytic operator-valued generalized Feynman integral.

Theorem 4.5 Let (0%} be a sequence of complex-valued functions such that
O(k)(s,u) — 6(s,u), as k — 00, for n x mp-a.e. (s,u). Fork = 1,2,..., let
the functional F® on Cu.p10, T] be given by Eq. (4.5). Then for all g € R\{0} and
¥ € LR, v),

H T (F®yy — J;n(F)I//‘ 50 as k— oo

L2(R,v_y)
where J;“(F(k)) is given by Eq. (4.4).

Proof Using Egs. (4.3), (4.4) and (4.6) we have that
€3] -
i (k) SRR (k)
klggo I EDY = kll)ngozzlﬁnJ;“ (F” ) 4
n=
D =
o ; (k)
N Zklggoﬂnj‘;n (F” ) 4
n=1
()
= > B F)Y

n=1

TN (B

1)

isin L2(R, v_g). Step (I) follows from Lemma 4.3. From Egs. (3.13) and (4.8), we
have

> BN E W

n=1

L2R,v—q)

It |7y |

L2(R,v_q)

Mg i %8

1B (| = igDIIV I 2@y, < 0©.
1

3
Il

Also, by using Egs. (4.6) and (4.8), we can show that J;“(F,fk))w — J;“(Fn)w in
L?(R,v_,) as k — oo, and hence, ann(Fn)I// exists. Hence, Step (II) now follows.
From Lemma 4.4, we obtain Step (IIT). Step (IV) then follows from Theorem 4.2. O
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