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Abstract In this paper, we study the value distribution of differential polynomial with
the form f"(f™)®) . (f™)") where f is a transcendental meromorphic function.
Namely, we prove that £ (1)@ (")) — P(z) has infinitely zeros, where P (z)
is a nonconstant polynomial and n € N, k, ny, ..., ng, t1, ..., t; are positive integer
numbers satisfying n + ZI:} ny > Zlf:l ty + 3. Using it, we establish some normality
criterias for family of meromorphic functions under a condition where differential
polynomials generated by the members of the family share a holomorphic function
with zero points. Our results generalize some previous results on normal family of
meromorphic functions.
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1 Introduction

Let D be a domain in the complex plane C and F be a family of meromorphic
functions in D. The family F is said to be normal in D, in the sense of Montel, if for
any sequence { f,} C F, there exists a subsequence { f;,} such that { f;,} converges
spherically locally uniformly in D, to a meromorphic function or co.
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1414 N. Van Thin

In 1989, Schwick [8] proved that

Theorem A Let F be a family of meromorphic functions defined in a domain D and
k, n are positive integer numbers satisfyingn > k3. If(f”)(k) # lforevery f € F,
then F is normal.

In 2014, Dethloff et al. [4] came up with new normality criteria, which extended
the result given by Schwick.

Theorem B Let a be a nonzero complex value, let n be a non-negative integer and
ni,n2, ..., Nk, 1, 2, ..., Iy be positive integers. Let F be a family of meromorphic
functions ina complex domain D such thatforevery f € F, (™)) ... (fr)t) —
a is nowhere vanishing on D. Assume that

(a) ny >ty foralll <v <k,
(b) n ‘|‘Zﬁ:1 ny = 3+Zﬁ:1 Iy.

Then F is normal on D.
In 2009, Li and Gu [7] improved Theorem A in the following manner

Theorem C Let F be a family of meromorphic functions in a domain D, k,n(n >
k + 2) be positive integers and a € C\{0}. If (f")® and (g")® share the value
a — IM in D for each pair of functions f, g € F, then F is normal.

In 2014, Datt and Kumar [3], by idea sharing value, they proved the result corre-
sponding Theorem B.

Theorem D Let a(z) be a holomorphic function definedin D C C suchthata(z) # 0.
Let n be a non-negative integer and ny, no, ..., ng, ti, ta, ..., ty be positive integers
such that

(a) ny >ty foralll <v <k;
(b) n+ Zﬁ:] ny >3+ Zﬁ:] t.

Let F be a family of meromorphic functions in a domain D such that for every

pair f,g € F, f" @ (™) (z2) - (f™) %W (2) and g"(z)(g") " (2) - - - (§") W) ()
share a(z) — IM on D. Then F is normal in D.

In 2012, Zeng and Lahiri [12] proved the result concerning Theorem C.

Theorem E Let F be a family of meromorphic functions defined in a domain D,
a € C\{0} and k, n be positive integers such thatn > 1 ifk = landn > 2 ifk > 2. If
FAHD and g7 (g5H® share the value a — I M in D for each pair of functions
f, g € F, then F is normal.

We see that the value a # 0 in Theorems C and E is a holomorphic function
nowhere vanishing.

Question 1 Can we extend Theorems C, D and E by idea sharing a holomorphic
function with zero point?
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In 2012, Yunbo and Zongsheng [10] proved that

Theorem F Let n,k > 2, m > 0 be three integers, and m be divisible by n + 1.
Suppose that a(z) # 0 is a holomorphic function with zeros of multiplicity m in a
domain D. Let F be a family of holomorphic functions in D, for each f € F, f
has only zeros of multiplicity k + m at least. For each pair (f, g) € F, f(f%)" and
2(g"N" share a(z) — IM, then F is normal in D.

For each meromorphic function f on D, we call that N(f, f/, ..., f, ..., f@)
is a monomial differential polynomial of f and defined by

N(/, f/, -.-,f(tl), o, f(tk)) — fn(fnl)(fl) _”(f"k)(fk)7

where n € N,ny, ..., ng, ty, ..., are positive integer numbers and k € N*. We
denote

'yn=n+m+-- -+, Y\n=H+ -+

In this paper, we consider the differential polynomial with the form
fn(fnl)(fl) o (fﬂk)(fk) + Zalfnl (fnll)(lll) o (fnkl)(tkl)
1

=N fo O FY D TN (f f L O ), (L
I

where a; are holomorphic functions on D, and ny, nj;, tj;, j = 1,..., k are non-
negative integer numbers, and / C N is the set index finitely.
Now, connection with result of Theorem F, we prove the results as following:

Theorem 1 Letn,m € Nandny, t,,k (v =1, 2,...,k) be positive integer numbers
such that m is divisible by n + Zﬁ:l ny and

k k k
nv>tv7U:1s---’k9n+va>Ztv+3,n+znv:FN1~
v=1 v=1 v=1

Let F be a family of meromorphic functions in a complex domain D with all poles and
2m 424k 1

k
n + Zv:l ny
functions with zeros of multiplicity m in a domain D. If

zeros of multiplicity at least [ ] +1. Let a(z) # 0 be a holomorphic

fn(fnl)(ll) o (fnk)(tk) + Zalfnl(fﬂu)(fu) o (f"kl)(lk1)7
1

gn(gnl)(tl) o (gnk)(tk) + Ztng"’ (gnll)(lll) o (gnkl)(tkl)
1
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1416 N. Van Thin

share a(z)— 1M in D for each pair (f, g) in F, where tj; satisfy

k k
Z Iy > Z tyr,
v=1 v=1

then F is a normal family. Here, we denote [x] by integer part of the number x.

Remark 2 Theorem 1 is an extension of Theorems D and E for case sharing holomor-
phic function with zero point.

From Theorem 1, we get a corollary as following:

Corollary 3 Letn,m € Nandny, t,,k (v = 1,2, ..., k) be positive integer numbers
such that m is divisible by n + Zl,jzl ny and

k k k
Ny 2tv,v=1,...,k,n+2nvQZtv+3,n+ZnU=FN,.
v=1 v=1 v=1

Let F be a family of meromorphic functions in a complex domain D with all poles and
2m 42+ Y% 1

k
n + Zv:l ny
functions with zeros of multiplicity m in a domain D. If

zeros of multiplicity at least [ ] +1. Let a(z) # 0 be a holomorphic

fn(fnl)(tl) L (fnk)(tk) + Zalfnl (fnll)(tll) L (fnkl)(tkl) # a(z)
1

forevery fin F, where t satisfy

k k
Dot =Dt
v=1 v=1

then F is a normal family.
We see that Corollary 3 is an extension of Theorems A and B.

Theorem 4 Letn,m € Nandny, t,,k (v =1, 2,...,k) be positive integer numbers
such that m is divisible by n + Zﬁ:l ny and

k k k
nv>IU1U=1:~~~,k,n+2nv>Ztv+2,n+2nv:rN1'
v=1 v=I v=I

Let F be a family of entire functions in a complex domain D with all zeros of multiplicity
k
2m 424+t

n + Zﬁ:] ny
of multiplicity m in a domain D. If

atleast [ ] +1. Leta(z) # 0 be a holomorphic functions with zeros
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fn(fnl)(tl) . (fnk)(tk) 4 Zalfnl(fnll)(tll) o (fnkl)(tkl)7
1

gn(gnl)(tl) o (gnk)(tk) + Zalg”ll(gnll)(tll) o (gnkl)(tkl)
1

share a(z)— I M in D for each pair (f, g) in F, where t; satisfy

k k
PILED IR
v=1 v=1
then F is a normal family.

2 Some Lemmas

To prove our results, we need the following lemmas.

Lemma 1 (Zalcman’s Lemma, [11]) Let F be a family of meromorphic functions
defined in the unit disc A. Then if F is not normal at a point 7y € A, there exist, for
each real number o satisfying —1 <a < 1,

1. areal numberr, 0 <r <1,
2. points z,, |zu| <1, Zn = 20,
3. positive numbers p, — 0T,
4. functions f, € F

such that

Jn(@n + pné)
—_——

n

gn) = g

spherically uniformly on compact subsets of C, where g(&) is a nonconstant mero-

morphic function and g* (&) < g"(0) = 1. Moreover, the order of g is not greater
g’ (@)
1+|g(2)]?

than 2. Here, as usual, g*(z) = is the spherical derivative.

Lemma 2 [2] Let g be a entire function, and M is a positive constant. If g% (£) < M
forall & € C, then g has the order at most one.

Remark 5 In Lemma 1, if F is a family of holomorphic functions, then by Hurwitz’s
Theorem, g is a holomorphic function. Therefore, by Lemma 2, the order of g is not
greater than 1.

We consider a nonconstant meromorphic function g in the complex plane C, and
its first p derivatives. A differential polynomial P of g is defined by

n p
P(2) =) ei(d) [[(eV @)%,

i=1 j=0

@ Springer



1418 N. Van Thin

where §;; (0 < i, j < n) are non-negative integers, and «; (1 < i < n) are small
(with respect to g) meromorphic functions. Set

p

14
d(P):= min 0 Sij and 6(P) := max Z;js,-,-.
Jj= Jj=

In 2002, Hinchliffe [6] generalized theorems of Hayman [5] and Chuang [1] and
obtained the following result.

Proposition 1 Ler g be a transcendental meromorphic function, let P(z) be a non-
constant differential polynomial in g with d(P) > 2. Then

T <6(P)—+1ﬁ l 1 N 1 T
(r,g)\d(P)_1 (r,g>+d(P)_1 (r,P_1>+o( (. 8)),

forallr € [1, 400) excluding a set of finite Lebesgues measure.

By argument as Proposition 1, we are easy to get the result as following for small
function. However, for convenience of the reader, we prove it here.

Lemma 3 Let g be a nonconstant meromorphic function and P(z) be a nonconstant

differential polynomial in g with d(P) > 1. Let a(z) # 0 be a small function of P(g).
Then

T( )<—9(P)+1N< l)+LN( )+ 1N< ! >+(T( ))
PESTaey T\ Ng)Tam T ey e =a) TS

forallr € [1, 400) excluding a set of finite Lebesgues measure.
Moreover, in the case where g is a nonconstant entire function, we have

T( )<Mﬁ( l).,.#ﬁ( ;>+ (T(r, )
PESTary T\ hg) Tany P ma) T8

forallr € [1, +00) excluding a set of finite Lebesgues measure.

Remark 6 Let g be a nonconstant meromorphic function and P(z) be a nonconstant

differential polynomial in g withd(P) > 2. Leta(z) # 0 be a small function of P(g).
Then

T( )<—9(P)+1N( l)+ ! N( l)+(T( ))
PESap -1 \e) Tam =1t e =) TN TS

for all r € [1, 400) excluding a set of finite Lebesgues measure.
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Proof of Lemma 3 and Remark 6 For any z such that |g(z)| < 1, since Zf:o Sij =

d(P) (1 <i < n), wehave

[ SR 1:(65]
5@ |P<z>| 5@

(D(z)
|P(Z)| Z (I ,(z)|]"[| @

i=1 j=0

S,J

This implies that for all z € C,

n

1 1 gY (z) s
| +—<l t— . ; 1/
= eor® < (g §| (Z)|H|

Therefore, by the Lemma on logarithmic derivative and by the first main theorem, we

have
(5)<n(7)
d(iPm|r,— ) <m\r,— | +0o(T(r,g))
g P

1 1
7 <r, F) NG ) +o(T(r, )

=T, P)—N <r, %) +o(T(r, g)).

On the other hand, by the second main theorem for small function [5,9], we have

1 _
T(r, P N(r, P N N
(r, P) X N(r, P) + ( P>+ <r,P
Hence,

1
P—a))

1 — — 1 _
d(Pym(r, =) < (N(r, P) + N(r, F) + N(r,
g
N( : T
- N(r. F) +o(T(r, 2)).
By First Main Theorem, we have
d(P)T(r,g) =d(P)T(r,—) + O(1)

=d(P)m(r, =) +d(P)N(r, —) +0()

%IH%I»—i

< (N P+ N (. ;)+N(r,Pl_a))

1 1
+ d(P)N(r, E) — N(r, F) +o(T (1, 8)).

1
) +o(T(r, g)).
—a

2.1)
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1420 N. Van Thin

We see

n P J)

Sij—d(P) g
d(P) P(z) le: ;g 1_[

Jj=0

Note that Zf:o Sij —d(P) = 0, and therefore we get

d(P)v1 <v max 13 Vg NI
(P) 1+ a,+Zsz%

1
3 P oI<i<n ¢
Jj=0

n
<v%+2?@+eww?
1=

where v, is the pole divisor of the meromorphic ¢ and Vg := min{vy, 1}.

This implies

d(Pyv1 —v) +7) <O(P)+ D¥) +Zva[

P P
i=1

(note that for any z¢, if v1 (z9) = O then d(P)v1(z0) — v%(z()) —i—ﬁ% (z0) < 0). Then,
8 8
we obtain

1 1y —( 1 — 1
d(P)N <r, §) - N <r, ;) +N <r, F) S@P)+ DN )+ D NG )

i=1

— 1
=@(P)+ 1N (r, g) + o(T(r, g)).

Combining with (2.1), we have

_ _ 1 — 1
d(P)T(r, &) < (N(r, P) + N(r, 5— a)) + @(P)+ 1)N(r, §) +0o(T(r, g)).

On the other hand, by the definition of the differential polynomial P, Pole(P) C U,
Pole(¢;)U Pole(g). Hence,

— — 1
d(P)T(r.g) <(N(r.g) + N(r. 5—))

+ (0(P) + DHN(r, é) +o(T(r, ). (2.2)
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This implies that

@P)+1)—, 1 1 — 1 — 1
T(r,g < WN(F, g) + mN('ﬁ g+ mN(i’, m)) +o(T(r, 8)).
2.3)

From (2.3), we conclude the statement of Lemma 3 for nonconstant meromorphic
function.
From (2.2), we have

APIT(, 8) < (T, ) + N(r, 5

)

+ (0(P) + DN(r, é) +o(T(r, 8)).

Therefore, if d(P) > 2, we get

0(P)+1— 1 1 — 1
T(V, g) < d(P)——lN <V, E) + mN (r, P——a> +0(T(V, g)) (24)

From (2.4), we obtain Remark 6.
In the case where g is nonconstant holomorphic function, the inequality in (2.2)
becomes

d(P)T(r,g) <N <r, 5 !

—a

) +@(P)+ DN <r, é) +o(T(r, 9)).

This implies that

T <9(P)+1N 1 1 ¥ 1 T
(r»g)\W) (”,g)-i-— (F,m>+0( (r, 8).

We have completed the proof of Lemma 3. O

Lemma 4 Let f be a nonconstant rational function, P(z) = adzd +ad_1zd_1 +-- 4
ag,d € Nyag # 0,a4—1, ...,ay be complex numbers and n € N, k,ny, t, € N¥,
v=1,...,k.

Ifd=0, P(z) =ap #0,

k k
ny=ton+ Y ny=y h+2v=1..k
v=1 v=1

andifd > 1,
k k
nv2tv,n+2nv2Ztv+2,vzl,...,k,
v=1 v=1
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1422 N. Van Thin

suppose that all zeros and poles of f having multiplicity at least

[Zd F2+ 38 1

. ]+1,
n+Zv=] Ny

then the equation

A R
have at least two distinct zeros.

Proof We consider two cases as following:

Case 1. f is a polynomial. Then f™( ")) . (f™)®) — P(z) is a polynomial with
degree at least 2d + 2 and when P(z) = ag # 0, f*(f™)) ... (f)® — P(z) is
polynomial with degree at least 2. Indeed, when deg P > 1, then all zeros of f have
multiple at least

[2d+2+2’,§:1rv]+1> 24424 1o
n+ Yk m n+ Yy

2d +24+ 3% i1

n-+ Zlf;:l ny

is polynomial with degree at least

k k k k
<n+va)degf—Ztv >2d+2+ZtU—ZtU=2d+2.
v=1 j=1 v=1 v=1

Hence deg f > . This implies that (") . (f)®) — P(z)

We suppose that £ (")) . (f™)) — P(z) has unique zero zo, then
fn(fm)(tl) o (fnk)(tk) —P()=A(z — Zo)l,l >2d +2 2.5)

and A # 0is a constant. Take derivative both sides (2.5) to d and d + 1 times, we have

(@ @) —aia -1 - d D - 20 = PO,
(2.6)

and

(f”(f”l)(“) . (f”k)““)(dﬂ) —All—1)...(—d+ 1) —d)(z—z0) 9"
2.7

Since [ > 2d +2 > d + 1, from (2.7), we get that zo is uniqueness zero
(d+1)
of (f”(f"')(“) ... (f”k)(’k)) . We see that all zeros of f belong to zeros of
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(d+1)
(f" (frH (f"k)(’k)> . Thus, f has uniqueness zero zg. From (2.7), we get

(d)
0= ("W () o) = PO o) £ 0.
This is a contradiction. Hence,

FRmHW (o — p(z)

have at least distinct two zeros in two cases P(z) = ag # 0 and deg P > 1.
Case 2. f is not a polynomial. By hypothesis, we can express f as following

f_A(Z_al)m(z—ag)pz...(z—as)p“ (2.8)
T U @=b)N(z =) ... (z — b1’ .

where p; > 1,i =1,...,5,q; =2 1,j =1,...,tif P(z) = ap # 0 and p; >
|:2d+2+Z];:1 tj 2d+2+21;=1 tj
k k
n+iinj n+3n;
ifdeg P > 1.
Take

]+1,i=1,...,s,qu[ ]—i—l,j:l,...,t

K k t k
2d+2+) gt 2d+2+) ¢t
pP= E pi =S ka_l v,q = E qgj =t ka_l u 2.9)
i=1 n+ Zv=1 Iy j=1 n—+ Zv:l ny

ifdegP > 1,and p > 5,9 > tif P(z) =ag # 0.
From (2.8), we have

n, @ —a)P!"(z —ax)" .. (2 — ag)P™
(z — b)) (7 — by)2Mv . (7 — by )’

fr=a

Then

(z — a))P1mo=t (7 — gy)P2m=tv | (7 — gg)Psmo—tv
(Z - bl)qlnv"rtv (Z — bz)Qva+tv .. (Z — bt)(]tnv-‘rtu
v=1,...,k, (2.10)

(f") @) = Am 2(2),

where

gv(Z) = (i’lvp - an)(nvP — Nyq — ... (nvp —nyq —ty + l)ztv(s-i-z—l)
+ by s+e—1—12" T 4y by

and b,, e =0, ...,5,(s +t — 1) — 1 are complex numbers.
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1424 N. Van Thin

From (2.10), we see

fn(fnl)(tl) o (fnk)(tk)

k Nk
= An+2§:1 oy st'=1 (z — Cli)(nJrZ”=1 m)Pi= =t o 2(2)
H;:l(z — bj)(”'f‘Zﬁ:l "v)qj""Zﬁ:l Iy
P
_ 1(2) ’ 2.11)
012)

where g(z) = [15_, gv(2). degg < (Xh_  t)(s +1 — ).
Case 2.1. f"(f™)® (™)) — P(z) has uniqueness a zero, we denote by zo.
Thus, we can write

B(z — z0)!

neeny) eyt _ p)y =
FU L = P) SIS Sy

. (2.12)

where [ € N* and B # 0 is a complex number. From (2.11), taking derivative both
sides d times, we get

(fn(fnl)(ll) o (fnk)(lk))(d)

k k
HS NO+Y L n)pi—) g tv—d
= An"erIi:] ny i:l(z B al)( Zu*l V)P val Y

Gi(2), 2.13
l_[tj=1 (z — bj)('“Z];:] nu)qurZ’;:l tot+d 1(2) ( )

where deg G < (Zf):l ty +d)(s + ¢t — 1). Similar to (2.13), taking derivative both
sides (2.11) d + 1 times, we get

(fn(fnl)(tl) o (fnk)(tk))(d+1)

s k =Yk ty—d—1
=AM [Tz — a) " F = mpi—2um fo

Go(2), 2.14
1—[;:1 (z — bj)(n+Z’;=| nu)q_/+2’,j=] ty+d+1 2(2) ( )

where deg Go < (X8 ty +d 4+ 1) (s +1 — 1).

Note that in the case P(z) = ap # 0, we take the derivative both sides (2.11) with
0, 1 times, respectively, we obtain the (2.13) and (2.14), respectively.
Case 2.1.1. d > [. Then from (2.12), we have

BRa+1(2)
k 9
]_[tj:l(z — bj)(”+Zv=1 g+ Yy otd+1

(2.15)

(fn(fnl)(tl) o (fnk)(tk))(d+1) —
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Normal Criteria for Family Meromorphic Functions Sharing... 1425

where

Rat1(2) = l_[ (l - (n + va> q— <Z tu> P h) L@+ Di—@=1+1)
v=1 v=1

h=0

+ Cry—d—t—1 2 TDTETED=L g

andcy, h=0,...,(d+ Dt —(d — 1+ 1) — 1 are complex numbers.
From (2.11) and (2.12), compare degree of the numerator after computing, we get

k k k k
(n—i—va) p— (Ztv> s + deg g = max{l, (n +va> q—l—(Ztv) t+dj.
v=1

v=1 v=1 v=1
(2.16)
From (2.16) and deg g < (Zﬁzl ty)(s +t — 1), we obtain
k k k
(n +va> p— (Ztv) s+ (Ztv> (s+r—=1
v=1 v=1 v=1
k k
> (n—{—va)q + (Ztv)t—}-d.
v=1 v=1
This implies
k k
<n+2nv) (P—q) =) t+d.
v=I1 v=1
k
ty+d
Hence, p > g + z:l’zl—;+ > ¢. From (2.14) and (2.15), we see
n+ Zv:l ny
u k k
deg [ [z — ap) 2= m)Pim2omi 07471 < deg Ry (2).
i=1
Thus,
k k
v=1 v=1
This implies
k k
l—dz(n—i—va)p—i—l—(Ztv—i—d—i—l)s—(d—i—l)t. (2.17)
v=1 v=1
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1426 N. Van Thin

From (2.9) and p > ¢, we have

k k ;
(va+d+l>5+(d+l)t§ (Zlv+d+l)p n+ Yo

k
v=1 v=1 2d+2+ Zv:l Ly

n+ Yaoim
24 +2+ 3% 11,

k
< (n + va> p. (2.18)
v=1

+ (d+ g

Combining (2.17) and (2.18), we have [ — d > 1. This contradicts with d > [.
Case 2.1.2.d < [.Ifd > 1, we have

(z—20)"1U4(2)
ntjzl (z — bj)(n+2§:1 nv)qj+2ﬁ:1 to+d
(2.19)

(fU W (YD (pz) @D =

where Ug(z) = JT120( — (n + Y5 no)g — (0 01 — Mz + yar—1z=1 +
-+, yj,j =0,...,dt — 1 are complex numbers. We also have

(f"(f"l)(tl) o (fnk)(tk))(d+l) _ (P(Z))(d'H)

(z =20 Wyt1(2)

e X T , (2.20)
[Tz — by St ma +Ey
where Ugs1(2) = [Thmo( — (0 + -y n)g — (Cumy i)t — WD 4
x(dﬂ)t,lz(d“)t_l +---+x0,x;,j=0,...,(d + 1)t — 1 are complex numbers.

We distinguish two subcase:
Case2.1.2.1.1 # (n+ X _, ny)g + (X _, 1)t +d. From (2.11) and (2.12), we see
deg P; > deg Q1. This implies

k k k k
<n +va> p— (Ztv> s +degg > <n —i—va)q + (Zt’f) t.
v=I1 v=1 v=1 v=1
From deg g < (Z];=1 t,)(s +1t — 1). Thus,

k
M (2.21)

Pp=q+ >dq.
n+2ﬁ:1nv
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From (2.13) and (2.19), we see zo # a;,i = 1,...,s. Thus, from (2.14) and (2.20),
we get

s
k k
deg l_[(z _ al.)(""'Zv:l ny)Pi— y—y tv—d—1 < degUyy1(2).

i=1

Thus, we have

k k
(n-l—va)p— (Ztv>s—(d+l)s < (d+ Dr.

v=1 v=1

From (2.9) and (2.21), we obtain

k k
<n+va)p§ (Ztv+d+l>s+(d+l)t

v=1 v=1

k k
< (er +d+ 1) p— +Z”:1k””
v=1 2d+2+3 ity

n + Zﬁ:] ny
2d+24 Y by

k
< (n + va> p.
v=1

+ (d+ g

This is a contradiction.

Case2.1.2.2. 1= (n+ Y *_ n)g + (CF_ 0)r +d.

If p > g, by argument as Case 2.1.2.1, we obtain the contradiction.
If p < ¢, from (2.14) and (2.20), we have

k
l—d—1<degGy < (Ztv+d+1)(s+t—l).

v=1

Therefore,

k k
<n~|—va)q =l — (Ztu>t—d
v=1 v=1
k
<degGjp — (Zm)t—i—l

v=1
k k
< (Ztv+d+l> (s+t—1)— (Ztv)t+l
v=1 v=1
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1428 N. Van Thin

k
<<Ztv+d+l>s+(d+l)t

v=1

k k
§<Ztu+d+l>p nt Y=t
v=1

2 +24+ 3% 11
nt Yhoim
24 +24+ 35 1

k
< (n —+ va> q.
v=I1

+ d+ g

This is an impossible.
Ifd =0, P(z) = ap # 0, from (2.12), we have

(z—z0) T Hi(2)
1_[}:1(2 — bj)(n+2ﬁ=1 G+ o ol

(frOm@ Yy = (2.22)

k k
where Hi(z) = B — (n+ Y. nj)qg — (Xt +wiz 7'+ 4w, wi, ..., wy
j=1 j=1
are complex numbers and B is a nonzero constant. From (2.11), we see

& k
[T (z — ap) o Zomimpit oy o=l (7

(fU I (Y = ., (2.23)

k k
1—[;_=1 (z — bj)(n+zv=1 )i+ y—q tv+l

where s +t — 1 < deg Hy(z) < (Zﬁ:] ty + (s +¢—1). By argumentasd > 1,
and remark that p > s, g > t, we get a contradiction.
Case 2.2. f*(f™)) . (f™)®) — P(z) has no zeros. Thus, we can write

c

UM~ P2) = . (224)
H;:1(Z - bj)(n+Z'Z=| n)gj+ 301 o
where C # 0 is a complex number. Thus, (2.20) can be replaced by
(fn(fnl)(tl) o (fnk)(tk))(d-i-l) _ (P(Z))(d+1)
Ui, (z
= d+1@) (2.25)

x X )
HZ’:l(Z _ bj)(n+Zv=. my)qj+) yy totd

where Uj,,(2) = szo(_(” + Zﬁ:l ny)q — (Zﬁ:l ty)t — h)z@+DE=D +x:}<lZd' +
S o x;f, j=0,...,(d+ 1)(t — 1) — 1 are complex numbers.
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From (2.24) and (2.11), we have deg P; > deg Q1. From (2.21), we see that p >

k
t
q+ @ > ¢. Thus, combine (2.14) and (2.25), we get

n+ Zﬁ:l Ny
i k k
deg[ [z — a) T ZvmimIPmLam =l < deg U, (2).
i=1
Hence,
k k
(n + va) p— (sz) s—(d+Ds<(d+1D(—1.
v=1 v=1
This implies
k k
(n—i—Znu)pf(Ztv—i—d—i—l)s—i—(d—i—l)(t—l) (2.26)
v=1 v=1
k
< (Ztv—i-d—i-l)s—i-(d—i-l)t
v=1
From (2.26), and compute similarly to Case 2.1.2.1, we get a contradiction. O
Lemma 5 Let f be a nonconstant rational function, f # 0, P(z) = aqz® +
ad_1zd_l +---+ap,d e N*,ag #0,a4_1, ..., ay be complex numbers and n € N,

k,l’lj,tjEN*,j:L...,k.
Ifd =0, P(z) = ao # 0,
k
np=y ti+2 j=1,...k
1

j=

njEtj,n+
J

andifd > 1,

k

nj=y ti+2 j=1.. .k
1 j=1

njztj,n+
J

suppose that all poles of f having multiplicity at least

[Zd +2+ 351

x ]+1.
”+Zj=1 nj

Then the equation
FrUmI (M = P(2)

has at least distinct two zeros.
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1430 N. Van Thin

Proof Since f has not zeros, then we can write

A
f=a—r, (2.27)
Hj:] (Z - bj)q]
2d+2+ YK ¢
where ¢; > + +kZ”*1 v,j =1,...,tifdegP >landg; > 1,j=1,...,¢t
n+ Zv:l ny
if P(z) = ag # 0. Similar to (2.10), from (2.27), we have
(t) A™
(f")" = , (), v=1,...k, (2.28)
oG- by
where
gv(2) = (—nyq)(—nyg — 1) ... (=nyq — 1y + 1z
+ b;kv(tfl)flztv(s—’_t_l)_l + -+ bs
and b¥,e =0, ..., 1,(t — 1) — 1 are complex numbers.

We consider two cases:
Case 1.1. fr(f™)® . (f™)® — P(z) has uniqueness a zero, we denote by z(.
Thus, we can write

B(z — z0)!
P () — p(z) = 2.29
PR @)= 229)
H]:l (z b])
where [ € N* and B # 0 is a complex number.
From (2.28), we have
k
fn(fnl)(tl) o (fnv)(tv) _ An+Zu=1 nvg(Z)
H;:l (Z _ bj)(’H”Z];:] nu)quer:l ty
P (2)
- @ (2.30)

where g(z) = Hﬁ:l gv(z),degg < (Zﬁzl tp)(t — 1). Similar to (2.14), we have

AP+ G (2)

1‘[3:1 (z— bj)(n+z’;:1 n)qj+Y ko) otd+1’

(fn(fm)(n) o (f"k)(fk))(d+1) _

2.31)

where deg G5 < (X5 1, +d + 1)t — 1).
Case 1.1.1.d > 1.
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From (2.29) and (2.30), we see

k k
degg:maX{l, (n+2nv>q+<2tv>t+d}. (2.32)
v=1 v=1

From deg g < (Z];=1 t,)(t — 1) and (2.32), we obtained

k k k
(Zu) =1z <n+2nv> q+ (D) t+d.
v=1 v=1 v=1

This is a contradiction.
Case 1.1.2.d <.

If1 # (n+ Y*_ ng + X 1)t + d. From (2.29) and (2.30), we have
deg P, = degg > deg O>. By argument Case 1.1.1, we get a contradiction. We
have the expression as following

(fn(fnl)(tl) o (fnk)(tk))(d-i-l) _ (p(z))(d-i-l)

(z—20)"" U441 (2)

g 7 7 , (2.33)
[T=1(z = bj) 2= m)ai+ Lmy fotd
where
d k k
Uav1(2) = l—[ (l - ((n + va> q) - (Z tv) t— h) Zd+Dr
h=0 v=1 v=1
+ xas -1z g,
xj, j=0,...,(d+ 1)t — 1 are complex numbers.

Il =+ Y*_ n)g+ (CF_ 1)t +d. From (2.31) and (2.33), we obtain
degGy=1—d—1+degUjs) >1—d—1. (2.34)

From (2.34) and deg G% < (Z’;:I ty +d + 1)(t — 1), we obtain
k k
(n—l—va)q =[- (Ztv>t—d
v=1 v=1
k
<degGj; — (Ztv) t+1
v=1
k k
< (Ztv+d+1> t—1)— (Ztv>t+1
v=1 v=1
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k
< (n+ va)q.

v=1

This is a impossible.
Case 1.2. f*(f")" ... (f™)% — P(z) has no zeros. Thus, we can write

c

nepny) - cenny) o py =
P = P Q) = e

. (2.35)

where C # 0 is a constant complex number. From (2.30) and (2.35), we have

k k
degg = (n + Zw) q+ (Z zu) t+d. (2.36)
v=1 v=1

From (2.36) and deg g < (Zﬁzl ty)(t — 1), we get a contradiction. O

Lemma 6 Let f be a transcendental meromorphic function and a(z) = aqz? +
ag—1z2% '+ +ap,d e N*,ay #0,aq_1, ...,ay be constant numbers complex.
Letn € N, k,ny, t, e N, v =1, ...,k satistfy

Then the equation

FrUmm Y = at)

has infinitely zeros. Furthermore, if f is a transcendental entire function, then the
statement holds with

Proof Wesee P(f) = f"(f™)" ... (f™)®) is atranscendental meromorphic func-
tion. By Remark 6, we have

T <9(P)+1N ! : N ! T 2.37
(r’f)\d(P)——l (R;)-Fm (V,m)-l—o( (r, ). 237
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Normal Criteria for Family Meromorphic Functions Sharing... 1433

By easy computing, we have d(P) = Zlf:] ny,0(P) = Zﬁ:] t,. From (2.37) we get

k k
(HZHU “Yh —2) TG, f) <N(r,
v=1 v=1

1
—a) +o(T(r, f)). (2.38)

Byn+Y*_n,>Y*_ 1 +3and (2.38), we obtain that the equation

FROmHW (W = a(z)

has infinitely zeros. In the case f is a transcendental entire function, by Lemma 3, we

have
6(P)+1 1 1 — 1
T(r,f)<WN< f)‘l-m ( P2 >+0(T(rf))

Thus,

k k
<n+2nv—2tv—l) T(r, f) <N<r,
v=1 v=1

1
— a) +o(T(r, f). (239

Byn+Y*_ n, > Y% 1, +2and (2.39), we obtain that the equation

FrUmm (Y = at)

has infinitely zeros. We have completed the proof of Lemma 6. O

3 Proof of Our Results

Proof of Theorem 1 and Theorem 4 First, we prove Theorem 1. Without loss of gen-
erality, we may assume that D is the unit disc and F is not normal at zo = 0 € D.
Then a(0) = 0 or a(0) # 0.

Case 1. a(0) = 0, then we may assume that a(z) = @, 2"+ am1 2" +- - - = 2"h(z),
where £ (z) is a holomorphic function on neighbourhood of 0, #(0) = a,, # 0 and

k k
m = (n + va> s = (n; + Zn”’) S.
v=1 v=1
We consider the family G which defined as following

f,(z)}
z5

G= {H Hi(z) =

Z];:l by

there exist
”+Zﬁ:l Ny

If G is not normal at z = 0, apply to Lemma 1, for o =
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(1) areal numberr,0 <r <1,
(2) points zj, |zy| <1, zj = 0,
(3) positive numbers p; — 0T,
(4) functions H; € G

such that

RIS G.1)

J

gj€) =

spherically uniformly on compact subsets of C, where g(&) is a nonconstant mero-
morphic function and g*# (&) < ¢*(0) = 1.
We consider two subcases:

. Zj . Zj
Case 1.1. There exists the subsequence of —j, we also still denote by 2L such that
pj Pj
S8 — ¢ € C. Then
pj

Y )
Fi(08) _gH«“+”< p))

Zﬁ:l Ly P;
k
n + Zu:l ny

3.2)

Fj) =

s+
J
— £'¢(E —c) == H(®).

On the other hand, we see

1

v e () Ji(Pj&) \nyy () NG
Pj P
Zk—1 ly k k
where p =5 + ——2="——_ From ) ,_;t, > > ,_; ty1, We have

n + Zl:)=1 ny

FI(FD™ L (F7HW
i+ ) — ) O )

k
+2 0, e ar(p;)
1
ny niy 179 a(pé)
x Fj (Fj )(111)'“(ij )(tkI)_ pf”
i ) - (] (p))

Py
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Normal Criteria for Family Meromorphic Functions Sharing... 1435

nr+ 3 ) ) — 4+ L ) (R )

k
+Z'Oj e ar(p;€)
1
et for
Pj n n n
x ’ T L&D (0j&) . (FF) D (p )
k ( Zv:l by )
("1+Zu:1nvl) S+—k
n+ Zv:l ny
Pj
_a(p;é)
o
Thus,

FIEM L (FH®
i+ 3 ) ) — 4 L ) (R )

k
n—+ _n
+Z'Oj 2t ar(p;é)
1
% anl (Fj’_lll)(t“) . (F;'lkl)(tkI) _ a(pr]né)
Pj

D psE) (W (pj)

Py
i+ 3 ) ) — 4+ L ) (2F L )
k
+ij (APREES ar(p;€)
1
L o+ Y ) — (i + X o (L 1)
x p, n+ Zﬁ:l ny
. £ i) (0i8) - (F7D M (08)  a(ps8)
o} oy
D) (W (pj)
— 5
. 1 arpi®) £ (i) UTDN (0i€) - (DN (0iE)  ap;6))
oy oy
— H"(&)(H™) W (E)...(H")W (&) — ay&™ (3.3)
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spherically uniformly on compact subsets of C\{poles of H}, all zeros and poles of
2m 42+ Yk 1

n+ Zﬁ:] ny

H are multiple at least [ ] + 1. We see that

H"(&)(H™) (&) ... (H™) "W (&) # a,&™.
Indeed, if
H (&)(H") (&) ... (H™) W (&) = a,&™, (3.4)

then H has not poles on C and H has a unique zero z = 0. Thus, from (3.4), we have

1 H1y () H") (@)
T(r, " X0 (g) = T <r, — e e (§)> + o
B (H™)W(E)  (H™)W (&)
= r, Hri e Hrx
niy(t1) ni (tx)
N ( EE) | @) +00gn

< O(logr).
Thus, H is polynomial with the form H (z) = az?, a # 0, where

2m+2+ Y1, 2m+2+ Y1,

e =
n+2v=lnv n+2v=lnv

s@m+2+Y%_ 1) _
m

2s.

From (3.4), we see
k k k
(n—i—va)p—Ztv =m= (n—}—va)s.
v=1 v=1 v=I1
Thus Y _, 1, divisible by n + ¥ _, n,, this contradicts with
k k
n—+ va > Z ty.
v=1 v=1

Then, by Lemma 4 to Lemma 6, we see

H"(E)(H™) () ... (H™) (&) — a,, ™
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having at least two distinct zeros, we denote by &1, &». Thus, there exists § > 0 such
that D(&;,68) N D(&,6) = &. From (3.3), by Hurwitz’s Theorem there exist two
sequences &§; — & and S;f — & satisfying

FroiENUTY M (0E) - (f W (pj€))
+ ) arpiED [ 0 ENSTH M (0jE)) -
1

(FP %0 (0j8)) = alpjé)),
FFEDUT (&) - (F7) (0D
+ Y ar(piEN [ EDUTD M (0sED) -
1

(0 (pjE7) = alpj§])-

By hypothesis

n ¢ eniy(f) niy (1) np ¢ gniry () nkry(ter)
SEDE ) +Za1f (O DA () D
1

gn(gnl)(tl) o (gnk)(tk) + Zalg"’ (gnu)(tu) o (gnu)(tk/)
1

share a(z)— IM in D for each pair (f, g) in F, then for any r € Z™, we have

PN D (&) ... (fM) W (pjE))
+ ) ar(piEN M 0 ENSD M (0jE)) -
1

(SO0 (pj€) = a(pj&)),
SIOENI D (&) . ()™ (pj€D)
+ Y ar(pEN A (i EN D (0D
1

(frn“)(tk[)(pjg;‘) = a(,OjS;‘k).
Fix r, taking j — oo, we get

SO FMYI0) ... (1)) (0)
+ Zal (O)frﬂz (())(fr”ll)(m)(o) o (frnkl)(tkl)(o) = a(0).
1
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Since the zeros of

@U@ (9 @)
+ S a@ @U@ S @) = a).
1

have no accumulation points, in fact we have
*
pj&j =pjs; =0

or equivalently

This contradicts with D(&1, §) N D(&>, §) = &. Hence, G is a normal family at 0.
Case 1.2. There exists the subsequence of — 4 , we also still denote by A such that

_ pj’ Pj
ST oo. By definition of H, we have
Pj
fi(zj +pj€) = (zj +pj€) Hj(zj + pj).
This implies
n nus 1@ [ e (Fa~tu)
(fj (Zj+pj$)) ZC [ +0;©)"] [Hj (z +pj€)] ,
forallv=1,...,k. Hence,
7 @)+ pj) = ) + 0 &)™ (H]) " () + pjé) (3.5)
fy
+ D i (e p )T HP) BT (2 o+ ),
l,=1
forallv=1,...,k,where b;,,l, =1, ..., t, are nonzero complex numbers. We also
have
rj8j&) = Hj(zj+ pjé).
Thus,

HIDD @)+ pj8) = o () ©), GO
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foralll, =1,...,t,,v=1,..., k. From (3.5) and (3.6), we get
(f7) )+ p8) = P () + )" (8 (&) 3.7

- v —ly 5T v_lv v v—ly
+ by p ) o T (N BT (2 4 ),
ly=1

forallv=1,..., k. Thus,

[+ o)UY G+ 08 - (7P @ + i) (338)
= (Zj + pjs)mg?(g)(g;ll)(tl)(f) e (gr.lk)(tk)(%-)
+ Z ..... lk(Zj + IOJE)
OSllftlﬁ"-’oflkStk»Zf=| Iy>1
k

1
X H—hg?(f)(g;”)(n)(g) (ng)(tk)(?;')

Similar to (3.8), we also have

£ @+ iS4 pjE) - (D0 @+ pjE)

k Nk
— p;n1+2v=lnvl)a Zv:l tvl( ] _,’_pj%-)m (s)(g;lll)(tll)(s) (g;lkl)(tkl)(s)

(ny+ ﬁ: vi)a— 11{;: Iy
+pjn1 D vt To)@=) y tor Z Ciyy l“(Zj+:0j§)m

O<li<tif,..0<l<tr,Y*_ =1

8 ®OEM @) (@D @) (3.9)

gire

o)

From (3.8) and (3.9) and condition

k k
dot= Dt
v=1 v=1

we conclude that

am [} (zj + Pjé)(f;”)(")(zj' +0i6) ... (ffk)(tk)(Zj + ;)
a(zj + pjé)
Lo o 1@ A UMz 4 i) - (DD (25 + pj6)
a(zj+ pjé)

— ap
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_ am n1y (1) N
= h 4 ]S)g,(é)(g, )TE) . (g7 (E)

am
T+ o) 2

O<ly <1, 0<le<te, YK 1p>1

1 n
Cooeate [ 77§ OG- H™M©

vl( +$>
Pj

(14X D=4 tor m niry(ty) LN
+ 0. P — :
o' Y OE O @
Y nena=3%_ 1 Z am
+ 'OJ h(Z] 4 pjs)cllls---alkl

0<l1y<t11,...0<lps <tes, XX _ Ly >1

k
<[] ® @ E) . (g5 E)

e
pj

— g"(E)(M M (&) ... (g") (&) — an

spherically uniformly on compact subsets of C\{poles of g}.
Claim g"(£)(g™ (€)™ ... (g™ (&)™) is nonconstant.

Since g is nonconstant and n; > t; (j = 1,...,k), it is easy to see that
(8" (€)1 £ 0, forall j € {1, ..., k}.Hence, g"(£)(g" (§))) ... (8" ()™ # 0.

Suppose that g™ (£)(g" (&))" ... (g™ (&))" = a, a € C\{0}. From conditions
of Theorem 1, we have that in the case n = 0, there exists i € {1, ..., k} such that
n; > t;. Therefore, since a # 0, it is easy to see that g is entire having no zero. So,
by Lemma 2, g(£) = e19, ¢ # 0. Then

gn(s)(gl’ll (g))(ﬂ) . (gnk (é))(l‘k) — enC§+nd(en1€§+n1d)(t|) . (enkcs+nkd)(tk)

— (I’llC)tI . (nkc)lke("+2§:1 nj)c§+(n+zl;:1 nj)d'

k k
Then (n1¢)" - - - (ngc)k e L= MDETOFTE oin)d — 4 which is impossible. So,

g (&) ENM ... (g" (&)™

is nonconstant.

By Lemma 4 to Lemma 6, g" (£)(g"") "V (£) ... (g") ") (£) — a,, has at least two
distinct zeros. Similar to Case 1.1, we have G is normal at z = 0.

Hence, there exists A, = {z : |z] < p} and a subsequence {H } of {H;} such that
Hj, converges spherically locally uniformly to a meromorphic function U (z) or co
(k — o00) in A,. Now, we consider two case as following:

Case (i). When £ is sufficiently large, f;, (0) # 0. So U(0) = oc. Then, for arbitrary
constant R > 0, there exists o € (0, p), when z € A,, we have |U(z)| > R. Hence,
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R 1 R
for sufficiently large k, | H, ()| > 3 So — is holomorphic in A, and wheno = 3

Jk
we have

1 2s+1
eI
Z*Hj (2) Ros

1
‘fjk(Z)‘

By maximum principle and Montel’s theorem, F is normal at z = 0.
Case (i7). There exists a subsequence of f,, still denoted as f;, such that f;, (0) = 0.
Since the multiplicity of every zero of f, is at least

Cs@mA2+ Y8 1) _

n+21;:1nu m

k k
[2m+2+zv=1tv]+] . 2m+24+) it

- 2s,
n4+Y e

and H;, = f—ik, then H; (0) = 0. Thus, there exists 0 < w < p such that Hj,
is holomorphizc in A, = {z : |z| < o}. Then Hj, converges spherically locally
uniformly to a holomorphic function U (z) in A, = {z : |z] < w}. Since H, (0) =0,
then U(0) = 0. Hence, there exists 0 < r < p such that U(z) is holomorphic
in Ay = {z : |z| < r} and has a unique zero z = 0 in A,. Thus, H;, converges
spherically locally uniformly to a holomorphic function U (z) in A, then f;, converges
spherically locally uniformly to a holomorphic function z*U(z) in A,. Hence, F is
normal at z = 0. From Case (i) and Case (ii), we see JF is normal at 0.

Case 2. a(0) # 0.

Zk—l hy
Apply to Lemma 1 with ¢ = ”;k we have
n+ Zv:l Ny
fizj + pjé)
hj(€) = % — h(&)
J

spherically uniformly on compact subsets of C, where #(£) is a nonconstant mero-
morphic function. We have

R R E) ... (W) &)

k R
+ Z p;ﬂl‘f‘Zv:] nyr)o ZU=I ttlal (Z] + pjg)h;ll(g)(hjll)(t”)(s) .
1

(h;{kl)(tkl)(g) —a(zj + pj€)

= [+ 0@+ p8) (1P @+ pjE)

)@+ e f] @+ P )TN+ piE)
1

(f;lkl)(lkl)(Zj + pjé;') — a(Zj + pjé)
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By the condition

k k
Ztvl < Ztv,
v=I1 v=I
we get

R (EY R EN L (" (&)™ — a(0)

is the uniform limit (with metric spherical) of

£+ 0 @+ piE) (W @) + )
+ Y ar + o) [ @+ 0T @ 08 (] + o)
I

—a(zj + p;é)

on each compact subset of C\{pole of 4}. By Lemma 4 to Lemma 6 and Lemma 2,
the equation

R E)Y R END L (R (E) W = a(0).

has at least two distinct zeros &1 # &>. By argument as case 1.1, we get a contradiction.
By an argument of Theorem 1, we are easy to prove Theorem 4. O
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