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of families of sets, as examples for many other important points in nonlinear analysis.
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1 Introduction

Numerous fixed point theorems have been developed and used for centuries as the
most useful tool in dealing with the existence of solutions in various fields of science.
Relatively recently, motivated by problems involving functions or sets defined on
product spaces, e.g., in game theory, problems on sets with convex sections, systems
of variational inequalities, etc., several authors (see [1,21]) established fixed point
theorems for a family of mappings defined in product spaces. These points are called
fixed-component points or collectively fixed points. Such results were developed,
e.g., in [1,6,7,9,19,24,28,31,34], with successful applications in existence studies
for optimization-related problems.

For considerations of the existence of fixed points in particular and of many other
important points in nonlinear analysis in general, it was believed for a long period that
one needed both topological and algebraic machineries. Wu [33] and Horvath [12]
started two directions of dealing with existence issues in pure topological settings.
Wu’s approach is based on replacing convexity assumptions by connectedness condi-
tions, and Horvath’s one on replacing a convex hull by an image of a simplex through a
continuous map. Recently, an attempt to unify these two directions in obtaining topo-
logical full (two-way) characterizations of the existence of various important points
like intersection points, maximal elements, coincidence points, sectional points, etc.,
was carried out in [18,20], based on the so-called KKM-structures and connected-
ness structures. Realizing the basic role of fixed points in existence studies, in [19]
we developed a new characterization of the existence of such points in topologically
based settings. An extension to fixed-component points was also included, but only
for a family of finite number of mappings. We cannot employ the same proof tech-
nique to extend this result for infinitely many mappings. It is worth noting that among
the above-encountered references, only [18–20] dealt with necessary and sufficient
conditions for existence, the others included only sufficient ones.

The above discussions inspire us to find another way in this paper to consider
full characterizations of the existence of fixed-component points of general infinite
families of mappings. Namely, based on our KKM-structures and using continuous
partitions of unity and the classical Tikhonov fixed point theorem, in this paper we
extend Theorem 2.5 of [19], which is a necessary and sufficient condition for the
existence of fixed-component points, to the case of an arbitrary family of mappings
defined on product sets. Applications of this result to aforementioned important points
in nonlinear analysis and to optimization-related problems are also included.

The layout of the paper is simple. In the rest of this section, we recall some
needed definitions. Section 2 contains full characterizations of the existence of fixed-
component points together with discussions on imposed assumptions as well as
consequences and relations to previous results in the literature. Section 3 is devoted to
applications, including studies of the existence of some important points in nonlinear
analysis and for solutions of optimization-related problems.

Throughout this paper, for a nonempty set X , 〈X〉 stands for the set of all finite
subsets of X . For N = {x0, x1, . . . , xn} ∈ 〈X〉 and M = {xi0 , xi1 , . . . , xik } ⊂ N ,
�|N | := �n stands for the standard n-simplex of Euclidean space Rn+1 with vertices
being unit vectors e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0),…, en = (0, 0, . . . , 1),
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�M denotes the face of �|N | with vertices ei0 , ei1 ,…, eik . Let H : X ⇒ Y be a
set-valued map between nonempty sets X and Y . For x ∈ X and y ∈ Y , an image and
a fiber (or inverse image) of H is the set H(x) and H−1(y) = {x ∈ X | y ∈ H(x)},
respectively (resp).

Definition 1 ([19,20]) For nonempty sets X and Y , a pairF := (ΦX ,�Y ) is called a
KKM-structure of the pair (X,Y ) if �Y is a topology on Y and ΦX = {ϕN : �|N | →
Y | N ∈ 〈X〉} is a family of maps with all ϕN ∈ ΦX being �Y -continuous. In the
special case where X = Y , such a F is termed a KKM-structure of X . If �Y is
compact, i.e., Y is �Y -compact, (ΦX ,�Y ) is called a compact KKM-structure.

If X = Y is a convex subset of a topological vector space E , �X is the topology on
X induced by that of E , and

ΦX =
{
ϕN : �|N | → X | ϕN (e) =

∑
xi∈N

λi xi for e =
∑

λi ei ∈ �|N |, N ∈ 〈X〉
}
,

then F := (ΦX ,�X ) is called the natural KKM-structure of X .
Let I be any index set, Xi a nonempty set andFi := (ΦXi ,�Xi ) a KKM-structure

on Xi for each i ∈ I . We define a KKM-structure of X := ∏
i∈I Xi as follows.

Let �X be the Tikhonov product topology on X of the topologies �Xi . For N =
{(x1i )i∈I , (x2i )i∈I , . . . (xni )i∈I } ∈ 〈X〉, we define Ni = {x1i , x2i , . . . , xni } ∈ 〈Xi 〉 and
denote N := ⊗i∈I Ni . Each Ni is called the “i th component” of N . We also denote
x := ⊗i∈I xi for each element x = (xi )i∈I ∈ X . Let

ΦX =
{
ϕN : �|N | → X | ϕN (e) = ⊗i∈IϕNi (e) for e ∈ �|N |, N = ⊗i∈I Ni ∈ 〈X〉

}
.

Then, F := (ΦX ,�X ) is a KKM-structure on X , called the product KKM-structure
of the KKM-structures Fi := (ΦXi ,�Xi ), and denoted by F = ∏

i∈I Fi .

Definition 2 ([19,20]) Let X be a nonempty set and (ΦX ,�X ) a KKM-structure of
X . We say that a subset B of X is ΦX -convex if, for all ϕN ∈ ΦX and M ⊂ N ∩
B, ϕN (�M ) ⊂ B. For C ⊂ X , the smallest ΦX -convex set containing C , denoted
by ΦX -coC , is called ΦX -convex hull of C . It is not hard to check that ΦX -coC =⋃

N∈〈C〉 ΦX -coN .

When F := (ΦX ,�X ) is the natural KKM-structure of X , the notions of a ΦX -
convex set and a ΦX -convex hull collapse to the usual notions of a convex set and a
convex hull, resp. Note that notions of generalized convex sets and convex hulls in
some spaces, previously introduced by many authors, such as a convex space [22],
H-space [12], G-convex space [26], FC-space [8], GFC-space [17], etc., are particular
cases of the notions in Definition 2 because in each of these spaces there is a KKM-
structure implicitly. However, there are several convex structures for which notions
of convex sets and convex hulls do seemingly not naturally match with the notions in
Definition 2. We discuss first the Takahashi-convex structure. Recall that a Takahashi-
convex structure on a metric space (X, d) is a function h : X × X × [0, 1] −→ X
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satisfying d(s, h(u, v, t)) ≤ td(s, u)+(1−t)d(s, v) for all (s, u, v, t) ∈ X×X×X×
[0, 1] (see [29]). A subset B of X is said to be convex if h(u, v, t) ∈ B for any u, v ∈ B
and t ∈ [0, 1]. We construct a KKM-structure on X as follows. For each N ∈ 〈X〉 and
e = ∑|N |

i=0 λi ei ∈ �|N |, let ie = min{i | λi �= 0} and i e = max{i | λi �= 0}. Let
ΦX includes maps ϕN : �|N | −→ X defined by ϕN (e) = h(xie , xie , λie + λi e ) for all

e = ∑|N |
i=0 λi ei ∈ �|N |. Let

�X =
⋂

N∈〈X〉

{
U ⊂ X | ϕ−1

N (U ) is open in �|N |
}

.

Then, (ΦX ,�X ) is a KKM-structure of X , and any convex subset in Takahashi-convex
metric space (X, d, h) is also ΦX -convex. However, if we fix the topology � induced
by the metric d of X (and do not consider the above topology �X , then we still do
not know if there is or not a family ΦX such that (ΦX ,�) is a KKM-structure of
X with each convex subset in (X, d, h) being also ΦX -convex. Another approach to
obtaining a notion of convex hull was proposed in [14], which was interesting, without
any convex structure. But the notions in Section 4 of [14] and in Definition 2 are not
comparable.

2 Fixed-Component Point Theorems

Definition 3 Let I be any index set. For each i ∈ I , let Xi be a nonempty set,
Fi := (ΦXi ,�Xi ) be a KKM-structure of Xi , and Pi , Qi : X := ∏

i∈I Xi ⇒ Xi be
set-valued maps. {Qi }i∈I is called {ΦXi }-weak-convex with respect to (w.r.t.) {Pi }i∈I
if whenever x = (xi )i∈I ∈ X , ϕNi ∈ ΦXi , and Mi ⊂ Ni ∩ Pi (x) satisfying xi ∈
ϕNi (�Mi ) simultaneously for all i ∈ I , one has ϕNi (�Mi ) ⊂ Qi (x) for each i ∈ I .

If Definition 3 holds with the natural KKM-structures Fi , we say that {Qi }i∈I is
weak-convex w.r.t. {Pi }i∈I .
Remark 1 For each i ∈ I , let us consider the following conditions for the pair (Pi , Qi ).

(h1) Whenever x = (xi )i∈I ∈ X , ϕNi ∈ ΦXi , and Mi ⊂ Ni ∩ Pi (x) satisfying
xi ∈ ϕNi (�Mi ), one has ϕNi (�Mi ) ⊂ Qi (x). In this case, we say that Qi is
ΦXi -weak-convex w.r.t. Pi .

(h2) For all x ∈ X , ϕNi ∈ ΦXi and Mi ⊂ Ni ∩ Pi (x), one has ϕNi (�Mi ) ⊂ Qi (x).
If this condition holds, Qi is called ΦXi -convex w.r.t. Pi .

(h3) ΦXi -coPi (x) ⊂ Qi (x) for each x ∈ X .
(h4) Pi (x) ⊂ Qi (x) and Qi (x) is ΦXi -convex for each x ∈ X .

It is not hard to see that, if the KKM-structures Fi := (ΦXi ,�Xi ) are given, then
(h4) ⇒ (h3) ⇒ (h2) ⇒ (h1). Example 1 below shows that, in general, the reverse
implications are not true. However, in the case Fi is the natural KKM-structure of
Xi , (h2) coincides with (h3). From Definition 3, we see that “if for each i ∈ I , one
of conditions (h1)-(h4) holds for (Pi , Qi ), then {Qi }i∈I is {ΦXi }-weak-convex w.r.t.
{Pi }i∈I ”. The converse does not hold as shown by Example 2 below.
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Example 1 Let X1 = X2 = X3 = [0, 2], F1 := (ΦX1 ,�X1) be the natural KKM-
structure of X1, F2 := (ΦX2 ,�X2) and F3 := (ΦX3 ,�X3) be KKM-structures of
X2 and X3, resp., defined by: �X2 = �X3 being the usual topology on [0, 2], ΦX2 =
{ϕN2 : �|N2| → X2 | ϕN2(e) = 0 for all e ∈ �|N2|, N2 ∈ 〈X2〉}, and ΦX3 = {ϕN3 :
�|N3| → X3 | ϕN3(e) = min N3+max N3

2 for all e ∈ �|N3|, N3 ∈ 〈X3〉}. Let, for all
x = (x1, x2, x3) ∈ X := X1 × X2 × X3,

P1(x) =
{ [0, x1

3 ) if x1 ∈ (0, 2],
0 if x1 = 0,

Q1(x) = {0, 1},

P2(x) =
{
0 if x2 = 0,
[0, x2) if x2 ∈ (0, 2], Q2(x) = {0, x2},

P3(x) =
{
0 if x3 = 0,
[0, x3

3 ) if x3 ∈ (0, 2], Q3(x) =
[
0,

x3
3

]
∪

[
2x3
3

, 2

]
.

For x = (x1, x2, x3) ∈ X , ϕN1 ∈ ΦX1 and M1 ⊂ N1, we see the following string of
equivalent statements

{
M1 ⊂ P1(x),
x1 ∈ ϕN1(�M1)

⇐⇒
{
M1 ⊂ P1(x),
x1 ∈ coM1

⇐⇒
⎧⎨
⎩

M1 ⊂ P1(x) = {0},
x1 = 0,
x1 ∈ [minM1,maxM1]

or

⎧⎨
⎩
x1 ∈ (0, 2],
x1 ∈ [minM1,maxM1],
M1 ⊂ P1(x) = [0, x1

3 )

⇐⇒
{
x1 = 0,
M1 = {0}.

Then, ϕN1(�M1) = co{0} ⊂ Q1(x). Thus, (P1, Q1) satisfies condition (h1). (P1, Q1)

does not fulfill condition (h2) because, for x = (1, 1, 1) and N1 = M1 = {0, 1
4 }

satisfying M1 ⊂ P1(x), but ϕN1(�M1) = co{0, 1
4 } �⊂ Q1(x).

We easily see that condition (h2) holds for (P2, Q2), but condition (h3) does not,
because ΦX2 -coP2(x) = [0, x2) �⊂ {0, x2} = Q2(x) for all x = (x1, x2, x3) ∈
X1 × (0, 2] × X3.

For (P3, Q3), we see that the values of P3 are ΦX3 -convex and P3(x) ⊂ Q3(x) for
all x ∈ X , i.e., condition (h3) holds, while condition (h4) does not because the values
of Q3 are not ΦX3 -convex.

Finally, since (Pi , Qi ) (i = 1, 2, 3) satisfy at least one of conditions (h1)-(h4),
{Q1, Q2, Q3} is {ΦX1, ΦX2 , ΦX3}- weak-convex w.r.t. {P1, P2, P3}.

Example 2 Let X1 = X2 = [0, 1], F1 := (ΦX1 ,�X1) = F2 := (ΦX2 ,�X2) be the
natural KKM-structure of [0, 1]. Let P1, Q1 : X := X1 × X2 ⇒ X1 and P2, Q2 :
X ⇒ X2 defined by, for all x = (x1, x2) ∈ X ,

P1(x) = Q2(x) = [0, x2], Q1(x) = P2(x) = [0, x1].
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508 P. Q. Khanh, N. H. Quan

For all x = (x1, x2) ∈ X , ϕN1 ∈ ΦX1 , ϕN2 ∈ ΦX2 , M1 ⊂ N1 and M2 ⊂ N2, we
have the equivalent assertions:

⎧⎪⎪⎨
⎪⎪⎩

M1 ⊂ P1(x),
x1 ∈ ϕN1(�M1),

M2 ⊂ P2(x),
x2 ∈ ϕN2(�M2)

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

M1 ⊂ [0, x2],
x1 ∈ [minM1,maxM1],
M2 ⊂ [0, x1],
x2 ∈ [minM2,maxM2]

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

maxM1 ≤ x2,
x1 ∈ [minM1,maxM1],
maxM2 ≤ x1,
x2 ∈ [minM2,maxM2]

⇐⇒ x1 = x2 = maxM1 = maxM2.

Then, ϕN1(�M1) = [minM1,maxM1] ⊂ [0, x1] = Q1(x) and ϕN2(�M2) =
[minM2,maxM2] ⊂ [0, x2] = Q2(x). Thus, {Q1, Q2} is {ΦX1, ΦX2}-weak-convex
w.r.t. {P1, P2}. For N1 = {0, 1

2 , 1}, M1 = {0, 1} and x = (0, 1), we see that
x1 = 0 ∈ [0, 1] = ϕN1(�M1) and M1 ⊂ [0, 1] = P1(x), but ϕN1(�M1) = [0, 1] �⊂
{0} = Q1(x). Thus, condition (h1) does not hold for (P1, Q1) (hence conditions (h2)-
(h4) not either). We also check easily that condition (h1) does not hold for (P2, Q2).

From now on, for an index set I , nonempty sets Xi (i ∈ I ), X := ∏
i∈I Xi , and

KKM-structures Fi := (ΦXi ,�Xi ) of Xi , if not otherwise stated, �X denotes the
Tikhonov product topology of topologies �Xi on X .

Coercivity condition Let {Xi }i∈I be a family of nonempty sets, X := ∏
i∈I Xi ,

Fi = (ΦXi ,�Xi ) a KKM-structure of Xi , and Pi : X ⇒ Xi . The following condition
is a coercivity condition for the family {Pi }i∈I
(C) there exists a nonempty�X -compact subset K of X and, for each Ni ∈ 〈Xi 〉, there

is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi containing Ni such that, for
each x ∈ (

∏
i∈I LNi )\K and i ∈ I , there exists x ′

i ∈ LNi with x ∈ int�X P
−1
i (x ′

i ).

Let I , Xi , X and Qi be as in Definition 3. A point x̄ := (x̄i )i∈I ∈ X is called a
fixed-component point of the family {Qi }i∈I if x̄i ∈ Qi (x̄) for all i ∈ I .

Theorem 1 For an arbitrary index set I and i ∈ I , let Xi be a nonempty set and
Qi : X := ∏

i∈I Xi ⇒ Xi . Then, the family {Qi }i∈I has afixed-component point if and
only if, for each i ∈ I , there exist a KKM-structureFi = (ΦXi ,�Xi ) of Xi and a set-
valued mapping Pi : X ⇒ Xi such that, for each i ∈ I , X = ⋃

xi∈Xi
int�X P

−1
i (xi ),

{Qi }i∈I is {ΦXi }i∈I -weak-convex w.r.t. {Pi }i∈I , and condition (C) holds for {Pi }i∈I .
Proof Necessity. Suppose that x̄ := (x̄i )i∈I ∈ X is a fixed-component point of
{Qi }i∈I . For i ∈ I , let Pi : X ⇒ Xi be defined by Pi (x) = {x̄i } for all x ∈ X ,
and a KKM-structureFi of Xi defined as follows: �Xi = {U ⊂ Xi | x̄i /∈ U } ∪ {Xi }
and

ΦXi = {
ϕNi : �|Ni | → Xi | ϕNi (e) = x̄i for all e ∈ �|Ni |, Ni ∈ 〈Xi 〉

}
.
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For each i ∈ I , the condition X = ⋃
xi∈Xi

int�X P
−1
i (xi ) is obviously satisfied. Since

each �Xi is clearly a compact topology, �X is compact too. Therefore, condition (C)
is satisfied with K = X and LNi = Xi for all Ni ∈ 〈Xi 〉. For all x := (xi )i∈I ∈ X ,
ϕNi ∈ ΦXi and Mi ⊂ Ni , we obtain the equivalent statements:

⎧⎨
⎩

Mi ⊂ Pi (x),
xi ∈ ϕNi (�Mi ),

i ∈ I
⇐⇒

⎧⎨
⎩

Mi ⊂ {x̄i },
xi ∈ {x̄i },
i ∈ I

⇐⇒ x = x̄ = (x̄i )i∈I and Mi = {x̄i } for all i ∈ I.

Then, ϕNi (�Mi ) = {x̄i } ⊂ Qi (x) for all i ∈ I . Hence, {Qi }i∈I is {ΦXi }i∈I -convex
w.r.t. {Pi }i∈I . Thus, the proof of the necessity is complete.

Sufficiency. Assume that, for each i ∈ I , there exist a KKM-structure Fi of
Xi and a set-valued mapping Pi : X ⇒ Xi such that the conditions mentioned
in Theorem 1 hold. For each i ∈ I , since X = ⋃

xi∈Xi
int�X P

−1
i (xi ), there exists

Ni ∈ 〈Xi 〉 such that K ⊂ ⋃
xi∈Ni

int�X P
−1
i (xi ) (K is given by condition (C)). For

each i ∈ I , by (C) there is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi contain-
ing Ni such that LN\K ⊂ ⋃

xi∈LNi
int�X P

−1
i (xi ), where LN := ∏

i∈I LNi . Hence,

LN ⊂ (LN\K ) ∪ K ⊂ ⋃
xi∈LNi

int�X P
−1
i (xi ). Since LN is compact, there exists

Ni := {x0i , x1i , . . . , xnii } ∈ 〈LNi 〉 such that LN = ⋃ni
j=0 int�X P

−1
i (x j

i ). For each

i ∈ I , let {ψ j }nij=0 be a continuous partition of unity of LN associated with the finite

open covering {int�X P
−1
i (x j

i )}nij=0. Then, for each x ∈ LN and k ∈ Ji (x) := { j ∈
{0, 1, . . . , ni }|ψ j (x) �= 0}, one has x ∈ int�X P

−1
i (xki ) ⊂ P−1

i (xki ). Therefore,

Mi (x) :=
{
xki | k ∈ Ji (x)

}
⊂ Ni ∩ Pi (x) for all x ∈ LN . (1)

Now, for each i ∈ I , we define a map γi : LN → �|Ni | by γi (x) = ∑ni
j=0 ψ j (x)e j

for all x ∈ LN . We have, for all x ∈ LN ,

ϕNi
(γi (x)) = ϕNi

⎛
⎝

ni∑
j=0

ψ j (x)e j

⎞
⎠ = ϕNi

⎛
⎝ ∑

k∈Ji (x)

ψk(x)ek

⎞
⎠ ∈ ϕNi

(
�Mi (x)

)
.

(2)
LetΩ = ∏

i∈I �|Ni |. Then,Ω is a compact convex subset of the locally convex space

R
I = ∏

i∈I Rni+1. Let Γ : LN → Ω and Ψ : Ω → LN be defined by

Γ (x) = (γi (x))i∈I for all x ∈ LN , and
Ψ (t) = (ϕNi

(pi (t)))i∈I for all t ∈ Ω ,

where pi (t) is the projection of t on �|Ni |. Then, Γ and Ψ are continuous and so is
Γ ◦ Ψ : Ω → Ω . By the Tikhonov fixed point theorem (see [32]), a t̄ ∈ Ω exists
such that t̄ = (Γ ◦ Ψ )(t̄). Setting x̄ = (x̄i )i∈I = Ψ (t̄) = (ϕNi

(pi (t̄)))i∈I , we have
t̄ = (pi (t̄))i∈I = Γ (x̄) = (γi (x̄))i∈I . Then, x̄i = ϕNi

(γi (x̄)) for all i ∈ I , and by (2),
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x̄i = ϕNi
(γi (x̄)) ∈ ϕNi

(
�Mi (x̄)

)
for all i ∈ I. (3)

Then, (1) gives
Mi (x̄) ⊂ Ni ∩ Pi (x̄) for all i ∈ I. (4)

Since {Qi }i∈I is {ΦXi }i∈I -convex w.r.t. {Pi }i∈I , (3) and (4) imply that x̄i ∈
ϕNi

(�Mi (x̄)
) ⊂ Qi (x̄) for all i ∈ I . The proof is complete. ��

Remark 2 (a) For each i ∈ I , the condition X = ⋃
xi∈Xi

int�X P
−1
i (xi ) in Theorem 1

is satisfied if Pi has the nonempty values and �X -open inverse images.
(b) For I , Xi , X and Qi as in Theorem 1, applying this theorem, condition (h4)

and the statement at the end of Remark 1 with Pi and Qi replaced by Qi and
ΦXi -coQi (·), resp, we obtain

Corollary 1 Let I , Xi , X, and Qi be as in Theorem 1. If, for each i ∈ I , there
exists a KKM-structureFi := (ΦXi ,�Xi ) of Xi such that X = ⋃

xi∈Xi
int�X Q

−1
i (xi )

and condition (C) holds for {Qi }i∈I . Then, the family {ΦXi -coQi (·)}i∈I has a fixed-
component point.

(c) If each Xi has the natural KKM-structure, we easily check the necessary condi-
tion of Theorem 1 with maps Pi taken in the proof of the necessity part of Theorem 1.
Therefore, we have a particular case of Theorem 1 as follows.

Theorem 2 For an arbitrary index set I and i ∈ I , let Xi be a nonempty convex set of
a topological vector space and Qi : X := ∏

i∈I Xi ⇒ Xi . Then, the family {Qi }i∈I
has a fixed-component point if and only if, for each i ∈ I , there exists Pi : X ⇒ Xi

such that X = ⋃
xi∈Xi

intP−1
i (xi ), {Qi }i∈I is weak-convex w.r.t. {Pi }i∈I , and the

following condition holds for {Pi }i∈I :
(C′) there exists a nonempty compact subset K of X and, for each Ni ∈ 〈Xi 〉, there

is a compact and convex subset LNi ⊂ Xi containing Ni such that, for each
x ∈ ∏

i∈I LNi \K and i ∈ I , there exists x ′
i ∈ LNi with x ∈ intP−1

i (x ′
i ).

(d) Let I , Xi , X be as in Theorem 1, Xi := ∏
j∈I, j �=i X j , and xi be the canonical

projection of x ∈ X on Xi . For each i ∈ I , let P̃i , Q̃i : Xi ⇒ Xi be set-valued maps.
We can state Definition 3 for {P̃i }i∈I and {Q̃i }i∈I and change conditions (h1)-(h4) for
the pair (P̃i , Q̃i ) in the manner that the phrases “Pi (x),” “Qi (x),” “for all x ∈ X” and
“for each x ∈ X” in Definition 3 are replaced by “P̃i (xi ),” “Q̃i (xi ),” “for all xi ∈ Xi”
and “for each xi ∈ Xi ,” resp. A point x̄ := (x̄i )i∈I ∈ X satisfying x̄i ∈ Q̃i (x̄ i ) for all
i ∈ I is also called a fixed-component point of the family {Q̃i }i∈I .

The following consequence of Theorem 1 is formulated in terms of the family
{Q̃i }i∈I .
Theorem 3 Let I , Xi , X be as in Theorem 1, X i := ∏

j∈I, j �=i X j and Q̃i : Xi ⇒ Xi .

Then, the family {Q̃i }i∈I has a fixed-component point if and only if, for each i ∈ I , there
exist aKKM-structureFi = (ΦXi ,�Xi )of Xi anda set-valuedmapping P̃i : Xi ⇒ Xi

such that Xi = ⋃
xi∈Xi

int�Xi
P̃−1
i (xi ) for each i ∈ I , {Q̃i }i∈I is {ΦXi }i∈I -weak-

convex w.r.t. {P̃i }i∈I , and the following condition holds:
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(C̃) there exists a nonempty �X -compact subset K of X, and, for each Ni ∈ 〈Xi 〉,
there is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi containing Ni such
that, for each x ∈ (

∏
i∈I LNi )\K and i ∈ I , there exists x ′

i ∈ LNi with xi ∈
int�Xi

P̃−1
i (x ′

i ).

We derive Theorem 3 from Theorem 1. The necessary condition is easily checked
with the KKM-structuresFi := (ΦXi ,�Xi ) taken from the proof of the necessity part
of Theorem 1 and maps P̃i : Xi ⇒ Xi defined by P̃i (xi ) = {x̄i } for all xi ∈ Xi ,
where x̄ := (x̄i )i∈I is the fixed-component point of {Q̃i }i∈I . For the sufficiency, we
define maps Pi , Qi : X ⇒ Xi by Pi (x) = P̃i (xi ) and Qi (x) = Q̃i (xi ) for all x ∈ X .
Then, for each i ∈ I and xi ∈ Xi , P

−1
i (xi ) = Xi × P̃−1

i (xi ). Hence,

⋃
xi∈Xi

int�X P
−1
i (xi ) =

⋃
xi∈Xi

int�X

(
Xi × P̃−1

i (xi )
)

⊃
⋃
xi∈Xi

(
Xi × int�Xi

P̃−1
i (xi )

)

⊃ Xi ×
⎛
⎝ ⋃

xi∈Xi

int�Xi
P̃−1
i (xi )

⎞
⎠ = Xi × Xi = X.

Moreover, it is clear that the {ΦXi }i∈I -weak-convexityw.r.t. {P̃i }i∈I of {Q̃i }i∈I implies
the {ΦXi }i∈I -weak-convexityw.r.t. {Pi }i∈I of {Qi }i∈I and the condition (C̃) for {P̃i }i∈I
implies the condition (C) for {Pi }i∈I . Thus, by Theorem 1, {Qi }i∈I has a fixed-
component point x̄ . This x̄ is also a fixed-component point of {Q̃i }i∈I .

Conversely, Theorem 3 implies Theorem 1 or not is still an open question for us,
though this looks likely.

We can suitably modify the proof of Theorem 1 to obtain Theorem 3 with the
condition (C̃) replaced by the following weaker condition:

(Ĉ) for each i ∈ I , there exists a nonempty �Xi -compact subset Ki of Xi and,
for each Ni ∈ 〈Xi 〉, there is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi

containing Ni such that there exists x ′
i ∈ LNi with xi ∈ int�Xi

P̃−1
i (x ′

i ) for each

xi ∈ (
∏

j∈I, j �=i LNi )\Ki .

(e) The sufficiency part of Theorem 1 implies Theorems 3.1–3.4 of [9]. Hence, it
also implies Theorem 3.2 of [7], Theorem 7 of [34], Theorems 2.3 and 3.1 of [31],
Theorem 2.1 of [28], and Theorem 2.2 of [4]. We also deduce Theorem 3.1 of [17] and
thus Theorem 1 of [1] and Theorem 2.1 of [21] from this part of Theorem 1. When I
is a singleton, Theorem 1 becomes Theorem 2.5 of [19] and hence its sufficiency part
generalizes many fixed point theorems, including the classical Browder fixed point
theorem in [4] (which implies the seminal Kakutani fixed point theorem in [13]) and
Tarafdar’s fixed point theorem in [30], etc. (cf. [19]).

(f) To illustrate Theorem 1, we revisit Examples 1 and 2.
For Example 1, we see that

P−1
1 (x1) =

⎧
⎨
⎩

X1 × X2 × X3 if x1 = 0,
(3x1, 2] × X2 × X3 if 0 < x1 ≤ 2

3 ,∅ if 2
3 < x1 ≤ 2,

for all x1 ∈ X1,
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P−1
2 (x2) =

{
X1 × X2 × X3 if x2 = 0,
X1 × (x2, 2] × X3 if x2 ∈ (0, 2], for all x2 ∈ X2,

P−1
3 (x3) =

⎧⎨
⎩

X1 × X2 × X3 if x3 = 0,
X1 × X2 × (3x3, 2] if 0 < x3 < 2

3 ,∅ if 2
3 ≤ x3 ≤ 2,

for all x3 ∈ X3.

Clearly, the maps P1, P2, P3 have the nonempty values and open fibers. Moreover,
X = X1 × X2 × X3 is compact. Thus, by Theorem 1, {Q1, Q2, Q3} has a fixed-
component point.

For Example 2, we have P−1
1 (x1) = X1 × [x1, 1] for all x1 ∈ X1, and P−1

2 (x2) =
[x2, 1]× X2 for all x2 ∈ X2. It is clear that X is compact, and

⋃
xi∈Xi

int�X P
−1
i (xi ) =

X for i ∈ {1, 2}. Thus, {Q1, Q2} has a fixed-component point.

Remark 3 Using Theorem 1, we deduce a result on the existence of common fixed
points. Common fixed point theorems were studied by many authors (e.g., [2,3,5]).
Let I be any index set, A be a nonempty set and {Ti : A ⇒ A, i ∈ I } be a family of
set-valued maps. A point ā ∈ A is called a common fixed point of the family {Ti }i∈I
if ā ∈ Ti (ā) for all i ∈ I .

Let F = (ΦA,�A) be a KKM-structure of A and P : A ⇒ A be a set-valued
map. We say that the family {Ti }i∈I is ΦA-weak-convex with respect to (w.r.t.) P if
whenever a ∈ A, ϕN ∈ ΦA, and M ⊂ N ∩ P(a) satisfying a ∈ ϕN (�M ), one has
ϕN (�M ) ⊂ Ti (a) for each i ∈ I . When this notion holds with the natural KKM-
structure, we say that {Ti }i∈I is weak-convex w.r.t. P .

Theorem 4 Let A be a nonempty set and I be an arbitrary index set. For each i ∈ I , let
Ti : A ⇒ A. Then, the family {Ti }i∈I has a common fixed point if and only if there exist
a KKM-structure F = (ΦA,�A) of A and a set-valued mapping P : A ⇒ A such
that A = ⋃

a∈A int�A P
−1(a), {Ti }i∈I is ΦA-weak-convex w.r.t. P, and the following

condition holds:

(D) there exists a nonempty �A-compact subset K of A and, for each N ∈ 〈A〉, there
is a �A-compact and ΦA-convex subset LN ⊂ A containing N such that, for
each a ∈ LN\K, there exists a′ ∈ LN with a ∈ int�A P

−1(a′).

This theorem is deduced from Theorem 1 by setting Xi = A, X = ∏
i∈I Xi = AI ,

Pi (x) = P(xi ), and Qi (x) = ⋂
j∈I Tj (xi ).

Example 3 Let A = [0, 1],F be the natural KKM-structure of [0, 1]. Let T1, T2, T3 :
A ⇒ A be defined by, for all a ∈ A,

T1(a) =
[
0,

a

3

]
, T2(a) =

[
2a

3
, 1

]
, T3(a) =

[
a

3
,
2a

3

]
.

For P : A ⇒ A defined by P(0) = {0} and P(a) = [0, a
4 ) if a �= 0, we have: for all

a ∈ A, ϕN ∈ ΦA and M ⊂ N ,

{
M ⊂ P(a),

a ∈ ϕN (�M )
⇐⇒

{
M ⊂ P(0) = {0},
a = 0

or

{
M ⊂ [0, a

4 ],
a ∈ [minM,maxM]
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⇐⇒
{
M = {0},
a = 0.

Then, ϕN (�M ) = {0} ⊂ Ti (0) (i = 1, 2, 3). Thus, {T1, T2, T3} is weak-convex w.r.t.
P . Moreover, P has the nonempty values and fibers, for a ∈ A,

P−1(a) =
⎧⎨
⎩

A if a = 0,
(4y, 1] if 0 < a ≤ 1

4 ,∅ if 1
4 < a ≤ 1

are open in A. Hence, A = ⋃
a∈A intP

−1(a). Since A is compact, the condition (D)

of Theorem 4 holds. Thus, by Theorem 4, there exists ā ∈ A such that ā ∈ Ti (ā)

(i = 1, 2, 3).

3 Applications

Since fixed point theorems have a wide range of applications and fixed-component
point results imply corresponding ones for fixed points by considering a family con-
sisting of one element, we can deduce many applications from the results obtained in
Sect. 2. Here, we focus on two kinds of applications only. First, we study the existence
of some important points whichwerementioned in Sect. 1 and seeminglymore general
than fixed points, to emphasize the generality of our results. Then, we show that from
these results the existence of solutions to numerous optimization-related problems can
be obtained.

3.1 Coincidence-Component Point Theorems

Theorem 5 For each i ∈ I , let Xi , Yi be nonempty sets, X := ∏
i∈I Xi , Y := ∏

i∈I Yi ,
and Fi : X ⇒ Yi and Gi : Y ⇒ Xi be nonempty-valued. Assume that, for each i ∈ I ,
there exist KKM-structures Fi := (ΦXi ,�Xi ) of Xi and Gi := (ΦYi ,�Yi ) of Yi such
that

(i) for each (xi , yi ) ∈ Xi × Yi , F
−1
i (yi ) and G−1

i (xi ) are �X -open and �Y -open,
resp;

(ii) for each (x, y) ∈ X×Y , Fi (x) and Gi (y) areΦYi -convex andΦXi -convex, resp;
(iii) there exists a nonempty �X×Y -compact subset K of X × Y and, for each Ni ∈

〈Xi × Yi 〉, there is a �Xi×Yi -compact and ΦXi×Yi -convex subset LNi ⊂ Xi × Yi
containing Ni such that, for each (x, y) ∈ (

∏
i∈I LNi )\K and i ∈ I , there exists

(x ′
i , y

′
i ) ∈ LNi such that (x, y) ∈ F−1

i (y′
i ) × G−1

i (x ′
i ).

Then, there exists x̄ := (x̄i )i∈I ∈ X and ȳ := (ȳi )i∈I ∈ Y such that ȳi ∈ Fi (x̄) and
x̄i ∈ Gi (ȳ) for all i ∈ I .

Proof For each i ∈ I , let Hi := (ΦXi×Yi ,�Xi×Yi ) be the product KKM-structure
of Fi and Gi on Xi × Yi . Let Di : X × Y ⇒ Xi × Yi be defined by Di (x, y) :=
Gi (y) × Fi (x) for all (x, y) ∈ X × Y . Then, Di has the nonempty values, and
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D−1
i (xi , yi ) = F−1

i (yi ) × G−1
i (xi ) is �X×Y -open for all (xi , yi ) ∈ Xi × Yi . Hence,

X × Y = ⋃
(xi ,yi )∈Xi×Yi int�X×Y D

−1
i (xi , yi ). Assumption (ii) implies that Di (x, y)

is ΦXi×Yi -convex for each (x, y) ∈ X × Y . Assumption (iii) shows that condition
(C) holds for {Di }i∈I . Thus, applying Theorem 1 together with condition (h4) and
the statement at the end of Remark 1 with X × Y , Xi × Yi and Di replacing X , Xi ,
Pi ≡ Qi , resp, we have a (x̄, ȳ) ∈ X × Y such that (xi , yi ) ∈ Di (x, y) for all i ∈ I ,
i.e., ȳi ∈ Fi (x̄) and x̄i ∈ Gi (ȳ) for all i ∈ I . ��

3.2 Maximal Element Theorems

Theorem 6 For an arbitrary index set I and i ∈ I , let Xi be a nonempty set and
Si , Ti : X := ∏

i∈I Xi ⇒ Xi . Assume that, for each i ∈ I , there exists a KKM-
structure Fi := (ΦXi ,�Xi ) of Xi such that

(i) for each xi ∈ Xi , S
−1
i (xi ) is �X -open;

(ii) for each x ∈ X, ΦXi -coSi (x) ⊂ Ti (x);
(iii) there exists i ∈ I such that xi /∈ Ti (x) for all x = (xi )i∈I ∈ X;
(iv) there exists a nonempty �X -compact subset K of X, and, for each Ni ∈ 〈Xi 〉,

there is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi containing Ni such
that, for each x ∈ (

∏
i∈I LNi )\K and i ∈ I , Si (x) ∩ LNi �= ∅.

Then, there exist x̄ ∈ X and i0 ∈ I such that Si0(x̄) = ∅.
Proof Suppose to the contrary that, for all x ∈ X and i ∈ I , Si (x) �= ∅. Then, this
and (i) imply that X = ⋃

xi∈Xi
S−1
i (xi ) = ⋃

xi∈Xi
int�X S

−1
i (xi ) for each i ∈ I . (iv)

together with (i) ensures condition (C) for {Si }i∈I . Applying Theorem 1 for {Pi ≡
Si }i∈I and {Qi ≡ Ti }i∈I via condition (h3) of Remark 1 and the statement at the end of
this remark, we have x̄ := (x̄i )i∈I ∈ X such that x̄i ∈ Ti (x̄) for all i ∈ I , contradicting
(iii). ��
Corollary 2 Let X be a nonempty set and S, T : X ⇒ X. Assume that there exists a
KKM-structure F := (ΦX ,�X ) of X such that

(i) for each x ∈ X, S−1(x) is �X -open, ΦX -coS(x) ⊂ T (x), and x /∈ T (x);
(ii) there exists a nonempty �X -compact subset K of X and, for each N ∈ 〈X〉,

there is a �X -compact and ΦX -convex subset LN ⊂ X containing N such that
S(x) ∩ LN �= ∅ for each x ∈ LN\K.

Then, there exists x̄ ∈ X such that S(x̄) = ∅.
Proof This result is a special case of Theorem 6 with the index set I being a singleton.

��

3.3 Intersection Point Theorems

Theorem 7 Let {Xi }i∈I be a family of nonempty sets, X := ∏
i∈I Xi , {Ai }i∈I , {Bi }i∈I

two families of nonempty subsets of X, and xi the canonical projection of x on Xi :=∏
j∈I, j �=i X j . Assume that, for each i ∈ I , there exists a KKM-structure Fi :=

(ΦXi ,�Xi ) of Xi such that
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(i) for each xi ∈ Xi , {x ′ ∈ X |(xi , x ′i ) ∈ Bi } is �X -open;
(ii) for each x ∈ X, {x ′

i ∈ Xi |(x ′
i , x

i ) ∈ Bi } is nonempty, and ΦXi -co{x ′
i ∈

Xi |(x ′
i , x

i ) ∈ Bi } ⊂ {x ′
i ∈ Xi |(x ′

i , x
i ) ∈ Ai };

(iii) there exists a nonempty �X -compact subset K of X and, for each Ni ∈ 〈Xi 〉,
there is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi containing Ni such
that, for each x ∈ (

∏
i∈I LNi )\K and i ∈ I , there exists x ′

i ∈ LNi such that
(x ′

i , x
i ) ∈ Bi .

Then,
⋂

i∈I Ai �= ∅
Proof For each i ∈ I , we define Pi , Qi : X ⇒ Xi by Pi (x) := {x ′

i ∈ Xi |(x ′
i , x

i ) ∈
Bi } and Qi (x) := {x ′

i ∈ Xi |(x ′
i , x

i ) ∈ Ai } for all x ∈ X . It is clear that the assumptions
of Theorem1 (under the condition (h3)) are satisfied for {Pi }i∈I and {Qi }i∈I . Applying
this theorem, we have x̄ := (x̄i )i∈I ∈ X such that x̄i ∈ {x ′

i ∈ Xi |(x ′
i , x̄

i ) ∈ Ai } for
each i ∈ I , i.e., x̄ = (x̄i , x̄ i ) ∈ Ai for all i ∈ I . ��
Corollary 3 Let {Xi }i∈I be a family of nonempty sets, X := ∏

i∈I Xi , {Ai }i∈I a family
of nonempty subsets of X, and xi the canonical projection of x on Xi := ∏

j∈I, j �=i X j .
Assume that, for each i ∈ I , there exists a KKM-structure Fi = (ΦXi ,�Xi ) of Xi

such that

(i) for each xi ∈ Xi , {x ′ ∈ X |(xi , x ′i ) ∈ Ai } is �X -open;
(ii) for each x ∈ X, {x ′

i ∈ Xi |(x ′
i , x

i ) ∈ Ai } is nonempty and ΦXi -convex;
(iii) there exists a nonempty �X -compact subset K of X and, for each Ni ∈ 〈Xi 〉,

there is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi containing Ni such
that, for each x ∈ (

∏
i∈I LNi )\K and i ∈ I , there exists x ′

i ∈ LNi such that
(x ′

i , x
i ) ∈ Ai .

Then,
⋂

i∈I Ai �= ∅.
Proof This is a particular case of Theorem 7 with Ai ≡ Bi for all i ∈ I . ��

An equivalent formulation of Corollary 3 is the following.

Corollary 4 For i ∈ I , let Xi be a nonempty set, X := ∏
i∈I Xi , Xi := ∏

j∈I, j �=i X j ,

xi the canonical projection of x on Xi , fi : X → R and δi ∈ R. Assume that, for
each i ∈ I , there exists a KKM-structure Fi := (ΦXi ,�Xi ) of Xi such that

(i) for each xi ∈ Xi , {x ′ ∈ X | fi (xi , x ′i ) > δi } is �X -open;
(ii) for each x ∈ X, {x ′

i ∈ Xi | fi (x ′
i , x

i ) > δi } is nonempty and ΦXi -convex;
(iii) there exists a �X -compact subset K of X, and, for each Ni ∈ 〈Xi 〉, there

is a �Xi -compact and ΦXi -convex subset LNi ⊂ Xi containing Ni such that
(
∏

i∈I LNi )\K ⊂ ⋃
xi∈LNi

{x ′ ∈ X | fi (xi , x ′i ) > δi }.
Then, there exists x̄ ∈ X such that fi (x̄) > δi for all i ∈ I .

Proof Corollary 3 implies Corollary 4. It is clear that the assumptions of Corollary 4
imply the assumptions of Corollary 3 with Ai := {x ∈ X | fi (x) > δi } for i ∈ I .
Applying Corollary 3, we have x̄ ∈ X such that x̄ ∈ Ai for all i ∈ I , which means
that fi (x̄) > δi for all i ∈ I .

123



516 P. Q. Khanh, N. H. Quan

Corollary 4 implies Corollary 3. We define real functions fi : X → R by, for
x ∈ X ,

fi (x) =
{
1 if x ∈ Ai ,

0 if x /∈ Ai .

Then, for each i ∈ I , we have {x ′ ∈ X | fi (xi , x ′i ) > 0} = {x ′ ∈ X | (xi , x ′i ) ∈ Ai }
for each xi ∈ Xi , and {x ′

i ∈ Xi | fi (x ′
i , x

i ) > 0} = {x ′
i ∈ Xi | (x ′

i , x
i ) ∈ Ai } for each

x ∈ X . Hence, the assumptions of Corollary 3 imply those of Corollary 4 for { fi }i∈I
and {δi = 0}i∈I . Corollary 4 gives x̄ ∈ X satisfying fi (x̄) = 1 for all i ∈ I , i.e.,
x̄ ∈ Ai for all i ∈ I . ��
Remark 4 (a) We can prove that Theorem 6 is still true if we replace x , x ′, X and �X

by xi , x ′i , Xi and �Xi , resp, in assumptions (i) and (ii). A similar replacement
can be made for Corollaries 3 and 4. In this case, Theorem 6 and Corollary 3
extend some results on sets with convex sections in [11] (Theorems 14–16) and
[21] (Theorems 2.3 and 2.4).

(b) Assumption (i) of Corollary 4 is satisfied if, for each xi ∈ Xi , fi (xi , ·) is �Xi -
lower semicontinuous on Xi . Corollary 4 generalizes Theorem 3 of [10] and
Theorem 2.5 of [21].

Corollary 5 For i ∈ I , let Xi be a nonempty set, X := ∏
i∈I Xi , Xi := ∏

j∈I, j �=i X j ,

xi the canonical projection of x on Xi , and fi : X → R. Assume that there exists a
compact KKM-structure Fi = (ΦXi ,�Xi ) of Xi for each i ∈ I such that

(i) fi is �X -continuous;
(ii) for any ε > 0 sufficiently close to 0 and x ∈ X, the set {ai ∈ Xi | fi (xi , ai ) >

maxa′
i∈Xi

fi (xi , a′
i ) − ε} is ΦXi -convex.

Then, there exists x̄ ∈ X such that fi (x̄) = maxai∈Xi fi (x̄ i , ai ) for all i ∈ I .

Proof Applying Corollary 4 for functions hi : X −→ R defined by hi (x) = fi (x) −
maxai∈Xi fi (ai , xi ) and δi = −ε, we have x̄ ∈ X such that hi (x̄) > −ε. Since ε is
arbitrary, the proof is complete. ��

Note that results similar to Corollaries 4 and 5 were proved in [19] for the case with
a finite index set I .

3.4 Systems of Variational Relations

In this subsection, we discuss applications to a general model of systems of variational
relations since it encompasses most problems related to optimization. Variational rela-
tions were first studied in [16,25] and then extended to a case of a system of relations
in [23]. Let I be an index set, {Xi }i∈I be a family of nonempty sets and X := ∏

i∈I Xi .
Let Λi ,Ωi : X ⇒ Xi be nonempty-valued and Ri (x, ai ) be a relation linking x ∈ X
and ai ∈ Xi . We consider the following system of variational relations

(SVR)

{
find x̄ ∈ X such that, for all i ∈ I, x̄i ∈ Λi (x̄) and ai ∈ Ωi (x̄),
Ri (x̄, ai ) holds.
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Problem (SVR) was studied in [15] for the case where {Xi }i∈I is a family of nonempty
convex subsets of topological vector spaces. In this section, using Theorem 1 we will
establish an existence result for the general case.

For i ∈ I , we set Θi (x) := {ai ∈ Xi | Ri (x, ai ) does not hold} for all x ∈ X , and
Wi := {x ∈ X | for all ai ∈ Ωi (x), Ri (x, ai ) holds}.
Theorem 8 For problem (SVR), assume that there exists a compact KKM-structure
Fi := (ΦXi ,�Xi ) of Xi for each i ∈ I such that

(i) X = ⋃
ai∈Xi

int�X

(
(Θ−1

i (ai ) ∪ Wi ) ∩ Ω−1
i (ai )

)
;

(ii) Λi is ΦXi -weak-convex w.r.t. Ωi ;
(iii) for each x := (xi )i∈I ∈ X, xi /∈ ΦXi -coΘi (x).

Then, (SVR) has a solution.

Proof For each i ∈ I , we define set-valued maps Pi , Qi : X ⇒ Xi by

Pi (x) =
{

Θi (x) ∩ Ωi (x) if x /∈ Wi ,

Ωi (x) if x ∈ Wi ,

Qi (x) =
{

ΦXi −coΘi (x) if x /∈ Wi ,

Λi (x) if x ∈ Wi .

For each ai ∈ Xi we have

P−1
i (ai ) =

(
Θ−1

i (ai ) ∩ Ω−1
i (ai ) ∩ (X \ Wi )

)
∪

(
Ω−1

i (ai ) ∩ Wi

)

=
(
[Θ−1

i (ai ) ∩ (X \ Wi )] ∪ Wi

)
∩ Ω−1

i (ai )

= (Θ−1
i (ai ) ∪ Wi ) ∩ Ω−1

i (ai ). (5)

The equality (5) and assumption (i) imply that X = ⋃
ai∈Xi

int�X P
−1
i (ai ).

Take any ϕNi ∈ ΦXi , Mi ⊂ Ni , x = (xi )i∈I ∈ X satisfying xi ∈ ϕNi (�Mi ), and
Mi ⊂ Pi (x). As x /∈ Wi , Mi ⊂ Θi (x) ∩ Ωi (x) ⊂ Θi (x). Then, ϕNi (�Mi ) ⊂ ΦXi -
coΘi (x) = Qi (x). If x ∈ Wi , then Mi ⊂ Ωi (x). By (ii) we obtain ϕNi (�Mi ) ⊂
Λi (x) = Qi (x). Thus, Qi is ΦXi -weak-convex w.r.t. Pi .

Theorem 1 under condition (h1) of Remark 1 implies that an x̄ := (x̄i )i∈I ∈ X
exists such that x̄i ∈ Qi (x̄) for each i ∈ I . If x̄ /∈ Wi , then x̄i ∈ ΦXi -coΘi (x̄),
contradicting (iii). Hence, x̄ ∈ Wi , and therefore x̄i ∈ Λi (x̄) and Ri (x̄, ai ) holds for
all ai ∈ Ωi (x̄). ��
Remark 5 (a) Because the map Pi in the proof of Theorem 8 has the nonempty values,
assumption (i) can be replaced by the following

(i′) for each ai ∈ Xi , (Θ
−1
i (ai ) ∪ Wi ) ∩ Ω−1

i (ai ) is �X -open.

Furthermore, (i′) is satisfied if

(i′′) Wi is �X -open, and, for each ai ∈ Xi ,Θ
−1
i (ai )∩ (X \Wi ) is relatively �X -open

in X \ Wi and Ω−1
i (ai ) is �X -open.
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Indeed, asΘ−1
i (ai )∩(X\Wi ) is relatively�X -open in X\Wi , a�X -open setUi ⊂ X

exists such thatΘ−1
i (ai )∩(X \Wi ) = Ui ∩(X \Wi ). Then, (Θ

−1
i (ai )∪Wi )∩Ω−1

i (ai )
= ([Ui ∩ (X \ Wi )] ∪ Wi ) ∩ Ω−1

i (ai ) = (Ui ∪ Wi ) ∩ Ω−1
i (ai ) is �X -open.

(b) It is clear that assumption (iii) of Theorem 8 is fulfilled if “for each x :=
(xi )i∈I ∈ X , Ri (x, xi ) holds, and Θi (x) is ΦXi -convex.”

3.5 Abstract Economies

Finally, we discuss a practical model. Let I be any set of agents. For each i ∈ I ,
let Xi be a nonempty set of actions available for the agent i and X := ∏

i∈I Xi . An
abstract economy (see [27]) is a family of ordered triples E := (Xi , Ai , Bi )i∈I , where
Ai : X ⇒ Xi is a constraint correspondence such that Ai (x) is the state attainable for
the agent i at x , and Bi : X ⇒ Xi is a preference correspondence such that Bi (x) is
the state preference by the agent i at x . An equilibrium point of E is a point x̄ ∈ X
such that x̄i ∈ Ai (x̄) and Bi (x̄) ∩ Ai (x̄) = ∅ for each i ∈ I .

Of course, we can deduce the following existence result from our results in Sect. 2.
But, to explain the generality of variational relations studied in the preceding subsec-
tion we will apply Theorem 7.

Theorem 9 For the abstract economy E := (Xi , Ai , Bi )i∈I , let Wi := {x ∈
X |Bi (x) ∩ Ai (x) = ∅} for each i ∈ I . Assume that, for each i ∈ I , there exists
a compact KKM-structure Fi = (ΦXi ,�Xi ) of Xi such that

(i) X = ⋃
ai∈Xi

int�X

(
(B−1

i (ai ) ∪ Wi ) ∩ A−1
i (ai )

)
;

(ii) for each x ∈ X, Ai (x) is ΦXi -convex;
(iii) for each x = (xi )i∈I ∈ X, xi /∈ ΦXi -coBi (x);

Then, E has an equilibrium point.

Proof We see that x̄ ∈ X is an equilibrium point of E if and only if, for each i ∈ I ,
x̄i ∈ Ai (x̄), and for all ai ∈ Ai (x̄), ai /∈ Bi (x̄). This means that x̄ is a solution of
(SVR) with Λi = Ai , Ωi = Ai and the relation Ri defined by: Ri (x, ai ) holds if and
only if ai /∈ Bi (x). Applying Theorem 7, we complete the proof. ��
Remark 6 The observations in Remark 5 are valid also for Theorem 9. Furthermore,
if Ai and Bi are (�X ,�Xi )-closed (i.e., their graphs are �X × �Xi -closed in X × Xi ),
then Wi is �X -closed. Hence, assumption (i) of Theorem 9 is satisfied if

(i’) Ai and Bi are (�X ,�Xi )-closed, and their fibers are �X -open.

In some cases condition (i’) is restrictive, e.g., if the topologies �Xi are connected
(in particular, if KKM-structures Fi = (ΦXi ,�Xi ) are the natural KKM-structures),
then (i’) is fulfilled if and only if Ai and Bi are constant maps. However, there are
instances where this condition is relatively easy to check.
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