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Abstract In this paper, we use a generalized Brownian motion process to define an
analytic operator-valued Feynman integral. We then establish the existence of the
analytic operator-valued generalized Feynman integral. We next investigate a stability
theorem for the analytic operator-valued generalized Feynman integral.

Keywords Analytic operator-valued function space integral · Analytic operator-
valued generalized Feynman integral · Stability theorem

Mathematics Subject Classification Primary 60J25 · 28C20

1 Introduction

Cameron and Storvick [1] introduced an analytic operator-valued function space
integral and showed that the integral satisfied an integral equation related to the
Schrödinger equation. The existence of this integral was established as an operator
from L2(R) to L2(R). Since then, Johnson and Lapidus [8] established the existence
of the operator-valued function space integral as a bounded linear operator on L2(R
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for certain functionals which only define finite Borel measures on the compact inter-
val [0, T ] in R. These integrals are based on the Wiener integral associated with the
Wiener process.

On the other hand, Johnson [7] studied a bounded convergence theorem (stability
theorem) for the operator-valued Feynman integral of functionals of the form F(x) =
exp{∫ T

0 θ(x(s))ds}. Chang et al. [2] established a stability theorems for the operator-
valued Feynman integral of certain functionals involving some Borel measures on an
interval (0, T ) as a bounded linear operator from L1(R) to C0(R). Moreover, Chang
and Lee [5] studied an analytic operator-valued generalized Feynman integral. The
integral investigated in [5] is based on the function space integral associated with a
generalized Brownian motion process.

The function space Ca,b[0, T ] induced by a generalized Brownian motion was
introduced by Yeh in [10] and was studied extensively in [3,4,6]. In this paper, we
define an analytic operator-valued generalized Feynman integral on the function space
Ca,b[0, T ]. We then establish the existence of the analytic operator-valued generalized
Feynman integral and investigate a stability theorem for the analytic operator-valued
generalized Feynman integral.

2 Definitions and Preliminaries

Let D = [0, T ] and let (�,B, P) be a probability measure space. A real-valued
stochastic process Y on (�,B, P) and D is called a generalized Brownian motion
process if Y (0, ω) = 0 almost everywhere and for 0 = t0 < t1 < · · · < tn ≤ T , the
n-dimensional random vector (Y (t1, ω), . . . , Y (tn, ω)) is normally distributed with
density function

K (�t, �η) =
⎛

⎝(2π)n
n∏

j=1

(
b(t j ) − b(t j−1)

)
⎞

⎠

−1/2

× exp

⎧
⎨

⎩
−1

2

n∑

j=1

((
η j − a(t j )

) − (
η j−1 − a(t j−1)

))2

b(t j ) − b(t j−1)

⎫
⎬

⎭

where �η = (η1, . . . , ηn), η0 = 0, �t = (t1, . . . , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a strictly
increasing, continuously differentiable real-valued functionwith b(0) = 0 and b′(t) >

0 for each t ∈ [0, T ].
As explained in [11, pp. 18–20], Y induces a probability measure μ on the measur-

able space (RD,BD) where RD is the space of all real-valued functions x(t), t ∈ D,
and BD is the smallest σ -algebra of subsets of RD with respect to which all the
coordinate evaluation maps et (x) = x(t) defined on R

D are measurable. The triple
(RD,BD, μ) is a probability measure space. This measure space is called the function
space induced by the generalized Brownian motion process Y determined by a(·) and
b(·).
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We note that the generalized Brownian motion process Y determined by a(·)
and b(·) is a Gaussian process with mean function a(t) and covariance function
r(s, t) = min{b(s), b(t)}. By [11, Theorem 14.2], the probability measure μ induced
by Y , taking a separable version, is supported by Ca,b[0, T ] (which is equivalent
to the Banach space of continuous functions x on [0, T ] with x(0) = 0 under the
sup norm). Hence, (Ca,b[0, T ],B(Ca,b[0, T ]), μ) is the function space induced by
Y where B(Ca,b[0, T ]) is the Borel σ -algebra of Ca,b[0, T ]. We then complete this
function space to obtain (Ca,b[0, T ],W(Ca,b[0, T ]), μ) where W(Ca,b[0, T ]) is the
set of all μ-Carathéodory measurable subsets of Ca,b[0, T ].

We note that the coordinate process defined by et (x) = x(t) on Ca,b[0, T ]× [0, T ]
is also the generalized Brownian motion process determined by a(t) and b(t). For
more detailed studies about this function space Ca,b[0, T ], see [3,6,10].

Next, we state the definition of the analytic operator-valued generalized Feynman
integral.

Definition 2.1 Let C be the set of complex numbers, let C+ = {λ ∈ C:Re(λ) > 0}
and let C̃+ = {λ ∈ C:Re(λ) ≥ 0, λ �= 0}. Also, let C[0, T ] denote the space of
real-valued continuous functions x on [0, T ], and given a real number α, let να be the
measure on B(R) such that dνα = exp{αη2}dη. Next let F be a C-valued functional
on C[0, T ]. For each λ > 0, ψ ∈ L2(R, να) and ξ ∈ R, assume that the functional
F(λ−1/2x + ξ)ψ(λ−1/2x(T )+ ξ) is μ-integrable with respect to x on Ca,b[0, T ], and
let

(Iλ(F)ψ) (ξ) =
∫

Ca,b[0,T ]
F

(
λ−1/2x + ξ

)
ψ

(
λ−1/2x(T ) + ξ

)
dμ(x).

If Iλ(F)ψ is in L2(R, ν−α) as a function of ξ and if the correspondenceψ → Iλ(F)ψ

gives an element of L ≡ L(L2(R, να), L2(R, ν−α)), the space of continuous linear
operators from L2(R, να) to L2(R, ν−α), we say that the operator-valued function
space integral Iλ(F) exists. Next, suppose that there exists an L-valued function
which is analytic in C+ and agrees with Iλ(F) on (0,∞), then this L-valued func-
tion is denoted by I anλ (F) and is called the analytic operator-valued function space
integral of F associated with λ. Finally, suppose that there exists an operator J anq in
L(L2(R, να), L2(R, ν−α)) for some α > 0 such that

∥
∥
∥I anλ (F)ψ − J anq (F)ψ

∥
∥
∥
L2(R,ν−α)

→ 0

as λ → −iq through C+, then J anq (F) is called the analytic operator-valued general-
ized Feynman integral of F with parameter q.

3 An Analytic Operator-Valued Function Space Integral

Throughout the rest of this paper, we consider functionals of the form

F(x) = f

(∫ T

0
θ(s, x(s))dη(s)

)

, (3.1)
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where f is an analytic function on C and θ is an appropriate C-valued function on
[0, T ]×R. F(x) is a very important functional in quantummechanics. We then estab-
lish the existence of the analytic operator-valued function space integral for functionals
F of the form (3.1).

Let M(0, T ) denote the space of complex Borel measures η on the open interval
(0, T ). Then η ∈ M(0, T ) has a unique decomposition η = β+βd into its continuous
part β and its discrete part βd [9]. Let δτ denote the Dirac measure at τ ∈ (0, T ). For
convenience, we let

η = β + ωδτ , ω ∈ C. (3.2)

Throughout the rest of this paper, we use the following notations:
(1) For λ ∈ C̃+ and ψ ∈ L2(R, να), let

(
C(λ,K ,L)ψ

)
(ξ) ≡

(
λ

2πK

)1/2 ∫

R

ψ(u) exp

{

− 1

2K

(√
λ(u − ξ) − L

)2}

du (3.3)

where K and L are real numbers with K > 0. Then C(λ,K ,L) is in L(L2(R, να),

L2(R, ν−α)).
(2) For each s ∈ (0, T ), let θ(s) denote the operator of multiplication from

L2(R, ν−α) to L2(R, να) given by

(θ(s)ψ) (ξ) = θ(s, ξ)ψ(ξ), ξ ∈ R. (3.4)

(3) Given a positive integer l1, let

�l1; j (T ) ≡ {(
s1, . . . , sl1

) |0 < s1 < · · · < s j < τ < s j+1 < · · · < sl1 < T
}

and let

�l1(T ) ≡ {(
s1, . . . , sl1

) |0 < s1 < · · · < sl1 < T
}
.

Also, for (s1, . . . , sl1) ∈ �l1; j (T ) and a positive integer l2, let

Lλ
l1; j ≡ C(λ,b(s1),a(s1)) ◦ θ(s1) ◦ · · · ◦ θ(s j ) ◦ C(λ,b(τ )−b(s j ),a(τ )−a(s j )) ◦ [θ(τ )]l2

◦ C(λ,b(s j+1)−b(τ ),a(s j+1)−a(τ )) ◦ θ(s j+1) ◦ · · · ◦ θ(sl1−1)

◦ C(
λ,b(sl1 )−b(sl1−1),a(sl1 )−a(sl1−1)

) ◦ θ(sl1) ◦ C(
λ,b(T )−b(sl1 ),a(T )−a(sl1 )

).

(3.5)
Finally, for (s1, . . . , sl1) ∈ �l1(T ), let

Lλ
l1 ≡ C(λ,b(s1),a(s1)) ◦ θ(s1) ◦ · · · ◦ θ(sl1) ◦ C(

λ,b(T )−b(sl1 ),a(T )−a(sl1 )
). (3.6)

For example, we see that for s1 ∈ �1;1(T ) = {s1|0 < s1 < τ < T },

Lλ
1;1 =C(λ,b(s1),a(s1)) ◦ θ(s1) ◦ C(λ,b(τ )−b(s1),a(τ )−a(s1)) ◦ [θ(τ )]l2

◦ C(λ,b(T )−b(τ ),a(T )−a(τ ))
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and for (s1, s2) ∈ �2(T ),

Lλ
2 =C(λ,b(s1),a(s1)) ◦ θ(s1) ◦ C(λ,b(s2)−b(s1),a(s2)−a(s1))

◦ θ(s2) ◦ C(λ,b(T )−b(s2),a(T )−a(s2)).

Hence using Eqs. (3.3)–(3.6), we observe that for ψ ∈ L2(R, να),

(
Lλ
1;1 ◦ ψ

)
(ξ) =

⎛

⎝
3∏

j=1

λ

2π(b(s j ) − b(s j−1))

⎞

⎠

1/2 ∫

R3
θ(s1, u1) [θ(τ, u2)]

l2 ψ(u3)

× exp

⎧
⎪⎨

⎪⎩
−

3∑

j=1

[(√
λu j − a(s j )

)
−

(√
λu j−1 − a(s j−1)

)]2

2
(
b(s j ) − b(s j−1)

)

⎫
⎪⎬

⎪⎭
du1du2du3,

and

(Lλ
2 ◦ ψ

)
(ξ) =

⎛

⎝
3∏

j=1

λ

2π
(
b(s j ) − b(s j−1)

)

⎞

⎠

1/2 ∫

R3

2∏

j=1

θ(s j , u j )ψ(u3)

× exp

⎧
⎪⎨

⎪⎩
−

3∑

j=1

[(√
λu j − a(s j )

)
−

(√
λu j−1 − a(s j−1)

)]2

2
(
b(s j ) − b(s j−1)

)

⎫
⎪⎬

⎪⎭
du1du2du3

where s0 = 0, a(s0) = 0, u0 = ξ , s2 = τ and s3 = T .
Also we will use the following conventions: for all positive integer l and λ ∈ C̃+,

let

Bl
j

(
s j ; |λ|) ≡

(
Mj |λ|
2π

)1/2 ∫

R

∣
∣
∣
[
θ(s j , u j )

]l
∣
∣
∣ exp

{
Mj |λ|1/2 ∣

∣u j
∣
∣
}
du j (3.7)

for someMj > 0, j = 1, . . . , l1. Furthermore, in order to ensure that analytic operator-
valued generalized Feynman integral exists, we will assume that Bl

j (s j ; |λ|), a(·) and
b(·) satisfy the following conditions: for j = 1, . . . , l1 and sl1+1 = T ,

(1)
∫ T
0 Bl

j

(
s j ; |λ|) d|η|(s) < ∞

(2) 1
b(s j )−b(s j−1)

≤ L jn

(3)
∣
∣
∣a′(s∗

j )

∣
∣
∣ ≤

∣
∣
∣b′(s∗

j )

∣
∣
∣ Mjn

for s∗
j ∈ (s j−1, s j ) and some positive real numbers L jn and Mjn .

The next lemma plays a key role in the proof of Theorem 3.2.
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Lemma 3.1 Let Lλ
l1; j be given by Eq. (3.5). Then for all l2 ∈ N, ξ ∈ R, λ ∈ C̃+ and

ψ ∈ L2(R, να),

∣
∣
∣
(
Lλ
l1; j ◦ ψ

)
(ξ)

∣
∣
∣ ≤

(
L2
Tn|λ|2
πα

) 1
4

exp

{
M2

Tn

2α
|λ| + M1n|λ|1/2|ξ |

}

‖ψ‖L2(R,να)

×B1(s1; |λ|) · · · Bl2
τ (τ ; |λ|) · · · Bsl1

(sl1; |λ|) (3.8)

for some α > 0.

Proof Using Eq. (3.3)–(3.5), we have that for all l ∈ N, ξ ∈ R and λ ∈ C̃+
∣
∣
∣(Lλ

l1; j ◦ ψ)(ξ)

∣
∣
∣

=
∣
∣
∣
∣
∣
∣

(
λ

2πb(s1)

)1/2

× · · · ×
(

λ

2π
(
b(τ ) − b(s j )

)

)1/2

× · · · ×
(

λ

2π
(
b(T ) − b(sl1)

)

)1/2

×
∫

R
l1+2

θ(s1, u1) · · · [θ(τ, uτ )]
l2 · · · θ(sl1 , ul1)ψ(ul1+1)

× exp

{

− 1

b(s1)

(√
λ(u1 − ξ) − a(s1)

)2 − · · ·

− 1

2
(
b(τ ) − b(s j )

)
(√

λ(uτ − u j ) − (
a(τ ) − a(s j )

))2 − · · ·

− 1

2
(
b(T ) − b(sl1)

)
(√

λ(ul1+1 − ul1) − (
a(T ) − a(sl1)

))2
}

du1 · · · duτ · · · dul1+1

∣
∣
∣
∣
∣

≤
(
L1n |λ|
2π

)1/2

× · · · ×
(
Lτn |λ|
2π

)1/2

× · · · ×
(
LTn |λ|
2π

)1/2

×
∫

R
l1+2

|θ(s1, u1)| · · ·
∣
∣
∣[θ(τ, uτ )]

l2
∣
∣
∣ · · · ∣∣θ(sl1 , ul1)

∣
∣
∣
∣ψ(ul1+1)

∣
∣

× exp

{

M1n |λ|1/2(|u1| + |ξ |) + M2n |λ|1/2(|u2| + |u1|) + · · ·
+ Mτn |λ|1/2(|uτ | + |u j |) + · · ·
+MTn |λ|1/2(|ul1+1| + |ul1 |)

}

du1 · · · duτ · · · dul1+1

≤ exp{M1n |λ| 12 |ξ |}
(
LTn |λ|
2π

)1/2 ∫

R

|ψ(ul1+1)| exp{MTn |λ|1/2|ul1+1|}dul1+1

×
(
L1n |λ|
2π

)1/2 ∫

R

|θ(s1, u1)| exp{2M1n |λ|1/2|u1|}du1
...

×
(
Lτn |λ|
2π

)1/2 ∫

R

|[θ(τ, uτ )]l2 | exp{2Mτn |λ|1/2|uτ |}duτ

...
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×
( Lsl1n

|λ|
2π

)1/2 ∫

R

|θ(sl1 , ul1)| exp{2Msl1n
|λ|1/2|ul1 |}dul1

≤
(
L2
Tn |λ|2
πα

) 1
4

exp

{

M1n |λ|1/2|ξ | + M2
Tn |λ|
2α

}

‖ψ‖L2(R,να)

× B1(s1; |λ|) · · · Bl2
τ (τ ; |λ|) · · · Bsl1

(sl1 ; |λ|),

which completes the proof of Lemma 3.1. ��
In our next theorem, we establish the existence of the analytic operator-valued

function space integral for the functional F given by (3.1) with f (z) = zn .

Theorem 3.2 Let θ be a Borel measurable function on [0, T ]×R. For n = 1, 2, . . .,
let

Fn(x) =
(∫ T

0
θ(s, x(s))dη(s)

)n

. (3.9)

Let η be given by (3.2). Then for all λ ∈ C+ andψ ∈ L2(R, να), the analytic operator-
valued function space integral of Fn, I anλ (Fn), exists and is given by the formula

(
I anλ (Fn)ψ

)
(ξ) =

∑

l1+l2=n
l2 �=0

n!ωl2

l2!
l1∑

j=0

∫

�l1; j (T )

(
Lλ
l1; j ◦ ψ

)
(ξ)d

l1∏

l=1

β(sl) (3.10)

where β(s0) = 0, sl1+1 = T and �0; j (T ) is an empty set.

Proof Using Eq. (3.1) with f (z) = zn , (3.3), (3.4) and the Fubini theorem, we first
obtain that for all λ > 0

(Iλ(F)ψ) (ξ) =
∫

Ca,b[0,T ]
F

(
λ−1/2x + ξ

)
ψ

(
λ−1/2x(T ) + ξ

)
dμ(x)

=
∫

Ca,b[0,T ]

(∫ T

0
θ
(
s, λ−1/2x(s) + ξ

)
dη(s)

)n
ψ

(
λ−1/2x(T ) + ξ

)
dμ(x)

=
∫

Ca,b[0,T ]

(∫ T

0
θ
(
s, λ−1/2x(s) + ξ

)
dβ(s) + ω · θ

(
τ, λ−1/2x(τ )+ξ

))n

× ψ
(
λ−1/2x(T ) + ξ

)
dμ(x)

=
∫

Ca,b[0,T ]
∑

l1+l2=n
l2 �=0

n!
l1!l2!

(∫ T

0
θ
(
s, λ−1/2x(s) + ξ

)
dβ(s)

)l1

×
(
ω · θ

(
τ, λ−1/2x(τ ) + ξ

))l2
ψ

(
λ−1/2x(T ) + ξ

)
dμ(x)

=
∑

l1+l2=n
l2 �=0

n!ωl2

l2!
l1∑

j=0

∫

�l1; j (T )

[ ∫

Ca,b[0,T ]
θ
(
s1, λ

−1/2x(s1) + ξ
)

× · · ·

× θ
(
s j , λ

−1/2x(s j ) + ξ
) [

θ
(
τ, λ−1/2x(τ ) + ξ

)]l2
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× θ
(
s j+1, λ

−1/2x(s j+1) + ξ
)

× · · ·
× θ

(
sl1 , λ

−1/2x(sl1) + ξ
)

ψ
(
λ−1/2x(T ) + ξ

)
dμ(x)

]
dβ(s1) · · · dβ(sl1)

=
∑

l1+l2=n
l2 �=0

n!ωl2

l2!
l1∑

j=0

∫

�l1; j (T )

(
Lλ
l1; j ◦ ψ

)
(ξ)d

l1∏

l=1

β(sl ).

Nextwewill show that the existence of analytic operator-valued function space integral
I anλ (Fn) exists. Using Eq. (3.8), we obtain that for all λ ∈ C+

∑

l1+l2=n
l2 �=0

n!ωl2

l2!
l1∑

j=0

∫

�l1; j (T )

|(Lλ
l1; j ◦ ψ)(ξ)|d

l1∏

l=1

|β|(sl)

=
(
L2
Tn|λ|2
πα

) 1
4

exp

{

M1n|λ|1/2|ξ | + M2
Tn|λ|
2α

}

‖ψ‖L2(R,να)

×
∑

l1+l2=n
l2 �=0

n!ωl2

l2!
l1∑

j=0

∫

�l1; j (T )

B1(s1; |λ|) × · · · × Bl2
τ (τ ; |λ|) × · · ·

× Bsl1
(sl1; |λ|)d|β|(s1) · · · d|β|(sl1)

=
(
L2
Tn|λ|2
πα

) 1
4

exp

{

M1n|λ|1/2|ξ | + M2
Tn|λ|
2α

}

‖ψ‖L2(R,να)

× n!
∑

l1+l2=n
l2 �=0

1

l1!l2!
(∫ T

0
B(s; |λ|)d|β|(s)

)l1
(ωB(τ ; |λ|))l2

]

=
(
L2
Tn|λ|2
πα

) 1
4

exp

{

M1n|λ|1/2|ξ | + M2
Tn|λ|
2α

}

‖ψ‖L2(R,να)

×
(∫ T

0
B(s; |λ|)d|β|(s) + ωB(τ ; |λ|)

)n

=
(
L2
Tn|λ|2
πα

) 1
4

exp

{

M1n|λ|1/2|ξ | + M2
Tn|λ|
2α

}

‖ψ‖L2(R,να)

×
(∫ T

0
B(s; |λ|)d|η|(s)

)n

< ∞. (3.11)

Therefore, the analytic operator-valued function space integral I anλ (Fn) exists and is
given by Eq. (3.10).

Now we will show that I anλ (Fn) is an element of L(L2(R, να), L2(R, ν−α)). Using
Eqs. (3.10) and (3.11), it follows that
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∥
∥I anλ (Fn)ψ

∥
∥2
L2(R,ν−α)

=
∫

R

∣
∣(I anλ (Fn)ψ

)
(ξ)

∣
∣2 dν−α(ξ)

=
(
L2
Tn |λ|2
πα

)1/2

‖ψ‖2L2(R,να)

(∫ T

0
B(s; |λ|)d|η|(s)

)2n

exp

{
M2

Tn |λ|
α

}

×
∫

R

exp
{
M1n |λ|1/2|ξ |} dν−α(ξ)

≤
(
4L2

Tn |λ|2
α2

)1/2

‖ψ‖2L2(R,να)

(∫ T

0
B(s; |λ|)d|η|(s)

)2n

exp

{
|λ| (M2

1n + M2
Tn

)

α

}

.

(3.12)

Hence, we obtain that for all λ ∈ C+,

∥
∥I anλ (Fn)

∥
∥ ≤

(
4L2

Tn|λ|2
α2

) 1
4 (∫ T

0
B(s; |λ|)d|η|(s)

)n

exp

{
|λ|(M2

1n + M2
Tn)

α

}

.

Thus, the theorem is proved. ��
Let f (z) = ∑∞

n=1 βnzn be an analytic function on C such that

∞∑

n=1

|βn|�k
n (|λ|) < ∞ (3.13)

for all λ ∈ C̃+, where

�k
n (|λ|) ≡

(
4L2

Tn|λ|2
α2

) 1
4 (∫ T

0
Bk(s; |λ|)d|η|(s)

)n

exp

{ |λ| (M2
1n + M2

Tn

)

α

}

(3.14)
for all positive integers n and k. Let

F(x) = f

(∫ T

0
θ(s, x(s))dη(s)

)

(3.15)

for x ∈ Ca,b[0, T ].
Our aim in this section is to establish the existence of the analytic operator-valued

function space integral for the functionals F given by (3.15).

Theorem 3.3 Let F be given by Eq. (3.15). Then for all λ ∈ C+ and ψ ∈ L2(R, να),
the analytic operator-valued function space integral of F, I anλ (F), exists and is given
by the formula

I anλ (F)ψ =
∞∑

n=1

βn I
an
λ (Fn)ψ
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where I anλ (Fn) is given by Eq. (3.10). Furthermore, I anλ (F) is an element of
L(L2(R, να), L2(R, ν−α)).

Proof Since F(x) = ∑∞
n=1 βn Fn(x), using (3.11) and (3.12) we have

I anλ (F)ψ =
∞∑

n=1

βn I
an
λ (Fn)ψ

and

∥
∥I anλ (F)ψ

∥
∥
L2(R,ν−α)

≤
∞∑

n=1

|βn|�1
n (|λ|)‖ψ‖L2(R,να)

where �1
n (|λ|) is given by Eq. (3.14) with k = 1. Next using the condition (3.13),

the analytic operator-valued function space integral I anλ (F) exists and I anλ (F) is an
element of L(L2(R, να), L2(R, ν−α)). ��

4 An Analytic Operator-Valued Generalized Feynman Integral

In Sect. 3, we established the existence of the analytic operator-valued function space
integral for the functionals F given by Eq. (3.15). In this section, we establish the exis-
tence of the analytic operator-valued generalized Feynman integral for the functionals
F . To do this, in Theorem 4.1, we first obtain the analytic operator-valued generalized
Feynman integral for the functionals Fn given by (3.9).

Theorem 4.1 Let Fn be given by Eq. (3.9). Then for all q ∈ R\{0}, the analytic
operator-valued generalized Feynman integral of Fn, J anq (Fn), exists and is given by
the formula

(J anq (Fn)ψ)(ξ) =
∑

l1+l2=n
l2 �=0

n!ωl2

l2!
l1∑

j=0

∫

�l1; j (T )

(
L−iq
l1; j ◦ ψ

)
(ξ)d

l1∏

l=1

β(sl) (4.1)

where β(s0) = 0, sl1+1 = T and �0; j (T ) is an empty set.

Proof In order to establish Eq. (4.1), it suffices to show that

lim
λ→−iq

∫

R

∣
∣
∣
(
I anλ (Fn)

)
(ψ) −

(
J anq (Fn)

)
(ψ)

∣
∣
∣
2
dν−α(ξ) = 0.

But, for all λ ∈ C+, we have

∣
∣
∣
(
I anλ (Fn)

)
(ψ) −

(
J anq (Fn)

)
(ψ)

∣
∣
∣
2 ≤ 2

∣
∣(I anλ (Fn)

)
(ψ)

∣
∣2 + 2

∣
∣
∣
(
J anq (Fn)

)
(ψ)

∣
∣
∣
2
.

(4.2)
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Using a similar method as those used in (3.12), we also see that |(I anλ (Fn))(ψ)|2 and
|(J anq (Fn))(ψ)|2 are in L1(R, ν−α). Hence, the second expression in Eq. (4.2) is in
L1(R, ν−α). Thus, using the dominated convergence theorem, we obtain the desired
result. ��

The next theorem is one of the main results in this paper.

Theorem 4.2 Let F be given by Eq. (3.15). Then for all q ∈ R\{0}, the analytic
operator-valued generalized Feynman integral of F, J anq (F), exists and is given by
the formula

J anq (F)ψ =
∞∑

n=1

βn J
an
q (Fn)ψ (4.3)

where J anq (Fn) is given by Eq. (4.1). Furthermore, J anq (F) is an element of

L(L2(R, να), L2(R, ν−α)).

Proof Using (3.11) and (3.12) with λ replaced with −iq, we obtain

J anq (F)ψ =
∞∑

n=1

βn J
an
q (Fn)ψ

and

∥
∥
∥J anq (F)ψ

∥
∥
∥
L2(R,ν−α)

≤
∞∑

n=1

|βn|�1
n (| − iq|) ‖ψ‖L2(R,να)

where �1
n (| − iq|) is given by Eq. (3.14) with k = 1. Next using the condition (3.13),

we conclude that the analytic operator-valued generalized Feynman integral J anq (F)

exists and J anq (F) is an element of L(L2(R, να), L2(R, ν−α)). ��
The next two lemmas play key roles in the proof of Theorem 4.5.

Lemma 4.3 For each k = 1, 2, . . ., let F (k)
n be given by (3.9)with θ replacedwith θ(k).

Then for all q ∈ R\{0}, the analytic operator-valued generalized Feynman integral
of F (k)

n , J anq (F (k)
n ), exists and is given by the formula

(
J anq (F (k)

n )(ψ)
)

=
∑

l1+l2=n
l2 �=0

n!ωl2

l2!
l1∑

j=0

∫

�l1; j (T )

(
L−iq
l1; j;k ◦ ψ

)
(ξ)d

l1∏

l=1

β(sl)

where L−iq
l1; j;k is given by the right-hand side of Eq. (3.5) with θ replaced by θ(k).

Furthermore, we have

J anq
(
F (k)

)
ψ =

∞∑

n=1

βn J
an
q

(
F (k)
n

)
ψ (4.4)
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where F (k) : Ca,b[0, T ] → C is given by

F (k)(x) = f

(∫ T

0
θ(k)(s, x(s))dη(s)

)

(4.5)

for each k = 1, 2, . . . .

Proof The proof is straightforward by replacing θ with θ(k) in Theorem 4.1. ��

Lemma 4.4 Let F (k)
n be as in Lemma 4.3. Then for all q ∈ R\{0} andψ ∈ L2(R, να),

∥
∥
∥J anq (F (k)

n )ψ − J anq (Fn)ψ
∥
∥
∥
L2(R,ν−α)

→ 0 as k → ∞. (4.6)

Proof To establish Eq. (4.6) it will suffice to show that

lim
k→∞

∫

R

∣
∣
∣
(
J anq (F (k)

n )ψ
)

(ξ) −
(
J anq (Fn)ψ

)
(ξ)

∣
∣
∣
2
dν−α(ξ) = 0

for all ψ ∈ L2(R, να). But using similar methods as those used in (3.11), it follows
that for each n ∈ N,

∣
∣
∣
(
J anq (F (k)

n )ψ
)

(ξ) −
(
J anq (Fn)ψ

)
(ξ)

∣
∣
∣
2

≤ 2
∣
∣
∣
(
J anq (F (k)

n )ψ
)

(ξ)

∣
∣
∣
2 + 2

∣
∣
∣
(
J anq (Fn)ψ

)
(ξ)

∣
∣
∣
2

≤ 2

(
L2
Tnq

2

πα

)1/2

‖ψ‖2L2(R,να)
exp

{

2M1n
√|q||ξ | + M2

Tn

α
|q|

}

×
(∫ T

0
B(k)(s; | − iq|)d|η|(s)

)2n

+ 2

(
L2
Tnq

2

πα

)1/2

‖ψ‖2L2(R,να)
exp

{

2M1n
√|q||ξ | + M2

Tn

α
|q|

}

×
(∫ T

0
B(s; | − iq|)d|η|(s)

)2n

(4.7)

where B(k) is given by Eq. (3.7) with θ replaced with θ(k). Also, the last expression of
(4.7) is in L2(R, ν−α) and it dominates the sequence of functions |(J anq (F (k)

n )ψ)(ξ)−
(J anq (Fn)ψ)(ξ)|2. Hence using the dominated convergence theorem, we obtain the
desired result. Furthermore, using similar methods as those used in (3.12) we have

∥
∥
∥J anq (F (k)

n )ψ

∥
∥
∥
L2(R,ν−α)

≤ �k
n (| − iq|)‖ψ‖L2(R,να) (4.8)
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and ∥
∥
∥J anq (Fn)ψ

∥
∥
∥
L2(R,ν−α)

≤ �1
n (| − iq|)‖ψ‖L2(R,να)

where �k
n (| − iq|) is given by Eq. (3.14). ��

We are now ready to establish our main result, namely the stability theorem for the
analytic operator-valued generalized Feynman integral.

Theorem 4.5 Let {θ(k)} be a sequence of complex-valued functions such that
θ(k)(s, u) → θ(s, u), as k → ∞, for η × mL-a.e. (s, u). For k = 1, 2, . . ., let
the functional F (k) on Ca,b[0, T ] be given by Eq. (4.5). Then for all q ∈ R\{0} and
ψ ∈ L2(R, να),

∥
∥
∥J anq (F (k))ψ − J anq (F)ψ

∥
∥
∥
L2(R,ν−α)

→ 0 as k → ∞

where J anq (F (k)) is given by Eq. (4.4).

Proof Using Eqs. (4.3), (4.4) and (4.6) we have that

lim
k→∞ J anq (F (k))ψ

(I)= lim
k→∞

∞∑

n=1

βn J
an
q

(
F (k)
n

)
ψ

(II)=
∞∑

n=1

lim
k→∞ βn J

an
q

(
F (k)
n

)
ψ

(III)=
∞∑

n=1

βn J
an
q (Fn)ψ

(IV)= J anq (F)ψ

is in L2(R, ν−α). Step (I) follows from Lemma 4.3. From Eqs. (3.13) and (4.8), we
have

∥
∥
∥
∥
∥

∞∑

n=1

βn J
an
q (F (k)

n )ψ

∥
∥
∥
∥
∥
L2(R,ν−α)

≤
∞∑

n=1

|βn|
∥
∥
∥J anq (F (k)

n )ψ

∥
∥
∥
L2(R,ν−α)

≤
∞∑

n=1

|βn|�(k)
n (| − iq|)‖ψ‖L2(R,να) < ∞.

Also, by using Eqs. (4.6) and (4.8), we can show that J anq (F (k)
n )ψ → J anq (Fn)ψ in

L2(R, ν−α) as k → ∞, and hence, J anq (Fn)ψ exists. Hence, Step (II) now follows.
From Lemma 4.4, we obtain Step (III). Step (IV) then follows from Theorem 4.2. ��

123



534 S. J. Chang et al.

Acknowledgements The authors thank the referees for their helpful suggestions which led to the present
version of this paper.

References

1. Cameron, R.H., Storvick, D.A.: An operator valued function space integral and a related integral
equation. J. Math. Mech. 18, 517–552 (1968)

2. Chang, K.S., Ko, J.W., Ryu, K.S.: Stability theorems for the operator-valued Feynman integral: the
L(L1(R),C0(R)) theory. J. Korean Math. Soc. 35, 999–1018 (1998)

3. Chang, S.J., Choi, J.G., Skoug, D.: Integration by parts formulas involving generalized Fourier–
Feynman transforms on function space. Trans. Am. Math. Soc. 355, 2925–2948 (2003)

4. Chang, S.J., Chung, D.M.: Conditional function space integrals with applications. Rocky Mt. J. Math.
26, 37–62 (1996)

5. Chang, S.J., Lee, I.Y.: Analytic operator-valued generalized Feynman integrals on function space. J.
Chungcheong Math. Soc. 23, 37–48 (2010)

6. Chang, S.J., Skoug, D.: Generalized Fourier–Feynman transforms and a first variation on function
space. Integral Transforms Special Funct. 14, 375–393 (2003)

7. Johnson, G.W.: A bounded convergence theorem for the Feynman integral. J. Math. Phys. 25, 1323–
1326 (1984)

8. Johnson,G.W., Lapidus,M.L.:GeneralizedDyson series, generalizedFeynmandiagrams, the Feynman
integral and Feynman’s operational calculus. Mem. Am. Math. Soc. 62, 1–78 (1986)

9. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I, Rev. and enlarged edn. Aca-
demic Press, New York (1980)

10. Yeh, J.: Singularity of Gaussian measures on function spaces induced by Brownian motion processes
with non-stationary increments. Ill. J. Math. 15, 37–46 (1971)

11. Yeh, J.: Stochastic Processes and the Wiener Integral. Marcel Dekker Inc., New York (1973)

123


	An Analytic Operator-Valued Generalized Feynman Integral on Function Space
	Abstract
	1 Introduction
	2 Definitions and Preliminaries
	3 An Analytic Operator-Valued Function Space Integral
	4 An Analytic Operator-Valued Generalized Feynman Integral
	Acknowledgements
	References




