

Acyclic Edge Coloring of 4-Regular Graphs Without 3-Cycles

Qiaojun Shu¹ · Yiqiao Wang² · Yulai Ma3 · Weifan Wang³

Received: 4 December 2016 / Revised: 23 February 2017 / Published online: 9 April 2017 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract A proper edge coloring is called acyclic if no bichromatic cycles are produced. It was conjectured that every simple graph *G* with maximum degree Δ is acyclically edge- $(\Delta + 2)$ -colorable. Basavaraju and Chandran (J Graph Theory 61:192–209, [2009\)](#page-10-0) confirmed the conjecture for non-regular graphs *G* with $\Delta = 4$. In this paper, we extend this result by showing that every 4-regular graph *G* without 3-cycles is acyclically edge-6-colorable.

Keywords Acyclic edge coloring · 4-Regular graph · Cycle

Mathematics Subject Classification 05C15

1 Introduction

Only simple graphs are considered in this paper. Let *G* be a graph with vertex set $V(G)$ and edge set $E(G)$. A *proper edge-k-coloring* is a mapping $c : E(G) \rightarrow \{1, 2, ..., k\}$

 \boxtimes Weifan Wang wwf@zjnu.cn

Communicated by Xueliang Li.

Qiaojun Shu research was supported partially by ZJNSF (LQ15A010010) and NSFC (No. 11601111). Yiqiao Wang research was supported partially by NSFC (Nos. 11301035 and 11671053); Weifan Wang research was supported partially by NSFC (Nos. 11071223 and 11371328).

¹ School of Science, Hangzhou Dianzi University, Hangzhou 310018, China

² School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

³ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

such that any two adjacent edges receive different colors. The *chromatic index*, denoted $\chi'(G)$, of *G* is the smallest integer *k* such that *G* is edge-*k*-colorable. A proper edge coloring of *G* is called *acyclic* if there are no bichromatic cycles in *G*, i.e., the union of any two color classes induces a subgraph of *G* that is a forest. The *acyclic chromatic index* of *G*, denoted *a* (*G*), is the smallest integer *k* such that *G* is acyclically edge-*k*colorable.

Let $\Delta(G)$ (for short, Δ) denote the maximum degree of a graph *G*. By Vizing's Theorem [\[19\]](#page-10-1), $\Delta \leq \chi'(G) \leq \Delta+1$. Obviously it holds trivially that $a'(G) \geq \chi'(G) \geq$ Δ . Fiamčik [\[10](#page-10-2)], and later Alon et al. [\[1\]](#page-10-3) made the following conjecture.

Conjecture 1 *For any graph G,* $a'(G) \leq \Delta + 2$ *.*

Using probabilistic method, Alon et al. [\[2](#page-10-4)] proved that $a'(G) \leq 64\Delta$ for any graph *G*. This bound has been recently improved to that $a'(G) \le 16\Delta$ in [\[13](#page-10-5)], that $a'(G) \le$ [9.62(Δ – 1)] in [\[14\]](#page-10-6), and that $a'(G) \leq 4\Delta$ in [\[9\]](#page-10-7). The acyclic edge coloring of some classical classes of graphs has been extensively investigated, including cubic graphs [\[3](#page-10-8)[,4](#page-10-9),[18\]](#page-10-10), outerplanar graphs [\[12](#page-10-11)], *K*4-minor free graphs [\[20\]](#page-10-12), 2-degenerate graphs [\[6](#page-10-13)], and planar graphs [\[7](#page-10-14),[8,](#page-10-15)[11](#page-10-16)[,15](#page-10-17)[,21](#page-10-18),[23](#page-10-19)]. In particular, Conjecture [1](#page-1-0) was confirmed for planar graphs without *i*-cycles for any fixed $i \in \{3, 4, 5, 6\}$ (see [\[16](#page-10-20)[,17](#page-10-21)[,22](#page-10-22),[24\]](#page-11-0)). It was shown in [\[7](#page-10-14)] that every planar graph *G* has $a'(G) \leq \Delta + 12$. This bound was furthermore improved to $\Delta + 7$ [\[23](#page-10-19)], and then to $\Delta + 6$ [\[25](#page-11-1)].

Basavaraju and Chandran [\[5\]](#page-10-0) showed that if *G* is a graph with $\Delta = 4$ which is not regular, then $a'(G) \leq 6$. In this paper, we are going to prove that every 4-regular graph *G* without triangles has $a'(G) \leq 6$, which extends, to some extent, the result of [\[5](#page-10-0)]. Here a *triangle* is synonymous with a 3-cycle.

2 Main Results

This section is devoted to investigate the acyclic edge coloring of triangle-free 4-regular graphs. Before establishing our main result, we need to introduce some notation.

Assume that *c* is a partial acyclic edge-*k*-coloring of a graph *G* using the color set $C = \{1, 2, ..., k\}$. For a vertex $v \in V(G)$, we use $C(v)$ to denote the set of colors assigned to the edges incident to v under c. If the edges of a cycle $ux \cdots vu$ are alternately colored with the colors *i* and *j*, then we call it an $(i, j)_{(u,v)}$ -cycle. If the edges of a path $ux \cdots v$ are alternately colored with the colors *i* and *j*, then we call it an $(i, j)_{(u, v)}$ -path. For simplicity, we use $\{e_1, e_2, \ldots, e_m\} \rightarrow a$ to express that all the edges e_1, e_2, \ldots, e_m are colored or recolored with same color *a*. In particular, if $m = 1$, we write simply $e_1 \rightarrow a$. Moreover, we use $(e_1, e_2, \ldots, e_m)_c = (a_1, a_2, \ldots, a_m)$ to denote that $c(e_i) = a_i$ for $i = 1, 2, ..., m$. Let $(e_1, e_2, ..., e_n) \rightarrow (b_1, b_2, ..., b_n)$ denote that e_i is colored or recolored with the color b_i for $i = 1, 2, \ldots, n$.

Now we need to establish a useful lemma, which will be frequently used in the following.

Lemma 1 *Suppose that a graph G has an edge-6-coloring c. Let* $P = uv_1v_2 \cdots$ v_kv_{k+1} *be a maximal* $(a, b)_{(u, v_{k+1})}$ *-path in G with* $c(uv_1) = a$ *and* $b \notin C(u)$ *. If* $w \notin V(P)$, then there does not exist a $(a, b)_{(u,w)}$ -path in G under c.

Fig. 1 Three cases on $|C(u) \cap C(v)|$

Proof Otherwise, assume that there is an $(a, b)_{(u, w)}$ -path $Q = uw_1 \cdots w_m w$ in *G* with *m* ≥ 1. Note that some w_i may be identical to some v_j , $1 \le i \le m$, $1 \le j \le k + 1$. Since $b \notin C(u)$ and $w \notin V(P)$, it is easy to see that there exist two vertices v_t and w_s such that $v_t v_{t+1}$ and $v_t w_s$ have the same color *a* or *b*, which contradicts the fact that *c* is a proper edge coloring. \Box

Theorem 1 *If G* is a triangle-free 4-regular graph, then $a'(G) \leq 6$.

Proof By Vizing's theorem [\[19](#page-10-1)], *G* admits a proper edge-6-coloring *c* using the color set $C = \{1, 2, ..., 6\}$. Let $\tau(c)$ denote the number of bichromatic cycles in G with respect to the coloring *c*. If $\tau(c) = 0$, then *c* is an acyclic edge-6-coloring of *G*. Otherwise, $\tau(c) > 0$. Let *B* be a bichromatic cycle of *G*. We are going to show that there is a proper edge-6-coloring *c* , formed from *c* by recoloring suitably some edges of *G*, such that *B* is no longer bichromatic and no new bichromatic cycles are produced. Namely, $\tau(c') < \tau(c)$. By repeating this process, we finally obtain an acyclic edge-6-coloring of *G*.

To arrive at our conclusion, assume, w.l.o.g., that *B* is a $(4, 1)_{(u,v)}$ -cycle with $c(uv)$ = 1. Let u_1, u_2, u_3 be the neighbors of *u* different from *v*, and v_1, v_2, v_3 be the neighbors of *v* different from *u*. Since *G* contains no triangles, $u_1, u_2, u_3, v_1, v_2, v_3$ are pairwise distinct. Moreover, we may assume that $c(uu_2) = c(vv_2) = 4$. Since $2 \leq |C(u)| \cap$ $C(v)$ < 4, three cases are needed to be considered, as shown in Fig. [1.](#page-2-0) It should be explained that, in the following figures, solid points are pairwise distinct, whereas the others may be identical.

Case 1 $|C(u) \cap C(v)| = 2$, say $(uu_1, uu_3)_c = (2, 5)$ and $(vv_1, vv_3)_c = (3, 6)$. By symmetry, we may assume that $C(u_2) \in \{ \{1, 4, 3, 6\}, \{1, 4, 2, 6\}, \{1, 4, 2, 5\} \}.$

Case 1.1 $C(u_2) = \{1, 4, 3, 6\}.$

Assume that 3 $\notin C(u_1) \cup C(u_3)$. If *G* contains no $(4, 3)_{(u_1, u_2)}$ -path, let $(uu_1, uv) \rightarrow$ (3, 2). Otherwise, *G* contains a $(4, 3)_{(u_1, u_2)}$ -path. Let $(uu_3, uv) \rightarrow (3, 5)$ and thus no $(4, 3)_{(u,u_3)}$ -cycles exist by Lemma [1.](#page-1-1) So assume that $3, 6 \in C(u_1) \cup C(u_3)$.

Assume that $1 \notin C(u_1)$. Let $uu_1 \to 1$. If *G* contains no $(1, 5)_{(u_1, u_3)}$ -path, let $uv \rightarrow 2$. If $2 \notin C(u_3)$, let $(uu_3, uv) \rightarrow (2, 5)$. Assume that $4 \notin C(u_1)$. Let $uu_1 \rightarrow 4$. If *G* contains no $(4, 5)_{(u_1, u_3)}$ -path, let $uu_2 \rightarrow 2$. If $2 \notin C(u_3)$, let $(uu_2, uu_3) \rightarrow (5, 2)$. By Lemma [1,](#page-1-1) no new bichromatic cycles are produced. Otherwise, we derive the following.

Claim 1 (a) $\{1, 4, 3, 6\}$ ⊆ $C(u_1) \cup C(u_3)$.

- (b) If $\{1, 4\} \setminus C(u_1) \neq \emptyset$, then *G* contains a $(5, i)_{(u_1, u_3)}$ -path for each $i \in$ $\{1, 4\} \setminus C(u_1), 5 \in C(u_1), 2 \in C(u_3), \text{ and } \{1, 4\} \setminus C(u_1) \subseteq C(u_3).$
- (c) If $\{1, 4\} \setminus C(u_3) \neq \emptyset$, then *G* contains a $(2, i)_{(u_1, u_3)}$ -path for each $i \in$ $\{1, 4\} \setminus C(u_3), 5 \in C(u_1), 2 \in C(u_3), \text{ and } \{1, 4\} \setminus C(u_3) \subseteq C(u_1).$

It follows that $5 \in C(u_1)$ and $2 \in C(u_3)$ if $i \notin C(u_1) \cap C(u_3)$ for some $i \in C(u_1)$ $\{1, 4\}$. Suppose $1 \in C(u_1)$ and let $x_1, x_2, x_3 \neq u$ be the other neighbors of u_1 with $c(u_1x_1) = 1$. So it suffices to consider the following three subcases.

Case 1.1.1 $C(u_1) = \{2, 1, 4, 3\}$ and $C(u_3) = \{5, 1, 4, 6\}.$

If 1 ∉ $C(v_1)$, let (*uu*₂, *uu*₃) → (5, 3). If 1 ∉ $C(v_3)$, let (*uu*₂, *uu*₁) → (2, 6). If *G* contains no $(4, 6)_{(u_2, u_1)}$ -path, let $(uu_1, uv) \to (6, 2)$. If *G* contains no $(4, 3)_{(u_2, u_3)}$ path, let $(uu_3, uv) \rightarrow (3, 5)$. Otherwise, we may further assume that $1 \in C(v_1) \cap$ $C(v_3)$, and *G* contains a (4, 6)_(*u*2,*u*₁)-path, and a (4, 3)_{(*u*2,*u*₃)-path that do not pass} through v_2 .

Suppose that we can recolor some edges in $\{vv_1, vv_2, vv_3\}$ such that $C(u) \cap C(v) \in$ $\{\{1, 2\}, \{1, 5\}, \{1, 4\}, \{1, 2, 4\}, \{1, 5, 4\}\}\$ with $c(vv_2) \neq 4$, and no new bichromatic cycles are yielded in $G - uv$. By Lemma [1,](#page-1-1) *B* is no longer bichromatic even if $4 \in C(v)$. If *G* contains a $(1, i)_{(u,v)}$ -cycle for some $i \in \{2, 5\}$, then let $(uu_1, uu_3) \rightarrow (5, 2)$ and thus no new bichromatic cycles are produced. Notice that the following assertion holds automatically.

 $(*_1)$ *If some of vv*₁, *vv*₂, *vv*₃ *can be recolored such that* $C(u) ∩ C(v) ∈ \{1, 2\}$, $\{1, 5\}, \{1, 4\}, \{1, 2, 4\}, \{1, 5, 4\}$ *with c*(*vv*₂) \neq 4, *and no new bichromatic cycles are produced in* $G - uv$ *, then the proof is complete.*

• Assume that $C(v_2) = \{4, 1, 2, 5\}.$

By the previous discussion, it suffices to assume that $4, 2, 5 \in C(v_1) \cup C(v_3)$. Hence, $\{3, 6\} \setminus ((C(v_1) \setminus (c(v_1)) \cup (C(v_3) \setminus (c(v_3)))) \neq \emptyset$ and, w.l.o.g., assume that $3 \notin C(v_3)$. Let $(v_3, v_2) \to (i, 6)$, where $i \in \{4, 2, 5\} \backslash C(v_3)$, and so we are done by $(*_1)$.

• Assume that $\{2, 5\} \backslash C(v_2) \neq \emptyset$ and, w.l.o.g., assume that $2 \notin C(v_2)$.

If *G* contains neither $(2, 3)_{(v_1, v_2)}$ -path nor $(2, 6)_{(v_2, v_3)}$ -path, let $vv_2 \rightarrow 2$ and so we are done by $(*_1)$. Otherwise, *G* contains a $(2, 3)_{(v_1, v_2)}$ -path or a $(2, 6)_{(v_2, v_3)}$ -path. If 2 ∉ $C(v_1)$, let (vv_1, uv) → (2, 3); if 2 ∉ $C(v_3)$, let (vv_3, uv) → (2, 6). Since *G* contains a $(4, 6)$ _(*u*2,*u*₁)-path and a $(4, 3)$ _{(*u*2,*u*₃)-path, we are done by Lemma [1.](#page-1-1) Thus,} 2 ∈ $C(v_1) \cap C(v_3)$ and $5 \in C(v_1) \cap C(v_3)$ if $5 \notin C(v_2)$. By symmetry, we have to consider the following three possibilities.

(i) $C(v_2) = \{4, 1, 3, 6\}$. It follows that 2, 5 ∈ $C(v_1) ∩ C(v_3)$, i.e., $C(v_1) = \{3, 1,$ 2, 5} and $C(v_3) = \{6, 1, 2, 5\}$. If *G* contains no $(2, 3)_{(v_1, v_2)}$ -path, let $(v_2, v_3) \rightarrow$ $(2, 4)$. Otherwise, let $(vv_1, vv_2, vv_3) \rightarrow (4, 2, 3)$ and we are done by $(*_1)$.

(ii) $C(v_2) = \{4, 1, 5, 3\}$. Then *G* contains a $(2, 3)_{(v_1, v_2)}$ -path, and $2 \in C(v_1)$ ∩ *C*(*v*₃). If 4 \notin *C*(*v*₁) and *G* contains no (4, 6)_(*v*₁,*v*₃)-path, let (*vv*₁, *vv*₂) \rightarrow (4, 2). Otherwise, 4 ∈ $C(v_1)$ or *G* contains a $(4, 6)_{(v_1, v_3)}$ -path. If $C(v_1) = \{3, 1, 2, 4\}$, then let $vv_2 \to 6$, and let $vv_3 \to 5$ if $5 \notin C(v_3)$, or $vv_3 \to 4$ if $C(v_3) = \{6, 1, 2, 5\}$. Otherwise, $4 \notin C(v_1)$ and *G* contains a $(4, 6)_{(v_1, v_3)}$ -path, i.e., $C(v_1) = \{3, 1, 2, 6\}$ and $C(v_3) = \{6, 1, 2, 4\}$. Let $(vv_2, uv) \to (2, 3)$. If *G* contains no $(5, 2)_{(v_1, v_2)}$ -path, then let $vv_1 \rightarrow 5$; otherwise, $(vv_1, vv_3) \rightarrow (4, 5)$.

(iii) $C(v_2) = \{4, 1, 5, 6\}$. The discussion is similar to (ii).

Case 1.1.2 $C(u_1) = \{2, 5, 1, 3\}$ and $C(u_3) = \{5, 2, 4, 6\}$ with $c(u_1x_2) = 3$.

Note that *G* contains a $(1, 2)_{(u_1, u_3)}$ -path, and $2 \in C(x_1)$. If *G* contains no $(5, 6)_{(u_1, u_3)}$ -path, let $(uu_1, uv) \to (6, 2)$. Otherwise, *G* contains a $(5, 6)_{(u_1, u_3)}$ -path which does not pass through u_2 . If *G* contains no $(3, 2)_{(x_2, u_3)}$ -path, let $(uu_2, uu_3) \rightarrow$ (5, 3). Otherwise, *G* contains a $(3, 2)_{(x_2, u_3)}$ -path which does not pass through v and $2 \in$ *C*(*x*₂). If {4, 6}*C*(*x_i*) $\neq \emptyset$ for some *i* ∈ {1, 2}, let (*uu*₂, *uu*₃, *uv*) → (5, *c*(*u*₁*x_i*), 2) and $uu_1 \to \alpha \in \{4, 6\} \backslash C(x_i)$. Otherwise, $C(x_1) = \{1, 2, 4, 6\}$, $C(x_2) = \{3, 2, 4, 6\}$, we let $(u_1x_1, u_1x_2, u_1x_3, uv) \rightarrow (3, 1, 1, 5)$. Obviously, no $(1, 2)_{(u,u_1)}$ -cycle exists by Lemma [1.](#page-1-1)

Case 1.1.3 $C(u_1) = \{2, 5, 1, 4\}$ and $C(u_3) = \{5, 2, 3, 6\}$ with $c(u_1x_2) = 4$.

By Claim [1,](#page-2-1) we see that $2 \in C(x_1) \cap C(x_2)$, and *G* contains a $(1, 2)_{(u_1, u_3)}$ -path and a $(4, 2)_{(u_1, u_3)}$ -path. Assume that $3 \notin C(x_2)$. Let $(uu_1, uv) \to (3, 2)$. If *G* contains no $(3, 5)_{(u_1, u_3)}$ -path, we are done. Otherwise, we let $(uu_2, uu_3) \rightarrow (5, 4)$. So assume that $3 \in C(x_2)$ and $6 \in C(x_2)$ similarly. Hence, $C(x_2) = \{4, 2, 3, 6\}$. Assume that $3 \notin C(x_1)$. Let $uu_1 \to 3$. If *G* contains no $(3, 4)_{(u_1, u_2)}$ -path, let $(uu_3, uv) \to (1, 2)$; otherwise, let $(uu_2, uu_3) \rightarrow (2, 4)$. Now assume that $3, 6 \in C(x_1)$ and $C(x_1) =$ $\{1, 2, 3, 6\}$. Let $(u_1x_1, u_1x_2, u_3, u_5) \rightarrow (4, 1, 1, 5)$. Clearly, no $(1, 2)_{(u, u_1)}$ -cycle exists by Lemma [1.](#page-1-1)

Case 1.2 $C(u_2) = \{1, 4, 2, 6\}.$

If $C(v_2) = \{1, 4, 2, 5\}$, the proof can be reduced to Case 1.1. If G contains no $(i, 2)_{(u_1, u_3)}$ -path for some $i \in \{1, 3\} \backslash C(u_3)$, then let $(uu_3, uv) \rightarrow (i, 5)$. Otherwise, we may do the following assumption.

Claim 2 (a) $\{2, 5\} \setminus C(v_2) \neq \emptyset$.

(b) 1, 3 ∈ *C*(*u*₃), or *G* contains a (*i*, 2)_(*u*₁,*u*₃)-path for any *i* ∈ {1, 3}*C*(*u*₃).

(c) 1, 3 ∈ $C(u_3) \cup C(u_1)$, and 2 ∈ $C(u_3)$ if $\{1, 3\} \setminus C(u_3) \neq \emptyset$.

Case 1.2.1 *G* contains no $(2, 3)_{(u_1, u_2)}$ -path.

If *G* contains no $(1, 3)_{(u_2, v_1)}$ -path, let $uu_2 \rightarrow 3$. Otherwise, *G* contains a $(1, 3)_{(u_2, v_1)}$ -path and $1 \in C(v_1)$. If $C(v_1) = \{3, 1, 2, 5\}$, then by Case 1.1, we can destroy that $(1, 3)_{(u, v)}$ -cycle by setting $uu_2 \rightarrow 3$ and hence destroy *B* such that no new bichromatic cycles are produced. Thus, $\{2, 5\} \backslash C(v_1) \neq \emptyset$.

If there exists $a \in \{2, 5\} \setminus (C(v_1) \cup C(v_2))$, then let $(vv_1, uv) \rightarrow (a, 3)$ if G contains no $(6, a)_{(v_1, v_3)}$ -path, and let $(vv_2, uu_2, uv) \rightarrow (a, 3, 4)$ otherwise. Thus, assume that $2, 5 \in C(v_1) \cup C(v_2)$. Recall that $\{2, 5\} \setminus C(v_i) \neq \emptyset$ for any $i \in \{1, 2\}$, say $2 \in C(v_1) \backslash C(v_2)$ and $5 \in C(v_2) \backslash C(v_1)$ (if $5 \in C(v_1) \backslash C(v_2)$ and $2 \in C(v_2) \backslash C(v_1)$, we let $uu_2 \rightarrow 3$ to give a similar discussion).

If *G* contains neither $(2, 3)(v_1, v_2)$ -path nor $(2, 6)(v_2, v_3)$ -path, let $(v_2, uu_2, uv) \rightarrow$ (2, 3, 4). If *G* contains neither $(5, 4)_{(v_1, v_2)}$ -path nor $(5, 6)_{(v_1, v_3)}$ -path, let (v_1, uv) → (5, 3). Otherwise, assume that *G* contains either a $(2, 3)(v_1, v_2)$ -path or a $(2, 6)(v_2, v_3)$ path, and at the same time, either a $(5, 4)_{(v_1, v_2)}$ -path or a $(5, 6)_{(v_1, v_3)}$ -path.

• Assume that *G* contains a $(2, 3)_{(v_1, v_2)}$ -path so that $C(v_2) = \{4, 1, 5, 3\}.$

If $\{1, 2\} \setminus C(v_3) \neq \emptyset$, let $uv \to 6$ and $vv_3 \to \alpha \in \{1, 2\} \setminus C(v_3)$. So $1, 2 \in C(v_3)$. Assume that $5 \notin C(v_3)$. Then *G* contains a $(5, 4)_{(v_1, v_2)}$ -path. Let $(v_3, uv) \rightarrow (5, 6)$ and we are done by Lemma [1.](#page-1-1) Otherwise, $C(v_3) = \{6, 1, 2, 5\}$. If $6 \notin C(v_1)$, let $(vv_1, vv_2, vv_3, uv) \to (6, 2, 4, 3)$. Otherwise, let $(vv_1, vv_3, uv) \to (5, 3, 6)$ and we are done since *G* contains a $(5, 6)_{(v_1, v_3)}$ -path.

• Assume that *G* contains a $(2, 6)_{(v_2, v_3)}$ -path so that $C(v_2) = \{4, 1, 5, 6\}.$

Then $2 \in C(v_3)$. Since *G* contains either a $(5, 4)_{(v_1, v_2)}$ -path or a $(5, 6)_{(v_1, v_3)}$ -path, we have to consider the following two possibilities:

- (1) *G* contains a $(5, 6)_{(v_1, v_3)}$ -path, i.e., $C(v_1) = \{3, 1, 2, 6\}$ and $5 \in C(v_3)$. If $4 \notin C(v_3)$, let $(vv_2, vv_3, uv) \to (2, 4, 6)$. Otherwise, $C(v_3) = \{6, 2, 5, 4\}$ and let $uv \rightarrow 6$. If *G* contains no $(4, 6)_{(u_2, v_2)}$ -path, let $vv_3 \rightarrow 1$; Otherwise, let $(vv_1, vv_2, vv_3) \rightarrow (4, 2, 3).$
- (2) *G* contains a $(5, 4)_{(v_1, v_2)}$ -path, i.e., $C(v_1) = \{3, 1, 2, 4\}$. If $4 \notin C(v_3)$, let $(vv_1, vv_2, vv_3) \rightarrow (6, 3, 4)$. If $5 \notin C(v_3)$, let $(vv_3, uu_2, uv) \rightarrow (5, 3, 6)$. Otherwise, $C(v_3) = \{6, 2, 4, 5\}$ and let $vv_3 \rightarrow 1$. Furthermore, if G contains no $(4, 6)_{(u_2, v_2)}$ -path, let $uv \rightarrow 6$; otherwise, let $(vv_1, uv) \rightarrow (6, 3)$.

By Lemma [1,](#page-1-1) no new bichromatic cycles are produced.

Case 1.2.2 *G* contains a $(2, 3)_{(u_1, u_2)}$ -path and 3 ∈ $C(u_1)$.

If $3 \notin C(u_3)$, let $(uu_3, uu) \rightarrow (3, 5)$, so we are done by Lemma [1.](#page-1-1) Hence, $3 \in$ $C(u_3)$.

• 2 $\notin C(u_3)$.

Then $1 \in C(u_3)$ by Claim [2.](#page-4-0) If $4 \notin C(u_1)$, let $(uu_1, uu_2, uu_3) \to (4, 5, 2)$. Otherwise, $4 \in C(u_1)$. If $1 \notin C(u_1)$ and *G* contains no $(4, 2)_{(u_2, u_3)}$ -path, let $(uu_1, uu_3, uv) \to (1, 2, 5)$. Otherwise, $1 \in C(u_1)$ or *G* contains a $(4, 2)_{(u_2, u_3)}$ path. Note that if *G* contains no $(4, 2)_{(u_2, u_3)}$ -path, then it follows that $1 \in C(u_1)$. If $C(u_3) = \{5, 1, 3, 6\}$, then $C(u_1) = \{2, 3, 4, 1\}$ and let $(uu_2, uu_3) \rightarrow (5, 4)$. Otherwise, $C(u_3) = \{5, 1, 3, 4\}$. If *G* contains no $(4, 6)_{(u_2, u_3)}$ -path, let $(uu_3, uv) \to (6, 5)$. Otherwise, *G* contains a $(4, 6)_{(u_2, u_3)}$ -path. If $1, 5 \notin C(u_1)$, let $(uu_1, uv) \to (1, 2)$ and we are done because *G* contains a $(4, 2)_{(u_2, u_3)}$ -path. Otherwise, $\{1, 5\} \cap C(u_1) \neq \emptyset$. Hence, $6 \notin C(u_1)$ and let $uu_1 \rightarrow 6$. If G contains no $(2, 4)_{(u_2, v_2)}$ -path, let $uv \rightarrow 2$. Otherwise, *G* contains a $(2, 4)_{(u_2, v_2)}$ -path and thus $1 \in C(u_1)$. Let $(u_3, uv) \to (2, 5)$, and we are done by Lemma [1.](#page-1-1)

• 2 $\in C(u_3)$.

Then $1 \in C(u_1) \cup C(u_3)$ by Claim [2.](#page-4-0) Assume that $6 \notin C(u_1) \cup C(u_3)$. If *G* contains no $(4, 6)_{(u_2, u_3)}$ -path, let $(uu_3, uv) \to (6, 5)$; otherwise, *G* contains a $(4, 6)_{(u_2, u_3)}$ -path and $C(u_3) = \{5, 2, 3, 4\}$. If *G* contains no $(5, 6)_{(u_3, v_1)}$ -path, let $(uu_1, uu_3, uv) \rightarrow$ $(6, 1, 5)$; otherwise, let $(uu_1, uu_2, uu_3, uv) \rightarrow (6, 5, 1, 2)$. Thus, $6 \in C(u_1) \cup C(u_3)$.

If 4 ∉ $C(u_1)$ and *G* contains no $(4, 5)_{(u_1, u_3)}$ -path, let (uu_1, uu_2, uv) → $(4, 3, 2)$. Otherwise, $4 \in C(u_1)$, or *G* contains a $(4, 5)_{(u_1, u_3)}$ -path. Since $1, 6 \in C(u_1) \cup C(u_3)$, we derive that $4 \in C(u_1)$, and the proof splits into the following two subcases:

- (1) $C(u_3) = \{5, 2, 3, 1\}$ and $C(u_1) = \{2, 3, 4, 6\}$. First, let $uv \to 2$. Next, if G contains no $(4, 2)_{(u_2, v_2)}$ -path, then let $uu_1 \rightarrow 1$; otherwise $(uu_1, uu_2, uu_3) \rightarrow$ $(5, 3, 4)$.
- (2) $C(u_3) = \{5, 2, 3, 6\}$ and $C(u_1) = \{2, 3, 4, 1\}$. Let $(uu_1, uv) \rightarrow (5, 2)$. If G contains no $(4, 2)_{(u_2, v_2)}$ -path, then let $uu_3 \rightarrow 1$; otherwise, let $(uu_2, uu_3) \rightarrow$ $(3, 4)$.

Case 1.3 $C(u_2) = \{1, 4, 2, 5\}.$

By Cases 1.1 and 1.2, assume that $C(v_2) = \{1, 4, 3, 6\}$. If *G* contains no $(5, i)_{(u_1, u_3)}$ path for some $i \in \{1, 3, 6\} \backslash C(u_1)$, let $(uu_1, uv) \rightarrow (i, 2)$. If *G* contains no (2, *i*)_(*u*1,*u*₃)-path for some *i* ∈ {1, 3, 6}\C(*u*₃), let (*uu*₃, *uv*) → (*i*, 5). Otherwise, we give the following assumption.

Claim 3 (a) 1, 3, 6 ∈ $C(u_1)$, or *G* contains a $(5, i)_{(u_1, u_2)}$ -path for each $i \in$ $\{1, 3, 6\} \setminus C(u_1).$

(b) 1, 3, 6 ∈ *C*(*u*₃), or *G* contains a (2, *i*)_(*u*₁,*u*₃)-path for each *i* ∈ {1, 3, 6}*C*(*u*₃).

- (c) 1, 2, 5 ∈ $C(v_3)$, or *G* contains a $(3, i)_{(v_1, v_3)}$ -path for each $i \in \{1, 2, 5\} \setminus C(v_3)$.
- (d) 1, 2, 5 ∈ $C(v_1)$ or *G* contains a (6, *i*)_(v1, v3)-path for each *i* ∈ {1, 2, 5}\ $C(v_1)$.
- (e) 1, 3, 6 ∈ $C(u_1) \cup C(u_3)$ and 1, 2, 5 ∈ $C(v_1) \cup C(v_3)$.
- (f) $5 \in C(u_1)$ if $\{1, 3, 6\} \ C(u_1) \neq \emptyset$, $2 \in C(u_3)$ if $\{1, 3, 6\} \ C(u_3) \neq \emptyset$, $6 \in C(v_1)$ if $\{1, 2, 5\} \ C(v_1) \neq \emptyset$, and $3 \in C(v_3)$ if $\{1, 2, 5\} \ C(v_3) \neq \emptyset$.

Case 1.3.1 5 ∉ $C(u_1)$.

It is easy to see that $C(u_1) = \{2, 1, 3, 6\}$ by Claim [3.](#page-6-0) If $\{1, 3, 6\} \setminus C(u_3) \neq \emptyset$, let $(uu_1, uv) \rightarrow (5, 2), uu_3 \rightarrow \alpha \in \{1, 3, 6\} \backslash C(u_3)$ $(uu_1, uv) \rightarrow (5, 2), uu_3 \rightarrow \alpha \in \{1, 3, 6\} \backslash C(u_3)$ $(uu_1, uv) \rightarrow (5, 2), uu_3 \rightarrow \alpha \in \{1, 3, 6\} \backslash C(u_3)$, so the proof is complete by Claim 3 and Lemma [1.](#page-1-1) Otherwise, $C(u_3) = \{5, 1, 3, 6\}$. If *G* contains neither $(2, 3)_{(v_1, v_2)}$ path nor $(2, 6)_{(v_2, v_3)}$ -path, let $vv_2 \rightarrow 2$. If *G* contains no $(1, 2)_{(u_1, v_2)}$ -path, we are done. Otherwise, let $(uu_1, uu_3) \rightarrow (5, 2)$. Or else, assume, w.l.o.g., that *G* contains a $(2, 3)_{(v_1, v_2)}$ -path. Let $(uu_2, uv) \to (3, 2)$. If *G* contain no $(3, 5)_{(u_2, u_3)}$ -path, let $uu_1 \rightarrow 4$; otherwise, let $(uu_1, uu_3) \rightarrow (5, 4)$.

Case 1.3.2 5 ∈ $C(u_1)$.

Furthermore, assume that $2 \in C(u_3)$, $3 \in C(v_3)$, and $6 \in C(v_1)$. Since 1, 3, 6 \in *C*(*u*₁)∪*C*(*u*₃) by Claim [3,](#page-6-0) we may suppose that $1 \in C(u_1)$, 6 ∉ $C(u_1)$, and it suffices to consider the following two subcases. Note that *G* contains a $(5, 6)_{(u_1, u_3)}$ -path in this case.

• $C(u_1) = \{2, 5, 1, 3\}, 6 \in C(u_3)$ and $4 \notin C(u_3)$.

Let $uu_2 \to 6$. If $\{1, 2\} \setminus C(v_3) \neq \emptyset$, let $uu_1 \to 4$ and $uv \to \alpha \in \{1, 2\} \setminus C(v_3)$. Otherwise, $C(v_3) = \{3, 6, 1, 2\}$ and let $(uu_3, uv) \rightarrow (4, 5)$.

• $C(u_1) = \{2, 5, 1, 3\}$ and $C(u_3) = \{5, 2, 6, 4\}$; or $C(u_1) = \{2, 5, 1, 4\}$ and $C(u_3) = \{5, 2, 3, 6\}$ $C(u_3) = \{5, 2, 3, 6\}$ $C(u_3) = \{5, 2, 3, 6\}$. By Claim 3, G contains a $(2, 3)_{(u_1, u_3)}$ -path if $C(u_1) =$ $\{2, 5, 1, 3\}$ and a $(5, 3)_{(u_1, u_3)}$ -path if $C(u_1) = \{2, 5, 1, 4\}$. If $1 \notin C(v_1)$, let $uu_2 \to 3$. If 1 ∉ $C(v_3)$, let $uu_2 \rightarrow 6$. Otherwise, it follows that $1 \in C(v_1) \cap C(v_3)$. Since 2, 5 ∈ $C(v_1)$ ∪ $C(v_3)$, we have to handle two possibilities: If $C(v_1) = \{3, 6, 1, 2\}$ and $C(v_3) = \{3, 6, 1, 5\}$, let $(vv_2, vv_3) \rightarrow (5, 4)$. Otherwise, $C(v_1) = \{3, 6, 1, 5\}$, $C(v_3) = \{3, 6, 1, 2\}$, and let $(vv_1, vv_2) \rightarrow (4, 5)$.

Case 2 $|C(u) \cap C(v)| = 3$, say $(uu_1, uu_3)_c = (2, 5)$ and $(vv_1, vv_3)_c = (3, 5)$.

If $C(u_2) = \{1, 4, 3, 6\}$ or $C(v_2) = \{1, 4, 2, 6\}$, then the proof can be reduced to Case 1. If *G* contains neither $(4, 6)_{(u_2, v_2)}$ -path nor $(5, 6)_{(u_3, v_3)}$ -path, let $uv \rightarrow 6$. Suppose that we can recolor some edges such that $C(u) \cap C(v) = \{i, j\}$ and no new bichromatic cycles are produced in $G - uv$. If *G* contains an $(i, j)_{(u, v)}$ -cycle, then by Case 1, we can destroy this $(i, j)_{(u, v)}$ -cycle as well as *B* such that no new bichromatic cycles are produced. Thus, we have the following claim.

Claim 4 (a) $C(u_2) \neq \{1, 4, 3, 6\}$ and $C(v_2) \neq \{1, 4, 2, 6\}.$

- (b) *G* contains either $(4, 6)_{(u_2, v_2)}$ -path or a $(5, 6)_{(u_3, v_3)}$ -path.
- (c) If we can recolor some edges of *G* such that $|C(u) \cap C(v)| = 2$, and no new bichromatic cycles are produced in $G - uv$, then we are done.

If 6 $\notin C(u_3)$ and *G* contains no $(2, 6)_{(u_1, u_3)}$ -path, let $uu_3 \rightarrow 6$; if $1 \notin C(u_3)$ and *G* contains no $(1, 2)_{(u_1, u_3)}$ -path, let $(uu_3, uv) \rightarrow (1, 6)$. Clearly, $|C(u) \cap C(v)| = 2$ and no new bichromatic cycles are produced in *G* −*u*v. By Claim [4,](#page-6-1) we are done. Assume that $6 \notin C(u_2)$. If *G* contains no $(2, 6)_{(u_1, u_2)}$ -path, let $uu_2 \rightarrow 6$; If $4 \notin C(u_1)$ and *G* contains no $(4, 5)_{(u_1, u_3)}$ -path, let $(uu_1, uu_2) \rightarrow (4, 6)$ and we are done by Lemma [1.](#page-1-1) Hence, we have the following:

Claim 5 (a) 1, 6 ∈ $C(u_3)$, or *G* contains a $(2, i)_{(u_1, u_3)}$ -path for $i \in \{1, 6\} \setminus C(u_3)$, $2 \in C(u_3)$.

- (b) 1, $6 \in C(u_1) \cup C(u_3)$ and if $2 \notin C(u_3)$, then $1, 6 \in C(u_3)$.
- (c) 1, 6 ∈ $C(v_3)$, or G contains a $(3, i)_{(v_1, v_3)}$ -path for $i \in \{1, 6\} \setminus C(v_3)$, $3 \in C(v_3)$.
- (d) $1, 6 \in C(v_1) \cup C(v_3)$ and if $3 \notin C(v_3)$, then $1, 6 \in C(v_3)$.
- (e) If $6 \notin C(u_2) ∩ C(v_2)$, then *G* contains a $(5, 6)_{(u_3, v_3)}$ -path and $6 \in C(u_3) ∩ C(v_3)$.
- (f) {2, 6} ∩ $C(u_2) \neq \emptyset$, and 6 ∈ $C(u_2)$, or (i) *G* contains a $(2, 6)_{(u_1, u_2)}$ -path, 2 ∈ *C*(*u*₂), 6 ∈ *C*(*u*₁) and (ii) 4 ∈ *C*(*u*₁), or *G* contains a (4, 5)_(*u*₁,*u*₃)-path and $5 \in C(u_1), 4 \in C(u_3).$
- (g) $\{3, 6\} ∩ C(v_2) \neq \emptyset$, and $6 ∈ C(v_2)$, or (i) *G* contains a $(3, 6)_{(v_1, v_2)}$ -path, $3 ∈ C(v_2)$, 6 ∈ *C*(*v*₁) and (ii) 4 ∈ *C*(*v*₁), or *G* contains a (4, 5)_(*v*₁,*v*₃)-path and 5 ∈ *C*(*v*₁), $4 \in C(v_3)$.

We only need to suppose that $C(u_2)\{1, 4\} \in \{\{2, 3\}, \{2, 5\}, \{2, 6\}, \{5, 6\}\}\$ and $C(v_2)$ $\setminus \{1, 4\} \in \{\{2, 3\}, \{3, 5\}, \{3, 6\}, \{5, 6\}\}.$

Case 2.1 $C(u_2) \setminus \{1, 4\}$ ∈ {{2, 3}, {2, 5}}, and 2 ∉ $C(v_2)$ if $C(u_2) = \{4, 1, 2, 5\}$.

Note that $6 \notin C(u_2)$. By Claim [5,](#page-7-0) *G* contains a $(5, 6)_{(u_3, v_3)}$ -path with $6 \in C(u_3) \cap C$ $C(v_3)$, and *G* contains a $(2, 6)_{(u_1, u_2)}$ -path with $6 \in C(u_1)$, and $4 \in C(u_1)$, or *G* contains a $(4, 5)_{(u_1, u_3)}$ -path with $5 \in C(u_1)$, $4 \in C(u_3)$. Thus, we need to consider the following two subcases.

Case 2.1.1 4 ∉ $C(u_1)$, and {2, 5, 6} ⊆ $C(u_1)$, {5, 4, 6} ⊆ $C(u_3)$.

If $2 \notin C(u_3)$, let $(uu_1, uu_2, uu_3) \to (4, 6, 2)$. Otherwise, $C(u_3) = \{5, 6, 4, 2\}$ and then $C(u_1) = \{2, 6, 5, 1\}$ since $1 \in C(u_1) \cup C(u_3)$ by Claim [5.](#page-7-0) If $2 \notin C(v_2)$, let $(uu_1, uu_3, uv) \rightarrow (3, 1, 2)$. Otherwise, $2 \in C(v_2)$ and $6 \notin C(v_2)$. Recall that *G* contains a $(3, 6)_{(v_1, v_2)}$ -path by Claim [5.](#page-7-0) Let $(uu_1, uu_3, uv) \rightarrow (3, 1, 6)$ and then we are done by Lemma [1.](#page-1-1)

Case 2.1.2 4 ∈ $C(u_1)$ and {2, 6, 4} ⊆ $C(u_1)$, {5, 6} ⊆ $C(u_3)$

Assume that $1 \notin C(u_3)$. Then $C(u_1) = \{2, 6, 1, 4\}$ by Claim [5.](#page-7-0) If $5 \notin C(u_2)$, let $(uu_1, uu_3, uv) \rightarrow (5, 1, 6)$ $(uu_1, uu_3, uv) \rightarrow (5, 1, 6)$ $(uu_1, uu_3, uv) \rightarrow (5, 1, 6)$ and no $(5, 6)_{(u,u_1)}$ -cycle exists by Claim 5 and Lemma [1.](#page-1-1) Otherwise, $C(u_2) = \{4, 1, 2, 5\}$ and $2 \notin C(v_2)$. If *G* contains no $(1, 3)_{(u_1, u_2)}$ path, let $(uu_1, uu_3, uv) \rightarrow (3, 1, 2)$; otherwise, *G* contains a $(1, 3)_{(u_1, u_3)}$ -path and let $(uu_1, uu_2, uu_3, uv) \to (5, 3, 1, 6)$. Now assume that $1 \in C(u_3)$ and $5, 6, 1 \in C(u_3)$. • Assume that $C(u_2) = \{4, 1, 2, 3\}.$

If $2 \notin C(u_3)$ and *G* contains no $(2, 4)_{(u_2, u_3)}$ -path, let $(uu_3, uv) \rightarrow (2, 6)$ and $uu_1 \rightarrow \alpha \in \{1, 5\} \backslash C(u_1)$ $uu_1 \rightarrow \alpha \in \{1, 5\} \backslash C(u_1)$ $uu_1 \rightarrow \alpha \in \{1, 5\} \backslash C(u_1)$. By Claim 5 and Lemma [1,](#page-1-1) no new bichromatic cycles are

produced. Otherwise, $2 \in C(u_3)$ or *G* contains a $(2, 4)_{(u_2, u_3)}$ -path and $4 \in C(u_3)$. First assume that $C(u_3) = \{5, 1, 6, 4\}$. Then *G* contains a $(2, 4)_{(u_2, u_3)}$ -path. If $1, 5 \notin C(u_1)$, let $(uu_1, uv) \rightarrow (1, 2)$. Otherwise, $\{1, 5\} \cap C(u_1) \neq \emptyset$ and $3 \notin C(u_1)$. Then let $uv \rightarrow 2$, and let $uu_1 \rightarrow 3$ if *G* contains no $(4, 3)_{(u_1, u_2)}$ -path, or let $uu_3 \rightarrow 3$, $uu_1 \rightarrow \beta \in \{1, 5\} \backslash C(u_1)$ otherwise.

Next assume that $C(u_3) = \{5, 1, 6, 2\}$. If $C(u_1) = \{2, 6, 4, 3\}$, let (uu_1, uu_2, uu_3) \rightarrow (5, 6, 4). Otherwise, 3 $\notin C(u_1)$. If *G* contains no (3, 6)_(*u*3, *v*₁)-path, let (*uu*₃, *uv*) \rightarrow $(3, 6)$. Otherwise, *G* contains a $(3, 6)$ _{(u_3, v_1)}-path. Note that *G* contains a $(3, 6)$ _{(v_1, v_2)} path if 6 $\notin C(v_2)$ by Claim [5.](#page-7-0) Hence, 6 $\in C(v_2)$ and then 2 $\notin C(v_2)$ by Claim [4.](#page-6-1) If $C(u_1) = \{2, 6, 4, 1\}$, let $(uu_1, uu_2, uu_3, uv) \rightarrow (5, 6, 4, 2)$. Otherwise, $C(u_1) = \{2, 6, 4, 5\}$. If *G* contains no $(2, 3)_{(u_3, v_1)}$ -path, let $(uu_1, uu_3, uv) \rightarrow$ (1, 3, 2). Otherwise, *G* contains a $(2, 3)_{(u_3, v_1)}$ -path and $2 \in C(v_1)$. If *G* contains no $(2, 5)(v_2, v_3)$ -path, let $vv_2 \rightarrow 2$. Otherwise, *G* contains a $(2, 5)(v_2, v_3)$ -path and $2 \in C(v_3)$, $C(v_2) = \{4, 1, 6, 5\}$. By Claim [5,](#page-7-0) we have $C(v_3) = \{5, 6, 2, 1\}$, or $C(v_3) = \{5, 6, 2, 3\}$ and $C(v_1) = \{3, 2, 6, 1\}$. Then let $(vv_2, vv_3) \rightarrow (2, 4)$ and we are done.

• Assume that $C(u_2) = \{4, 1, 2, 5\}$ and $2 \notin C(v_2)$.

First assume that $3 \notin C(u_1)$. If *G* contains no $(3, 5)_{(u_1, u_3)}$ -path and $2 \notin C(u_3)$, let $(uu_1, uv) \rightarrow (3, 2)$. Otherwise, *G* contains a $(3, 5)_{(u_1, u_3)}$ -path or $2 \in C(u_3)$. If $C(u_3) = \{5, 6, 1, 2\}$, let $(uu_1, uu_2, uu_3, uv) \rightarrow (3, 6, 4, 2)$. Otherwise, $C(u_1) =$ $\{2, 6, 4, 5\}, C(u_3) = \{5, 6, 1, 3\}$ and let $(uu_1, uu_3, uv) \rightarrow (1, 2, 6)$. Next assume that $C(u_1) = \{2, 6, 4, 3\}.$

If *G* contains no $(2, 5)_{(u_3, v_3)}$ -path, let $(uu_1, uv) \rightarrow (1, 2)$. So *G* contains a $(2, 5)$ _{(*u*3,*v*3})-path and 2 ∈ *C*(*u*₃) ∩ *C*(*v*₃). If *G* contains no $(2, 3)$ _(*v*1,*v*₂)-path, let $vv_2 \rightarrow 2$. Thus, *G* contains a $(2, 3)(v_1, v_2)$ -path and $2 \in C(v_1)$, $3 \in C(v_2)$. Note that {1, 3} ∩ $C(v_3) \neq \emptyset$ by Claim [5](#page-7-0) and hence 4 $\notin C(v_3)$. If 4 $\notin C(v_1)$, let $(vv_1, vv_2) \rightarrow (4, 2)$. Otherwise, $4 \in C(v_1)$. If $1 \notin C(v_1)$, then $C(v_3) = \{5, 6, 2, 1\}$ and let $(vv_1, vv_3, uv) \rightarrow (1, 3, 6)$. Now assume that $C(v_1) = \{3, 2, 4, 1\}$. If $6 \notin C(v_2)$, let $vv_2 \to 6$. Otherwise, $C(v_2) = \{4, 1, 3, 6\}$. Then let $(v_1, uv) \to (5, 6)$, $vv_3 \to \alpha \in \{1, 3\} \backslash C(v_3)$ and we are done since $4 \notin C(v_3)$.

Case 2.2 $C(u_2)\{1, 4\}$ ∈ {{2, 6}, {5, 6}} and $C(v_2)\{1, 4\}$ ∈ {{3, 6}, {5, 6}}.

Case 2.2.1 *G* contains no $(2, 3)_{(u_1, u_2)}$ -path and $(5, 3)_{(u_2, u_3)}$ -path.

First, we let $uu_2 \rightarrow 3$. If *G* contains no $(1, 3)(u_2, v_1)$ -path, then we are done. Otherwise, *G* contains a $(1, 3)_{(u_2, v_1)}$ -path and $1 \in C(v_3)$ by Claim [5.](#page-7-0) If 6 $\notin C(v_3)$, then *G* contains a $(4, 6)_{(u_2, v_2)}$ $(4, 6)_{(u_2, v_2)}$ $(4, 6)_{(u_2, v_2)}$ -path and a $(3, 6)_{(v_1, v_3)}$ -path by Claims 4 and [5,](#page-7-0) and let *uv* → 6. Otherwise, $6 \in C(v_3)$. If $C(v_1) \setminus \{1, 3\} \notin \{\{4, 6\}, \{5, 6\}\}\)$, then by Case 1, Case 2.1 or Case 2.2, we can destroy this $(1, 3)_{(u,v)}$ -cycle as well as *B* so that no new bichromatic cycles are produced. Thus, assume that $C(v_1)\setminus\{1, 3\} \in \{\{4, 6\}, \{5, 6\}\}\$ and then 2 ∉ $C(v_1) \cup C(v_2)$. If *G* contains no $(5, 2)(v_2, v_3)$ -path and 4 ∉ $C(v_3)$, let $(vv_2, uv) \to (2, 4)$. Otherwise, *G* contains a $(5, 2)(v_2, v_3)$ -path or $C(v_3) = \{5, 1, 6, 4\}$. Let $(uu_2, vv_1, uv) \rightarrow (4, 2, 3)$ $(uu_2, vv_1, uv) \rightarrow (4, 2, 3)$ $(uu_2, vv_1, uv) \rightarrow (4, 2, 3)$ so that $(5, 2)_{(v_1, v_3)}$ exists by Lemma 1 even if $2 \in C(v_3)$.

Case 2.2.2 *G* contains a $(2, 3)_{(u_1, u_2)}$ -path or a $(5, 3)_{(u_2, u_3)}$ -path.

(2.2.2.1) *G* contains a $(2, 3)_{(u_1, u_2)}$ -path and $C(u_2) = \{4, 1, 2, 6\}, 3 ∈ C(u_1)$.

Suppose that we can recolor some edges in $\{vv_1, vv_2, vv_3\}$ such that $C(v)$ = $\{2, 1, 3, 5\}$, or $C(v) = \{2, 1, 3, 4\}$ with $c(vv_2) \neq 4$, and no new bichromatic cycles are produced in $G - uv$. By Lemma [1,](#page-1-1) *B* does not exist even if $4 \in C(v)$. If G contains a $(1, 2)_{(u, v)}$ -cycle, then we can destroy this $(1, 2)_{(u, v)}$ -cycle by Cases 1 or 2.1 since $3 \in C(u_1)$. Next, we may give the following assertion.

 $(*_2)$ *If we can recolor some edges in* $\{vv_1, vv_2, vv_3\}$ *such that* $C(v) = \{2, 1, 3, 5\}$, *or* $C(v) = \{2, 1, 3, 4\}$ *with* $c(vv_2) \neq 4$, *and no new bichromatic cycles, other than* $(1, 2)_{(\mu,\nu)}$ -cycle, are produced, then we are done.

• $C(v_2) = \{4, 1, 5, 6\}.$

By Case 2.2.1, we may further assume that *G* contains a $(2, 5)(v_2, v_3)$ -path and $2 \in C(v_3)$. Assume that $2 \notin C(v_1)$. Let $vv_1 \to 2$. If *G* contains no $(5, 3)_{(u_3, v_3)}$ path, let $uv \rightarrow 3$; otherwise, let $vv_2 \rightarrow 3$ and we are done by (*2). So assume that $2 \in C(v_1)$. If $4 \notin C(v_3)$ and *G* contains no $(3, 4)_{(v_1, v_3)}$ -path, let $(vv_3, vv_2) \rightarrow$ (4, 2) and we are done by (*2). Otherwise, $4 \in C(v_3)$ or *G* contains a $(3, 4)_{(v_1, v_3)}$ -path. Together with Claim [5,](#page-7-0) we have $3 \in C(v_3)$, 1, 6, 4 $\in C(v_1) \cup C(v_3)$ and then $\{1, 6\} \setminus C(v_3) \neq \emptyset$, $5 \notin C(v_1)$. Choose $\alpha \in \{1, 6\} \setminus C(v_3)$ and $\beta \in \{1, 6\} \setminus \{\alpha\}$. Then let $(vv_1, vv_2, vv_3, uv) \rightarrow (5, 3, \alpha, \beta)$ $(vv_1, vv_2, vv_3, uv) \rightarrow (5, 3, \alpha, \beta)$ $(vv_1, vv_2, vv_3, uv) \rightarrow (5, 3, \alpha, \beta)$ and we are done by Claims [4](#page-6-1) and 5 and Lemma [1.](#page-1-1) • $C(v_2) = \{4, 1, 3, 6\}.$

By Case 2.2.1, assume that *G* contains a $(2, 3)(v_1, v_2)$ -path and $2 \in C(v_1)$. If $3 \notin$ *C*(*u*₃) and 2 ∉ *C*(*v*₃), let (*uu*₃, *vv*₃, *uv*) → (3, 2, 5). Otherwise, 3 ∈ *C*(*u*₃) or $2 \in C(v_3)$, and assume, w.l.o.g., that $2 \in C(v_3)$. If $4 \notin C(v_3)$ and $5 \notin C(v_1)$, let $(vv_1, vv_2, vv_3, uv) \rightarrow (5, 2, 4, 3)$. Otherwise, $4 \in C(v_3)$ or $5 \in C(v_1)$. Then there are the following two possibilities:

- (1) 4 ∈ $C(v_3)$. By Claim [5,](#page-7-0) we may assume that $C(v_3) = \{5, 2, 4, 3\}$ and $C(v_1) =$ $\{3, 2, 1, 6\}$. It suffices to let $(vv_1, vv_3, uv) \rightarrow (5, 1, 3)$.
- (2) $4 \notin C(v_3)$ and $5 \in C(v_1)$. If $4 \notin C(v_1)$ and *G* contains no $(5, 3)_{(u_3, v_3)}$ -path, let $(vv_1, vv_2, uv) \rightarrow (4, 2, 3)$. Otherwise, $4 \in C(v_1)$ or *G* contains a $(5, 3)_{(u_3, v_3)}$ path. If $4 \in C(v_1)$, then $C(v_1) = \{3, 2, 5, 4\}$, $C(v_3) = \{5, 2, 1, 6\}$ and let $(vv_1, vv_3, uv) \to (1, 3, 6)$. Otherwise, $4 \notin C(v_1)$ and *G* contains a $(5, 3)_{(u_3, v_3)}$ path. Then let $(vv_1, vv_2, uv) \rightarrow (4, 5, 3)$ and $vv_3 \rightarrow \alpha \in \{1, 6\} \backslash C(v_3)$. By Claims [4](#page-6-1) and [5](#page-7-0) and Lemma [1,](#page-1-1) no bichromatic cycles are produced.

(2.2.2.2) *G* contains a (3, 5)_(*u*2,*u*₃)−path and $C(u_2) = \{4, 1, 5, 6\}, 3 \in C(u_3)$.

By the previous discussion, we may further assume that $C(v_2) = \{4, 1, 5, 6\}$ and *G* contains a $(2, 5)_{(v_2, v_3)}$ -path with $2 \in C(v_3)$. If $2 \notin C(v_1)$, let $(v_1, uv) \to (2, 3)$. Otherwise, $2 \in C(v_1)$. Note that *G* contains a $(3, i)_{(v_1, v_3)}$ -path for any $i \in \{1, 6\} \backslash C(v_3)$ and 1, 6 $\in C(v_1) \cup C(v_3)$ by Claim [5.](#page-7-0) First assume that 3 $\notin C(v_3)$ and thus $C(v_3) = \{5, 2, 1, 6\}$. If $4 \notin C(v_1)$, let $(vv_1, vv_2) \to (4, 3)$; if $1 \notin C(v_1)$, let $(vv_1, vv_3, uv) \to (1, 3, 6)$; otherwise, $C(v_1) = \{3, 2, 4, 1\}$ and let $(vv_1, vv_2) \to$ (6, 3). Next assume that $3 \in C(v_3)$. Choose $\alpha \in \{1, 6\} \backslash C(v_3)$ and $\beta \in \{1, 6\} \backslash \{\alpha\}$, and then let $(vv_3, vv_2, uv) \rightarrow (\alpha, 3, \beta)$. If $5 \notin C(v_1)$, let $vv_1 \rightarrow 5$. Otherwise, 5 ∈ $C(v_1)$ and it follows that $4 \notin C(v_1) \cup C(v_3)$ from 1, 6 ∈ $C(v_1) \cup C(v_3)$. Let $vv_1 \rightarrow 4$ $vv_1 \rightarrow 4$. By Claims 4 and [5](#page-7-0) and Lemma [1,](#page-1-1) we are done in each step.

Case 3 $|C(u) \cap C(v)| = 4$, say $(uu_1, uu_3)_c = (2, 5)$ and $(vv_1, vv_3)_c = (2, 5)$.

By Cases 1 and 2, we may assume that $C(u_2) = C(v_2) = \{1, 2, 4, 5\}$. If G contains neither $(2, j)_{(u, v)}$ -path nor $(5, j)_{(u, v)}$ -path for some $j \in \{3, 6\}$, let $uv \rightarrow j$. Otherwise, for any $j \in \{3, 6\}$, *G* contains an $(i, j)_{(u, v)}$ -path for some $i \in \{2, 5\}$. W.l.o.g., assume that *G* contains a $(2, 3)_{(u,v)}$ -path with $3 ∈ C(u_1)$. If *G* contains no $(3, 5)_{(u_2,u_3)}$ path, let $uu_2 \rightarrow 3$; if *G* contains no $(3, 5)_{(v_2, v_3)}$ -path, let $vv_2 \rightarrow 3$. Otherwise, *G* contains a $(3, 5)_{(v_2, v_3)}$ -path and a $(3, 5)_{(u_2, u_3)}$ -path with $3 \in C(u_3)$. Similarly, assume that 6 ∈ $C(u_1) ∩ C(u_3)$. If 1 ∉ $C(u_1)$ and *G* contains no $(1, 5)_{(u_1, u_3)}$ -path, let $(uu_1, uv) \rightarrow (1, 3)$. Otherwise, $1 \in C(u_1)$ or *G* contains a $(1, 5)_{(u_1, u_3)}$ -path. Note that 1 ∈ $C(u_3)$ and 5 ∈ $C(u_1)$ if 1 ∉ $C(u_1)$. Thus, {1, 5} ∩ $C(u_1) \neq \emptyset$ and 4 ∉ *C*(*u*₁). Then if 4 ∉ *C*(*u*₃), let (*uu*₂, *uu*₃) → (3, 4); otherwise, *C*(*u*₃) = {5, 3, 6, 4}, $C(u_1) = \{2, 3, 6, 1\}$, and let $(uu_1, uu_3, uv) \rightarrow (5, 1, 3)$. \Box

References

- 1. Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. J. Graph Theory **37**, 157–167 (2001)
- 2. Alon, N., McDiarmid, C., Reed, B.: Acyclic coloring of graphs. Random Struct. Algorithms **2**, 277–288 (1991)
- 3. Andersen, L.D., Máˇcajová, E., Mazák, J.: Optimal acyclic edge-coloring of cubic graphs. J. Graph Theory **71**, 353–364 (2012)
- 4. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of subcubic graphs. Discrete Math. **308**, 6650– 6653 (2008)
- 5. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of graphs with maximum with degree 4. J. Graph Theory **61**, 192–209 (2009)
- 6. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of 2-degenerate graphs. J. Graph Theory **69**, 1–27 (2012)
- 7. Basavaraju, M., Chandran, L.S., Cohen, N., Havet, F., Müller, T.: Acyclic edge-coloring of planar graphs. SIAM J. Discrete Math. **25**, 463–478 (2011)
- 8. Dong, W., Xu, B.: Some results on acyclic edge coloring of plane graphs. Inf. Process. Lett. **110**, 887–892 (2010)
- 9. Esperet, L., Parreau, A.: Acyclic edge-coloring using entropy compression. Eur. J. Comb. **34**, 1019– 1027 (2013)
- 10. Fiamˇcik, J.: The acyclic chromatic class of a graph. Math. Slovaca **28**, 139–145 (1978) **(in Russian)**
- 11. Fiedorowicz, A., Haluszczak, M., Narayanan, N.: About acyclic edge colourings of planar graphs. Inf. Process. Lett. **108**, 412–417 (2008)
- 12. Hou, J., Wu, J., Liu, G., Liu, B.: Acyclic edge chromatic number of outerplanar graphs. J. Graph Theory **64**, 22–36 (2010)
- 13. Molloy, M., Reed, B.: Further algorithmic aspects of Lovász local lemma. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 524–529 (1998)
- 14. Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of graphs. Eur. J. Comb. **33**, 592–609 (2012)
- 15. Shu, Q., Wang, W.: Acyclic chromatic indices of planar graphs with girth at least five. J. Comb. Optim. **23**, 140–157 (2012)
- 16. Shu, Q., Wang, W., Wang, Y.: Acyclic chromatic indices of planar graphs with girth at least four. J. Graph Theory **73**, 386–399 (2013)
- 17. Shu, Q., Wang, W., Wang, Y.: Acyclic edge coloring of planar graphs without 5-cycles. Discrete Appl. Math. **160**, 1211–1223 (2012)
- 18. Skulrattanakulchai, S.: Acyclic colorings of subcubic graphs. Inf. Process. Lett. **92**, 161–167 (2004)
- 19. Vizing, V.: On an estimate of the chromatic index of a *p*-graph. Diskret Analiz **3**, 25–30 (1964)
- 20. Wang, W., Shu, Q.: Acyclic chromatic indices of *K*4-minor free graphs. Sci. China Ser. A **41**, 733–744 (2011)
- 21. Wang, W., Shu, Q., Kan, W., Wang, P.: Acyclic chromatic indices of planar graphs with large girth. Discrete Appl. Math. **159**, 1239–1253 (2011)
- 22. Wang, W., Shu, Q., Wang, Y.: Acyclic edge coloring of planar graphs without 4-cycles. J. Comb. Optim. **25**, 562–586 (2013)
- 23. Wang, W., Shu, Q., Wang, Y.: A new upper bound on the acyclic chromatic indices of planar graphs. Eur. J. Comb. **34**, 338–354 (2013)
- 24. Wang, Y., Shu, Q., Wu, J., Zhang, W.: Acyclic edge coloring of planar graphs without 3-cycles adjacent to 6-cycles. J. Comb. Optim. **28**, 692–715 (2014)
- 25. Wang, T., Zhang, Y.: Further result on acyclic chromatic index of planar graphs. Discrete Appl. Math. **201**, 228–247 (2016)