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Abstract We introduce the Huang–Kotz Morgenstern type bivariate generalized
exponential distribution. Somedistributional properties of concomitants of order statis-
tics as well as record values for this family are studied. Recurrence relations between
single and product moments of concomitants are obtained. Moreover, the rank and the
asymptotic behavior of concomitants of order statistics are investigated.
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1 Introduction

Huang and Kotz [24] considered a polynomial-type single parameter extension of the
classical Farlie–Gumble–Morgenstern (FGM) family of distributions. The distribution
function (df ) which they suggested is

FX,Y (x, y) = FX (x)FY (y)
[
1 + λ(1 − F p

X (x))(1 − F p
Y (y))

]
, p ≥ 1, (1.1)

denoted by HK–FGM(λ, p). The corresponding probability density function (pdf) is
given by
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fX,Y (x, y) = fX (x) fY (y)
[
1 + λ((1 + p)F p

X (x) − 1)((1 + p)F p
Y (y) − 1)

]
, (1.2)

where FX (x) and FY (y) are df ’s, while fX (x) and fY (y) are pdf’s of the random
variables (rv’s) X and Y, respectively. The admissible range of the associated param-
eter λ is −max(1, p)−2 ≤ λ ≤ p−1, and since p ≥ 1, this admissible becomes
−p−2 ≤ λ ≤ p−1. When the marginals are uniform then, while for the classical
FGM the correlation between components does not exceed 1

3 , the modified version
HK–FGM allows correlation up to 0.39. Actually, Huang and Kotz [24] modification
of the FGM distribution paved the way for many research papers on modifications of
FGM distributions allowing high correlation. Meanwhile, the simple analytical form
of HK–FGM family aroused interest of many researchers, e.g., Amblard and Girard
[6], Bairamov and Kotz [8], Fischer and Klein [19] and Mokhlis and Khames [25,26]
among others.

The generalized exponential (GE) distribution is defined as a particular case of the
Gompertz–Verhulst df G(x) = (1 − ρ exp(−θx))α, for x > 1

θ
log ρ, ρ, θ, α > 0

(see, Gompertz [21] and Verhulst [32–34]), when ρ = 1. For more detail on the
Gompertz–Verhulst df, see Ahsanullah et al. [3], Ahuja [4] and Ahuja and Nash [5].
Therefore, X is a two-parameter generalized exponential rv if it has the df

FX (x) = (1 − exp(−θx))α; x > 0; θ > 0;α > 0,

denoted by GE(θ;α). This distribution is a generalization of the exponential distri-
bution and is more flexible, for being that, the hazard function of the exponential
distribution is constant, but the hazard function of GE distribution can be constant,
increasing or decreasing. Gupta and Kundu [22] showed that the kth moment of
GE(θ;α) is

μk = αk!
θk

ℵ(α−1)∑

i=0

(−1)i

(i + 1)k+1

(
α − 1

i

)
,

where ℵ(x) = ∞, if x is noninteger and ℵ(x) = x, if x is integer. Moreover, the
mean, variance and moment generating function of GE(θ;α) are given, respectively,
by

μ1 = E(X) = B(α)

θ
, Var(X) = C(α)

θ2
, MX (t) = αβ

(
α, 1 − t

θ

)
, (1.3)

where B(α) = �(α + 1) − �(1), C(α) = � ′(1) − � ′(α + 1), β(a, b) = �(a)�(b)
�(a+b)

and �(.) is the digamma function, while � ′(.) is its derivation (the trigamma func-
tion). Recently, Tahmasebi and Jafari [29] studied some properties of the Morgenstern
type bivariate generalized exponential distribution (denoted byMTBGED). Also, they
studied some distributional properties of concomitants of order statistics as well as
record values of this df. Moreover, they obtained some recurrence relations between
moments of concomitants of order statistics.
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In this paper, all the results of Tahmasebi and Jafari [29] are extended to HK–FGM
family with two marginals FX and FY , where X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2)

(denoted by HK–FGM-GE(θ1, α1; θ2, α2)). Moreover, some new results, which were
not obtained byTahmasebi and Jafari [29] for FGMfamily, are given such as recurrence
relations for the single, as well as the product, moments of bivariate concomitants of
order statistics, the concomitant rank order statistics and the asymptotic behavior of the
concomitants of order statistics. Finally, some essential corrections of Tahmasebi and
Jafari [29] are made. Namely, both the variance and the correlation of concomitants
of order statistics, as well as all the results of Sect. 4, concerning the concomitants of
record values, are corrected.

It is worth mentioning that some of the results presented in this paper are related
to paper of Beg and Ahsanullah [12]. Namely, Beg and Ahsanullah [12] considered
concomitants of generalized order statistics (the generalized order statistics consti-
tute a unified model for ordered random variables that includes order statistics and
record values among others) for the FGM family and derived the joint distribution of
concomitants of two generalized order statistics and obtain their product moments.
Tahmasebi and Behboodian [27], Tahmasebi et al. [30], Tahmasebi and Jafari [28] and
Tahmasebi et al. [31] are further recent relevant works on this subject.

2 The HK–FGM-GE and Some of its Properties

The joint df and pdf of (X, Y ) are defined by (1.1) and (1.2), respectively, where
X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2). Therefore, it is easy to show that the (n, m)th
joint moments of HK–FGM-GE(θ1, α1; θ2, α2) are given by

E(XnY m) = E(Xn)E(Y m) + λ(E(U n) − E(Xn))(E(V m) − E(Y m)), n,

m = 1, 2, . . . , (2.1)

where U ∼ GE(θ1;α1(p + 1)) and V ∼ GE(θ2;α2(p + 1)). Thus, by combining
(2.1) and (1.3), we get

E(XY ) = B(α1)B(α2) + λD(α1, p)D(α2, p)

θ1θ2
,

where D(αi , p) = B(αi (1 + p)) − B(αi ), i = 1, 2. Therefore, the coefficient of
correlation between X and Y is

ρX,Y = λD(α1, p)D(α2, p)√
C(α1)C(α2)

= λg(α1, α2, p).

Clearly, for any p ≥ 1, the function g(α1, α2, p) is increasing and positive function
with respect to each of αi , i = 1, 2. Therefore, if λ > 0, then ρX,Y is increasing
and positive function, and if λ < 0, then ρX,Y decreasing and negative function with
respect to each of α1 and α2. Moreover, we can show that
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lim
α1→∞
α2→∞

g(α1, α2, p) = 6(log(p + 1))2

π2 , lim
α1→0+
α2→0+

g(α1, α2, p) = 0.

Therefore, ρ(p) = − 6(log(p+1))2

π2 p2
≤ ρX,Y ≤ 6(log(p+1))2

π2 p
= ρ(p) (note that −p−2 ≤

λ ≤ p−1), which yields ρX,Y → 0, as p → ∞ and |ρX,Y | ≤ 0.2921, when p = 1
(see Tahmasebi and Jafari [29]). However, we can show that the upper bound ρ(p)

as a function of p is increasing function in the interval (1, 3.9241) and is decreasing
function in the interval (3.9242,∞). Therefore, we get max

p≥1
ρ(p) ≈ ρ(3.9241) =

0.3937. On the other hand, since log(1+p)
p is strictly decreasing function of p, then

min
p≥1

ρ(p) = ρ(1).Consequently, we get ρ(1) ≤ ρX,Y ≤ 0.3937,which is a significant

improvement comparing with the upper bound “0.2921” obtained by Tahmasebi and
Jafari [29]. This fact gives a satisfactory motivation to deal with HK–FGM-GE rather
than MTBGED. It is worth mentioning that the interval for p when ρ(p) is better than
Tahmasebi and Jafari [29] is (1, 18.1] (ρ(18.1) = 0.2922302), while the interval for p
whenρ(p) isworse thanTahmasebi and Jafari [29] is [18.2,∞) (ρ(18.2) = 0.291645)
and ρ(p) is not better than lower bound given by Tahmasebi and Jafari [29].

The conditional df of Y given X = x is given by

FY |X (y|x) = FY (y)
[
1 − λ(1 − F p

Y (y))((1 + p)F p
X (x) − 1)

]
. (2.2)

Therefore, the regression curve of Y given X = x for HK–FGM-GE is

E(Y |X = x) = E(Y ) + λ((p + 1)F p
X (x) − 1)(E(V ) − E(Y ))

= 1

θ2

[
B(α2) + λD(α2, p)((p + 1)(1 − e−θ1x )α1 p − 1)

]
,

where V ∼ GE(θ2;α2(p + 1)) and the conditional expectation is nonlinear with
respect to x .

3 Concomitants of Order Statistics Based on HK–FGM-GE

The concept of concomitants of order statistics was first introduced by David [15] and
almost simultaneously under the name of induced order statistics byBhattacharya [13].
Suppose (Xi , Yi ), i = 1, 2, . . . , n is a random sample from a bivariate df FX,Y (x, y).

If we order the sample by the X−variate and obtain the order statistics, X1:n ≤
X1:n ≤ · · · ≤ Xn:n , for the X sample, then the Y−variate associated with the r th
order statistic Xr :n is called the concomitant of the r th order statistic and is denoted by
Y[r :n]. Concomitants of order statistics can arise in several applications. In selection
procedures, items or subjects may be chosen on the basis of their X characteristic, and
an associated characteristic Y that is hard to measure or can be observed only later
may be of interest. Another application of concomitants of order statistics is in ranked
set sampling. It is a sampling scheme for situations where measurement of the variable
of primary interest for sampled items is expensive or time-consuming while ranking
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of a set of items related to the variable of interest can be easily done. A comprehensive
review of ranked set sampling can be found in Chen et al. [14]. Concomitants of
order statistics have also been used in estimation and hypotheses testing problems.
Another natural application of concomitants of order statistics is in dealing with the
estimation of parameters for multivariate data sets that are subject to some form of
type II censoring. For a recent comprehensive review of these applications, see David
and Nagaraja [16] and Sects. 9.8 and 11.7 of David and Nagaraja [17].

3.1 Marginal Distribution of Concomitants of Order Statistics Based on
HK–FGM-GE

Let X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2). Since the conditional pdf of Y[r :n] given
X[r :n] = x is fY[r :n]|Xr :n (y|x) = fY |X (y|x) (cf. Galambos [20], see also Tahmasebi
and Jafari [29]), then the pdf of Y[r :n] is given by

f[r :n](y) = fY (y)
[
1 + (1 − (1 + p)F p

Y (y))
r,n:p)
]

= (1 + 
r,n:p) fY (y) − 
r,n:p fV (y), y > 0, (3.1)

where V ∼ GE(θ2;α2(p + 1)) and


r,n:p = λ

(
1 − (1 + p)β(r + p, n − r + 1)

β(r, n − r + 1)

)
.

Therefore, the moment generating function of Y[r :n] is given by

M[r :n](t) = α2

[
(1 + 
r,n:p)β

(
α2, 1 − t

θ2

)

−(p + 1)
r,n:pβ
(

α2(p + 1), 1 − t

θ2

)]
. (3.2)

Thus, by using (3.1) (or by using (3.2)), the kth moment of Y[r :n] is given by

μ
(k)
[r :n] = E[Y k[r :n]] = (1 + 
r,n:p)E[Y k] − 
r,n:pE[V k]

= (1 + 
r,n:p)
ℵ(α2−1)∑

i=0

α2k!(−1)i

θk
2 (i + 1)k+1

(
α2−1

i

)

−
r,n:p
ℵ(α2(p+1)−1)∑

i=0

α2(p + 1)k!(−1)i

θk
2 (i + 1)k+1

(
α2(p+1)−1

i

)
.

Clearly, all the moments exist for integer values of α2 and α2 p. Moreover, by putting
k = 1 we get the mean of Y[r :n]

μ[r :n] = 1

θ2

[
B(α2) − 
r,n:p D(α2, p)

]
. (3.3)
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Thus, the difference between the means of Y and Y[r :n] is h(r, λ, α2, p) =
−
r,n:p D(α2,p)

θ2
,which implies thath(r, λ, α2, p) = 0, ifλ = 0or (p+1)β(r+p,n−r+1)

β(r,n−r+1) =
1. Since B(α) is increasing function of α, then D(α, p) ≥ 0. Therefore, h(r, λ, α2, p)

has the same sign of −
r,n:p, which means that h(r, λ, α2, p) > 0, if and only
if λ > 0, (p + 1)β(r + p, n − r + 1) > β(r, n − r + 1), or λ < 0,
(p + 1)β(r + p, n − r + 1) < β(r, n − r + 1). Finally, by using (3.3) we get
the following general recurrence relations:

Theorem 3.1 For any 1 ≤ r ≤ n − 3, we get

(r + 1)μ[r+2:n] = (2r + p + 1)μ[r+1:n] − (p + r)μ[r :n]. (3.4)

Moreover, for all n > 2, we get

(n + p)μ[r :n] = (2n + p − 1)μ[r :n−1] − (n − 1)μ[r :n−2]. (3.5)

Proof It is easy to check that


r+1,n:p = 
r,n:p − λp(p + 1)

r

β(r + p, n − r + 1)

β(r, n − r + 1)

and


r+2,n:p = 
r,n:p − λp(p + 1)(2r + p + 1)

r(r + 1)

β(r + p, n − r + 1)

β(r, n − r + 1)
,

which yield, after some algebra, the first recurrence relation (3.4). Also, we can check
that


r,n−1:p = 
r,n:p − λp(p + 1)

n

β(r + p, n − r + 1)

β(r, n − r + 1)

and


r,n−2:p = 
r,n:p − λp(p + 1)(2n + p − 1)

n(n − 1)

β(r + p, n − r + 1)

β(r, n − r + 1)
.

The second recurrence relation (3.5) is followed by combining the last two relations,
after some algebra. ��

Remark 3.1 When p = 1, we get the recurrence relation μ[r+2:n] = 2μ[r+1:n] −
μ[r :n] of Y[r :n] based on MTBGED, which is obtained by Tahmasebi and Jafari [29].
Moreover, it is worth mentioning that the second recurrence relation (3.5) is new even
for MTBGED.
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Remark 3.2 The recurrence relation (3.4) can provide us with an estimate of p.

Namely, based on the relation p = (r+1)μ[r+2:n]−(2r+1)μ[r+1:n]+rμ[r :n]
μ[r+1:n]−μ[r :n] , we can suggest

the estimator

p̂ = 1

n − 2

n−3∑

i=1

(i + 1)Y[i+2:n] − (2i + 1)Y[i+1:n] + iY[i :n]
Y[i+1:n] − Y[i :n]

.

Actually, the suggested estimator p̂ does not consistent or even unbiased, but bearing
in mind that there is no any known estimator of the power parameter p in the literature,
we can use it; nevertheless, it needs further theoretical and practical investigation.

By multiplying the both sides of (3.1) by (y − μ[r :n])2 and integrating, we obtain
the variance of Y[r :n] as

σ 2[r :n] = 1

θ22

[
C(α2) + 
r,n:p(C(α2) − C(α2(p + 1)))

−
r,n:p(1 + 
r,n:p)D2(α2, p)
]
. (3.6)

Clearly, when p = 1, we get

σ 2[r :n] = 1

θ22

[
C(α2) + δr (C(α2) − C(2α2)) − δr (1 + δr )D2(α2)

]
, (3.7)

where δr = λ(n−2r+1)
n+1 and D(α2) = B(2α2) − B(α2). The formula (3.7) is the

correction of the formula

σ 2[r :n] = 1

θ22
[C(α2) + δr (C(2α2) − C(α2))] ,

which is obtained by Tahmasebi and Jafari [29].
It is well known that in many cases, the concomitants of the extremes among the

X ’s are not extremes among the Y ’s (with high probability) (cf. Galambos [20]). This
fact aroused interest of some researchers to investigate the rank (of Y[r :n]) R[r :n] =∑n

j=1 I(Y[r :n] − Y j ), where I(x) = 1, if x ≥ 0, I(x) = 0, if x < 0. The distribution
of Rr :n is obtained by David et al. [18]. Barakat and El-Shandidy [9] gave a new
representation of the df and the expected value of R[r :n]. Namely, for all r, s =
2, 3, . . . , n − 1, we have

Ar :n(s) = P(R[r :n] = s) = n[E(C(Wr :n−1, Zs:n−1)) − E(C(Wr−1:n−1, Zs:n−1))

−E(C(Wr :n−1, Zs−1:n−1)) + E(C(Wr−1:n−1, Zs−1:n−1))], (3.8)

where C(., .) is the copula of the bivariate df FX,Y (x, y), i.e., C(w, z) = wz(1+λ(1−
w p)(1− z p)). Moreover, W j :n = FX (X j :n) and Z j :n = FY (Y j :n) are the j th uniform
order statistics with expectation E(W j :n) = E(Z j :n) = j

n+1 . The representation (3.8)
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enables us to use the δ−method (with one-step Taylor approximation) to compute an
approximate formula for the df Ar :n(s), by

Ar :n(s) ∼ n

[
C

( r

n
,

s

n

)
− C

(
r − 1

n
,

s

n

)
− C

(
r

n
,

s − 1

n

)
+ C

(
r − 1

n
,

s − 1

n

)]

= 1 + λ

n

− λ

n p+1 [rs(r p + s p) − (r − 1)s((r − 1)p + s p) − r(s − 1)(r p + (s − 1)p)

+ (r − 1)(s − 1)((r − 1)p + (s − 1)p)]
+ λ

n2p+1 [r p+1s p+1 − (r − 1)p+1s p+1

− r p+1(s − 1)p+1 + (r − 1)p+1(s − 1)p+1].

The limiting distribution of Y[n:n], as n → ∞, depends on the conditional distribu-
tion of Y given X and the marginal distribution of X, and it is given by the following
theorem.

Theorem 3.2 Let An = 1
θ2

. Then

F[n:n](An y)
w−→
n

FY (y)
(
1 − λp

(
1 − F p

Y (y)
))

,

where “
w−→
n

” denotes the weak convergence, as n → ∞ (for the definition of the weak

convergence, see Galambos [20]) and Y ∼ GE(θ2;α2).

Proof First, by applying Theorem 2.1, Part II, in Barakat et al. [10], by putting b =
1, a = n, we get

P(Xn:n ≤ an x + bn) = Fn
X (an x + bn)

w−→
n

e−e−x
,∀x, (3.9)

where X ∼ GE(θ1;α1), an = 1
θ1

, bn = − log[α1n] and [x] means the integer part of
x . On the other hand, in view of (2.2), we get

FY |X (An y|X = an x + bn)
w−→
n

= T (x, y) = FY (y)(1 − λp(1 − F p
Y (y))). (3.10)

Finally, we can easily check that the df FX (x) satisfies the von Mises condition:
Namely,

lim
x→∞

d

dx

[
1 − FX (x)

fX (x)

]
= −1 − lim

x→∞
1 − (1 − e−θ1x )α1

α1e−θ1x
= 0. (3.11)
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Therefore, in view of Theorem 5.5.1, in Galambos [20], (3.9), (3.10) and (3.11) are
sufficient conditions for the relation

F[n:n](An y)
w−→
n

∫ ∞

−∞
T (y, x)e−e−x

dx = FY (y)(1 − λp(1 − F p
Y (y))).

This completes the proof. ��

3.2 Joint Distribution of Concomitants of Order Statistics Based on
HK–FGM-GE

The joint pdf of concomitants Y[r :n] and Y[s:n], r < s, is (cf. Tahmasebi and Jafari
[29])

f[r,s:n](y1, y2) =
∫ ∞

0

∫ x2

0
fY |X (y1|x1) fY |X (y2|x2) fr,s:n(x1, x2)dx1dx2,

where β(a, b, c) = �(a)�(b)�(c)
�(a+b+c) and

fr,s:n(x1, x2) = 1

β(r, s − r, n − s + 1)
Fr−1

X (x1)

×(FX (x2) − FX (x1))
s−r−1(1 − FX (x2))

n−s fX (x1) fX (x2), x1 < x2.

Therefore,

f[r,s:n](y1, y2) =
∫ ∞
0

∫ x2

0

[
fY (y1)(1 + λ((1 + p)F p

X (x1) − 1)((1 + p)F p
Y (y1) − 1))

]

×
[

fY (y2)(1 + λ((1 + p)F p
X (x2) − 1)((1 + p)F p

Y (y2) − 1))
]

×
[

Fr−1
X (x1)(FX (x2) − FX (x1))

s−r−1(1 − FX (x2))
n−s

β(r, s − r, n − s + 1)
fX (x1) fX (x2)

]

dx1dx2.

(3.12)

On the other hand, we have

I1 = λ

∫ ∞
0

∫ x2

0
((1 + p)F p

X (x1) − 1)

×
[

Fr−1
X (x1)(FX (x2) − FX (x1))

s−r−1(1 − FX (x2))
n−s

β(r, s − r, n − s + 1)

fX (x1) fX (x2)

1 − FX (x1)

]

dx1dx2

= λ(1 + p)

β(r, s − r, n − s + 1)

∫ 1

0

∫ v

0

[
u p+r−1(v − u)s−r−1(1 − v)n−s

]
dudv − λ

= −λ
β(r, s − r, n − s + 1) − (p + 1)β(r + p, s − r, n − s + 1)

β(r, s − r, n − s + 1)
= −


(1)
r,s,n:p (3.13)
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(upon substituting u = FX (x1) and v = FX (x2)). Moreover, we have

I2 = λ

∫ ∞

0

∫ x2

0
((1 + p)F p

X (x2) − 1)

×
[

Fr−1
X (x1)(FX (x2)−FX (x1))s−r−1(1 − FX (x2))n−s

β(r, s−r, n−s+1)
fX (x1) fX (x2)

]

dx1dx2.

Upon substituting u = FX (x1) and v = FX (x2), we get

I2 = λ

∫ 1

0

∫ v

0

(
(1 + p)v p − 1

) [
ur−1(v − u)s−r−1(1 − v)n−s

β(r, s − r, n − s + 1)

]
dudv

= λ(1 + p)

β(r, s − r, n − s + 1)

∫ 1

0

∫ v

0
v pur−1(v − u)s−r−1(1 − v)n−sdudv − λ.

Moreover, upon substituting u
v

= w, we get

I2 = λ(1 + p)

β(r, s − r, n − s + 1)

∫ 1

0

∫ 1

0
vs+p−1(1 − v)n−swr−1(1 − w)s−r−1dwdv − λ

= −λ
β(r, s − r, n − s + 1) − (p + 1)β(s + p, n − s + 1)β(r, s − r)

β(r, s − r, n − s + 1)

= −
(2)
r,s,n:p. (3.14)

Finally, consider

I3 = λ2
∫ ∞

0

∫ x2

0
((1 + p)F p

X (x1) − 1)((1 + p)F p
X (x2) − 1)

×
[

Fr−1
X (x1)(FX (x2)−FX (x1))s−r−1(1−FX (x2))n−s

β(r, s − r, n − s+1)
fX (x1) fX (x2)

]

dx1dx2

= λ(I ′
3 − I1 − I2) = 
r,s,n:p, (3.15)

where

I ′
3 = λ(1 + p)2

∫ ∞

0

∫ x2

0
F p

X (x1)F p
X (x2)

[
Fr−1

X (x1)(FX (x2) − FX (x1))s−r−1(1 − FX (x2))n−s

β(r, s − r, n − s + 1)
fX (x1) fX (x2)

]

dx1dx2.

(3.16)
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Put u = FX (x1) and v = FX (x2) in the double integration (3.16) and then put u
v

= t,
we get (by using (3.13) and (3.14))

I ′
3 = λ(1 + p)2

∫ 1

0

∫ 1

0
vs+2p−1(1 − v)n−s tr+p−1(1 − t)s−r−1dtdv − λ.

= λ
(p + 1)2β(s + 2p, n − s + 1)β(r + p, s − r) − β(r, s − r, n − s + 1)

β(r, s − r, n − s + 1)

= 
(3)
r,s,n:p.

Thus,


r,s,n:p = λ
(

(3)

r,s,n:p − 
(1)
r,s,n:p − 
(2)

r,s,n:p
)

. (3.17)

Now, combining (3.12)–(3.15), with (3.17), we get

f[r,s:n](y1, y2) =
(
1 + 
(1)

r,s,n:p + 
(2)
r,s,n:p + 
r,s,n:p

)
fY (y1) fY (y2)

−
(

(1)

r,s,n:p + 
r,s,n:p
)

fV (y1) fY (y2) −
(

(2)

r,s,n:p + 
r,s,n:p
)

fV (y2) fY (y1)

+
r,s,n:p fV (y1) fV (y2), (3.18)

where


r,s,n:p = λ
(

(3)

r,s,n:p − 
(1)
r,s,n:p − 
(2)

r,s,n:p
)

,


(1)
r,s,n:p = λ

β(r, s − r, n − s + 1) − (p + 1)β(r + p, s − r, n − s + 1)

β(r, s − r, n − s + 1)
,


(2)
r,s,n:p = λ

β(r, s − r, n − s + 1) − (p + 1)β(s + p, n − s + 1)β(r, s − r)

β(r, s − r, n − s + 1)
,


(3)
r,s,n:p = λ

(p + 1)2β(s + 2p, n − s + 1)β(r + p, s − r) − β(r, s − r, n − s + 1)

β(r, s − r, n − s + 1)
.

(3.19)

The product moment E[Y[r :n]Y[s:n]] = μ[r,s:n] is obtained directly from (3.18) as

μ[r,s:n] = 1

θ22

[ (
1 + 
(1)

r,s,n:p + 
(2)
r,s,n:p + 
r,s,n:p

)
B2(α2)

−
(

(1)

r,s,n:p + 
(2)
r,s,n:p + 2
r,s,n:p

)
B(α2)B(α2(p + 1))

+
r,s,n:p B2(α2(p + 1))

]
. (3.20)
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Therefore, by using (3.3) and (3.20) we can after some algebra calculate the covariance
between Y[r :n] and Y[s:n] as

σ[r,s:n,p] = 
r,s,n:p D2(α2, p) − (
(1)
r,s,n:p + 
(2)

r,s,n:p)B(α2)D(α2, p)

+ (
r,n:p + 
s,n:p)B(α2)D(α2, p) − 
r,n:p
s,n:p D2(α2, p).

(3.21)

It is easily to verify that

σ[r,s:n,1] = 1

θ22
D2(α2)(δr,s − δrδs), (3.22)

where δr,s = λ2
[

n−2s+1
n+1 − 2r(n−2s)

(n+1)(n+2)

]
(we can easily verify that 


(1)
r,s,n:1 = δr ,



(2)
r,s,n:1 = δs and 
r,s,n:1 = δr,s). The relation (3.22) is obtained by Tahmasebi and

Jafari [29] for MTBGED.
We can now use (3.21) and (3.6) to obtain the coefficient of correlation between

Y[r :n] and Y[s:n] as

ρ[r,s:n,p]

= 
r,s,n:p D2−(

(1)
r,s,n:p+


(2)
r,s,n:p)B D+(
r,n:p+
s,n:p)B D − 
r,n:p
s,n:p D2

√∏2
i=1[C(α2)+
i,n:p(C(α2)−C(α2(p+1)))−
i,n:p(1+
i,n:p)D2]

,

(3.23)

where in formula (3.23) we abbreviated B(α2) and D(α2, p) by B and D, respectively.
Moreover, we use the abbreviations 
1,n:p = 
r,n:p and 
2,n:p = 
s,n:p. It is easily
to verify that

ρ[r,s:n,1] = D2(α2)(δr,s − δrδs)√∏2
i=1[C(α2) + δi (C(α2) − C(2α2)) − δi (1 + δi )D2(α2)]

,

which is the correction formula of the formula (3.20) obtained by Tahmasebi and Jafari
[29] for MTBGED, where δ1 = δr and δ2 = δs .

Now, by using (3.19) and the representation (3.18), we get the following general
recurrence relations for the product moment μ[r,s:n].

Theorem 3.3 For any 1 ≤ r ≤ n − 3, we get

(r + 1)μ[r+2,s:n] = (2r + p + 1)μ[r+1,s:n] − (p + r)μ[r,s:n]. (3.24)

Moreover, 1 ≤ s ≤ n − 3, we get

(s + 1)μ[r,s+2:n] = (2s + p + 1)μ[r,s+1:n] − (p + s)μ[r,s:n] + ξn(r, s, α2, λ : p).

(3.25)
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ξn(s, n, α2, λ : p) = λp(1−p)

θ22 (s+p+1)
D2(α2, p)

(



(3)
r,s+1,n:p − 


(3)
r,s,n:p

)
. Finally, for all

n > 2, we get

(n + p)μ[r,s:n] = (2n + p − 1)μ[r,s:n−1] − (n − 1)μ[r,s:n−2] + ζn(r, s, α2, λ : p),

(3.26)

where ζn(s, n, α2, λ : p) = λp
θ22

D2(α2, p)
(



(3)
r,s,n−1:p − 


(3)
r,s,n:p

)
.

Proof It is easy to check that



(i)
r+2,s,n:p − 
(i)

r,s,n:p =
(



(i)
r+1,s,n:p − 
(i)

r,s,n:p
) 2r + p + 1

r + 1
, i = 1, 3, (3.27)

and


(2)
r,s,n:p = 


(2)
r+1,s,n:p = 


(2)
r+2,s,n:p. (3.28)

Therefore,


r+2,s,n:p − 
r,s,n:p = (
r+1,s,n:p − 
r,s,n:p)
2r + p + 1

r + 1
. (3.29)

The recurrence relation (3.24) is now followed by combining (3.27), (3.28) and (3.29)
with (3.20). Now, we turn to prove (3.25). First, we notice that


(1)
r,s,n:p = 


(1)
r,s+1,n:p = 


(1)
r,s+2,n:p. (3.30)

Moreover, it is easy to check that



(i)
r,s+2,n:p − 
(i)

r,s,n:p =
(



(i)
r,s+1,n:p − 
(i)

r,s,n:p
) 2s + p + 1

s + 1
+ φi , i = 2, 3,

(3.31)

where φ2 = 0 and φ3 = − p(1−p)
(s+1)(s+p+1) . Therefore,


r,s+2,n:p − 
r,s,n:p = (
r,s+1,n:p − 
r,s,n:p)
2s + p + 1

s + 1

+ λφ3(

(3)
r,s+1,n:p − 
(3)

r,s,n:p). (3.32)

The recurrence relation (3.25) is now followed by combining (3.30), (3.31) and (3.32)
with (3.20). In order to prove the recurrence relation (3.26), we first notice that



(i)
r,s,n−2:p − 
(i)

r,s,n:p =
(



(i)
r,s,n−1:p − 
(i)

r,s,n:p
) 2n + p − 1

n − 1
, i = 1, 2, (3.33)
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and



(3)
r,s,n−2:p − 
(3)

r,s,n:p =
(



(3)
r,s,n−1:p − 
(3)

r,s,n:p
) 2n + 2p − 1

n − 1
. (3.34)

Therefore,


r,s,n−2:p − 
r,s,n:p = (
r,s,n−1:p − 
r,s,n:p)
2n + p − 1

n − 1

+ λp

n − 1

(



(3)
r,s,n−1:p − 
(3)

r,s,n:p
)

. (3.35)

The recurrence relation (3.26) is now followed by combining (3.33), (3.34) and (3.35)
with (3.20). The theorem is established. ��

4 Concomitants of Record Values Based on HK–FGM-GE

Let {(Xi , Yi )}, i = 1, 2, . . . be a random sample from HK–FGM-GE(θ1, α1; θ2, α2).

When the experimenter interests in studying just the sequence of records of the first
component Xi ’s, the second component associatedwith the record value of the first one
is termed as the concomitant of that record value. The concomitants of record values
arise in a wide variety of practical experiments, e.g., see Bdair and Raqab [11] and
Arnold et al. [7]. Some properties from concomitants of record values were discussed
in Ahsanullah [1] and Ahsanullah and Shakil [2]. Let {Rn, n ≥ 1} be the sequence of
record values in the sequence of X ’s, while R[n] be the corresponding concomitant.
Houchens [23] has obtained the pdf of concomitant of nth record value for n ≥ 1, as
h[n](y) = ∫ ∞

0 fY (y|x)gn(x)dx, where gn(x) = 1
�(n)

(− log(1− FX (x)))n−1 fX (x) is
the pdf of Rn . Therefore, after some algebra, we get

h[n](y) = (1 + ϒn:p) fY (y) − ϒn:p fV (y), (4.1)

where V ∼ GE(θ2;α2(p + 1)) and

ϒn:p = λ

⎡

⎢
⎢
⎣1 − (1 + p)

ℵ(p)∑

i=0

(−1)i
(

p
i

)

(i + 1)n

⎤

⎥
⎥
⎦ .

Clearly, ϒn:1 = λ(2−(n−1) − 1) = λn−1 and the representation (4.1) becomes
h[n](y) = (1 + λn−1) fY (y) − λn−1 fV (y), which is the essential correction of the
representation (4.1) due to Tahmasebi and Jafari [29] for MTBGED, which is given
by h[n](y) = (1 + λn) fY (y) − 2λn fV (y).

The representation (4.1) enables us to derive the mean and the variance of R[n] as

μ[Rn ]:p = 1

θ2

[
B(α2) − ϒn:p D(α2, p)

]
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and

σ 2[Rn ]:p = 1

θ22

[
C(α2) + ϒn:p(C(α2) − C(α2(p+1))) − ϒn:p(1 + ϒn:p)D2(α2, p)

]
.

(4.2)

Clearly,

μ[Rn ]:1 = 1

θ2

[
B(α2) − λn−1D(α2)

]

and

σ 2[Rn ]:1 = 1

θ22

[
C(α2) + λn−1(C(α2) − C(2α2)) − λn−1(1 + λn−1)D2(α2)

]
,

which are the correction formulas of the mean and the variance, respectively, of R[n]
given by Tahmasebi and Jafari [29] for MTBGED.

The joint pdf of the concomitants R[n] and R[m], n < m, is given by

h[n,m](y1, y2) =
∫ ∞

0

∫ ∞

x1
fY |X (y1|x1) fY |X (y2|x2)gm,n(x1, x2)dx2dx1,

where

gm,n(x) = 1

�(n)�(m − n)
(− log(1 − FX (x1)))

n−1
(

− log
1 − FX (x2)

1 − FX (x1)

)m−n−1

fX (x1) fX (x1)

1 − FX (x1)

is the joint pdf of Rn and Rm . Therefore, after some algebra, we get

h[n,m](y1, y2) = (1 + ϒm:p + ϒm:p + ϒn,m:p) fY (y1) fY (y2)

−(ϒn:p + ϒn,m:p) fV (y1) fY (y2) − (ϒm:p + ϒn,m:p) fV (y2) fY (y1)

+ϒn,m:p fV (y1) fV (y2), (4.3)

where ϒn,m:p = λ(ϒn:p + ϒm:p + ϒ�
n:p) and

ϒ�
n,m:p = λ

⎡

⎢⎢
⎣(1 + p)2

ℵ(p)∑

i=0

ℵ(p)∑

j=0

(−1)i+ j
(

p
i

) (
p
j

)

(i + j + 1)n( j + 1)m−n
− 1

⎤

⎥⎥
⎦ .

Clearly, ϒn:1 = λ2
[
3−n(2n−m+2 − 3n) − λn−1+λm−1

λ

]
, which is the correction of the

term λn,m by Tahmasebi and Jafari [29] to compute the joint pdf h[n,m](y1, y2).
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The representation (4.3) enables us to derive the productmoment and the covariance
of R[n] and R[m] as

μ[Rn ,Rm ]:p = 1

θ22
[(1 + ϒn:p + ϒm:p + ϒn,m:p)B2(α2)

− (ϒn:p + ϒm:p + 2ϒn,m:p)B(α2)B(α2(p + 1))

+ϒn,m:p B2(α2(p + 1))]

and

σ[Rn ,Rm ]:p = D2(α2, p)

θ22

[
ϒn,m:p − ϒn:pϒm:p

]
. (4.4)

Clearly, σ[Rn ,Rm ]:1 = D2(α2)

θ22

[
ϒn,m:1 − λn−1λm−1

]
, which again is the correction of

wrong relation (4.6) given by Tahmasebi and Jafari [29] to compute the covariance of
the concomitants R[n] and R[m], n < m. Finally, combining (4.2) with (4.4), we get
the correlation coefficient of the concomitants R[n] and R[m], as

ρ[Rn ,Rm ]:p

= D2(α2, p)
[
ϒn,m:p − ϒn:pϒm:p

]

√∏2
i=1

[
C(α2)+ϒi :p(C(α2)−C(α2(p+1))) − ϒi :p(1+ϒi :p)D2(α2, p)

] ,

where in the above formula we use the abbreviation ϒ1:p = ϒn:p and ϒ2:p = ϒm:p.
Again, ρ[r,s:n,1] gives the correction formula of the correlation given by Tahmasebi
and Jafari [29] for MTBGED.
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