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Abstract A proper edge coloring is called acyclic if no bichromatic cycles are
produced. It was conjectured that every simple graph G with maximum degree Δ

is acyclically edge-(Δ + 2)-colorable. Basavaraju and Chandran (J Graph Theory
61:192–209, 2009) confirmed the conjecture for non-regular graphs G with Δ = 4.
In this paper, we extend this result by showing that every 4-regular graph G without
3-cycles is acyclically edge-6-colorable.
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1 Introduction

Only simple graphs are considered in this paper. LetG be a graphwith vertex set V (G)

and edge set E(G). A proper edge-k-coloring is a mapping c : E(G) → {1, 2, . . . , k}
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such that any two adjacent edges receive different colors. The chromatic index, denoted
χ ′(G), of G is the smallest integer k such that G is edge-k-colorable. A proper edge
coloring ofG is called acyclic if there are no bichromatic cycles inG, i.e., the union of
any two color classes induces a subgraph of G that is a forest. The acyclic chromatic
index of G, denoted a′(G), is the smallest integer k such that G is acyclically edge-k-
colorable.

Let Δ(G) (for short, Δ) denote the maximum degree of a graph G. By Vizing’s
Theorem [19],Δ ≤ χ ′(G) ≤ Δ+1.Obviously it holds trivially that a′(G) ≥ χ ′(G) ≥
Δ. Fiamčik [10], and later Alon et al. [1] made the following conjecture.

Conjecture 1 For any graph G, a′(G) ≤ Δ + 2.

Using probabilistic method, Alon et al. [2] proved that a′(G) ≤ 64Δ for any graph
G. This bound has been recently improved to that a′(G) ≤ 16Δ in [13], that a′(G) ≤
�9.62(Δ−1)� in [14], and that a′(G) ≤ 4Δ in [9]. The acyclic edge coloring of some
classical classes of graphs has been extensively investigated, including cubic graphs
[3,4,18], outerplanar graphs [12], K4-minor free graphs [20], 2-degenerate graphs [6],
and planar graphs [7,8,11,15,21,23]. In particular, Conjecture 1 was confirmed for
planar graphs without i-cycles for any fixed i ∈ {3, 4, 5, 6} (see [16,17,22,24]). It
was shown in [7] that every planar graph G has a′(G) ≤ Δ + 12. This bound was
furthermore improved to Δ + 7 [23], and then to Δ + 6 [25].

Basavaraju and Chandran [5] showed that if G is a graph with Δ = 4 which is not
regular, then a′(G) ≤ 6. In this paper, we are going to prove that every 4-regular graph
G without triangles has a′(G) ≤ 6, which extends, to some extent, the result of [5].
Here a triangle is synonymous with a 3-cycle.

2 Main Results

This section is devoted to investigate the acyclic edge coloringof triangle-free 4-regular
graphs. Before establishing our main result, we need to introduce some notation.

Assume that c is a partial acyclic edge-k-coloring of a graph G using the color
set C = {1, 2, . . . , k}. For a vertex v ∈ V (G), we use C(v) to denote the set of
colors assigned to the edges incident to v under c. If the edges of a cycle ux · · · vu are
alternately colored with the colors i and j , then we call it an (i, j)(u,v)-cycle. If the
edges of a path ux · · · v are alternately colored with the colors i and j , then we call it
an (i, j)(u,v)-path. For simplicity, we use {e1, e2, . . . , em} → a to express that all the
edges e1, e2, . . . , em are colored or recoloredwith same color a. In particular, ifm = 1,
we write simply e1 → a. Moreover, we use (e1, e2, . . . , em)c = (a1, a2, . . . , am) to
denote that c(ei ) = ai for i = 1, 2, . . . ,m. Let (e1, e2, . . . , en) → (b1, b2, . . . , bn)
denote that ei is colored or recolored with the color bi for i = 1, 2, . . . , n.

Now we need to establish a useful lemma, which will be frequently used in the
following.

Lemma 1 Suppose that a graph G has an edge-6-coloring c. Let P = uv1v2 · · ·
vkvk+1 be a maximal (a, b)(u,vk+1)-path in G with c(uv1) = a and b /∈ C(u). If
w /∈ V (P), then there does not exist a (a, b)(u,w)-path in G under c.
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Fig. 1 Three cases on |C(u) ∩ C(v)|

Proof Otherwise, assume that there is an (a, b)(u,w)-path Q = uw1 · · ·wmw inG with
m ≥ 1. Note that some wi may be identical to some v j , 1 ≤ i ≤ m, 1 ≤ j ≤ k + 1.
Since b /∈ C(u) and w /∈ V (P), it is easy to see that there exist two vertices vt and ws

such that vtvt+1 and vtws have the same color a or b, which contradicts the fact that
c is a proper edge coloring. 
�
Theorem 1 If G is a triangle-free 4-regular graph, then a′(G) ≤ 6.

Proof By Vizing’s theorem [19], G admits a proper edge-6-coloring c using the color
set C = {1, 2, . . . , 6}. Let τ(c) denote the number of bichromatic cycles in G with
respect to the coloring c. If τ(c) = 0, then c is an acyclic edge-6-coloring of G.
Otherwise, τ(c) > 0. Let B be a bichromatic cycle of G. We are going to show
that there is a proper edge-6-coloring c′, formed from c by recoloring suitably some
edges of G, such that B is no longer bichromatic and no new bichromatic cycles
are produced. Namely, τ(c′) < τ(c). By repeating this process, we finally obtain an
acyclic edge-6-coloring of G.

To arrive at our conclusion, assume, w.l.o.g., that B is a (4, 1)(u,v)-cycle with c(uv) =
1. Let u1, u2, u3 be the neighbors of u different from v, and v1, v2, v3 be the neighbors
of v different from u. Since G contains no triangles, u1, u2, u3, v1, v2, v3 are pairwise
distinct. Moreover, we may assume that c(uu2) = c(vv2) = 4. Since 2 ≤ |C(u) ∩
C(v)| ≤ 4, three cases are needed to be considered, as shown in Fig. 1. It should be
explained that, in the following figures, solid points are pairwise distinct, whereas the
others may be identical.

Case 1 |C(u) ∩ C(v)| = 2, say (uu1, uu3)c = (2, 5) and (vv1, vv3)c = (3, 6).
By symmetry, we may assume that C(u2) ∈ {{1, 4, 3, 6}, {1, 4, 2, 6}, {1, 4, 2, 5}}.

Case 1.1 C(u2) = {1, 4, 3, 6}.
Assume that 3 /∈ C(u1)∪C(u3). IfG contains no (4, 3)(u1,u2)-path, let (uu1, uv) →

(3, 2). Otherwise, G contains a (4, 3)(u1,u2)-path. Let (uu3, uv) → (3, 5) and thus no
(4, 3)(u,u3)-cycles exist by Lemma 1. So assume that 3, 6 ∈ C(u1) ∪ C(u3).

Assume that 1 /∈ C(u1). Let uu1 → 1. If G contains no (1, 5)(u1,u3)-path, let
uv → 2. If 2 /∈ C(u3), let (uu3, uv) → (2, 5). Assume that 4 /∈ C(u1). Let uu1 → 4.
IfG contains no (4, 5)(u1,u3)-path, let uu2 → 2. If 2 /∈ C(u3), let (uu2, uu3) → (5, 2).
By Lemma 1, no new bichromatic cycles are produced. Otherwise, we derive the
following.
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Claim 1 (a) {1, 4, 3, 6} ⊆ C(u1) ∪ C(u3).
(b) If {1, 4}\C(u1) �= ∅, then G contains a (5, i)(u1,u3)-path for each i ∈

{1, 4}\C(u1), 5 ∈ C(u1), 2 ∈ C(u3), and {1, 4}\C(u1) ⊆ C(u3).
(c) If {1, 4}\C(u3) �= ∅, then G contains a (2, i)(u1,u3)-path for each i ∈

{1, 4}\C(u3), 5 ∈ C(u1), 2 ∈ C(u3), and {1, 4}\C(u3) ⊆ C(u1).
It follows that 5 ∈ C(u1) and 2 ∈ C(u3) if i /∈ C(u1) ∩ C(u3) for some i ∈

{1, 4}. Suppose 1 ∈ C(u1) and let x1, x2, x3 ( �= u) be the other neighbors of u1 with
c(u1x1) = 1. So it suffices to consider the following three subcases.

Case 1.1.1 C(u1) = {2, 1, 4, 3} and C(u3) = {5, 1, 4, 6}.
If 1 /∈ C(v1), let (uu2, uu3) → (5, 3). If 1 /∈ C(v3), let (uu2, uu1) → (2, 6). If G

contains no (4, 6)(u2,u1)-path, let (uu1, uv) → (6, 2). If G contains no (4, 3)(u2,u3)-
path, let (uu3, uv) → (3, 5). Otherwise, we may further assume that 1 ∈ C(v1) ∩
C(v3), and G contains a (4, 6)(u2,u1)-path, and a (4, 3)(u2,u3)-path that do not pass
through v2.

Suppose that we can recolor some edges in {vv1, vv2, vv3} such thatC(u)∩C(v) ∈
{{1, 2}, {1, 5}, {1, 4}, {1, 2, 4}, {1, 5, 4}} with c(vv2) �= 4, and no new bichromatic
cycles are yielded inG−uv. ByLemma1, B is no longer bichromatic even if 4 ∈ C(v).
If G contains a (1, i)(u,v)-cycle for some i ∈ {2, 5}, then let (uu1, uu3) → (5, 2) and
thus no new bichromatic cycles are produced. Notice that the following assertion holds
automatically.
(∗1) If some of vv1, vv2, vv3 can be recolored such that C(u) ∩ C(v) ∈ {{1, 2},
{1, 5}, {1, 4}, {1, 2, 4}, {1, 5, 4}} with c(vv2) �= 4, and no new bichromatic cycles are
produced in G − uv, then the proof is complete.

• Assume that C(v2) = {4, 1, 2, 5}.
By the previous discussion, it suffices to assume that 4, 2, 5 ∈ C(v1) ∪ C(v3).

Hence, {3, 6}\((C(v1)\{c(vv1)}) ∪ (C(v3)\{c(vv3)})) �= ∅ and, w.l.o.g., assume that
3 /∈ C(v3). Let (vv3, vv2) → (i, 6), where i ∈ {4, 2, 5}\C(v3), and so we are done
by (∗1).

• Assume that {2, 5}\C(v2) �= ∅ and, w.l.o.g., assume that 2 /∈ C(v2).
If G contains neither (2, 3)(v1,v2)-path nor (2, 6)(v2,v3)-path, let vv2 → 2 and so

we are done by (∗1). Otherwise, G contains a (2, 3)(v1,v2)-path or a (2, 6)(v2,v3)-path.
If 2 /∈ C(v1), let (vv1, uv) → (2, 3); if 2 /∈ C(v3), let (vv3, uv) → (2, 6). Since G
contains a (4, 6)(u2,u1)-path and a (4, 3)(u2,u3)-path, we are done by Lemma 1. Thus,
2 ∈ C(v1) ∩ C(v3) and 5 ∈ C(v1) ∩ C(v3) if 5 /∈ C(v2). By symmetry, we have to
consider the following three possibilities.

(i) C(v2) = {4, 1, 3, 6}. It follows that 2, 5 ∈ C(v1) ∩ C(v3), i.e., C(v1) = {3, 1,
2, 5} and C(v3) = {6, 1, 2, 5}. If G contains no (2, 3)(v1,v2)-path, let (vv2, vv3) →
(2, 4). Otherwise, let (vv1, vv2, vv3) → (4, 2, 3) and we are done by (∗1).

(ii) C(v2) = {4, 1, 5, 3}. Then G contains a (2, 3)(v1,v2)-path, and 2 ∈ C(v1) ∩
C(v3). If 4 /∈ C(v1) and G contains no (4, 6)(v1,v3)-path, let (vv1, vv2) → (4, 2).
Otherwise, 4 ∈ C(v1) or G contains a (4, 6)(v1,v3)-path. If C(v1) = {3, 1, 2, 4}, then
let vv2 → 6, and let vv3 → 5 if 5 /∈ C(v3), or vv3 → 4 if C(v3) = {6, 1, 2, 5}.
Otherwise, 4 /∈ C(v1) and G contains a (4, 6)(v1,v3)-path, i.e., C(v1) = {3, 1, 2, 6}
and C(v3) = {6, 1, 2, 4}. Let (vv2, uv) → (2, 3). If G contains no (5, 2)(v1,v2)-path,
then let vv1 → 5; otherwise, (vv1, vv3) → (4, 5).
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(iii) C(v2) = {4, 1, 5, 6}. The discussion is similar to (ii).

Case 1.1.2 C(u1) = {2, 5, 1, 3} and C(u3) = {5, 2, 4, 6} with c(u1x2) = 3.
Note that G contains a (1, 2)(u1,u3)-path, and 2 ∈ C(x1). If G contains no

(5, 6)(u1,u3)-path, let (uu1, uv) → (6, 2). Otherwise, G contains a (5, 6)(u1,u3)-path
which does not pass through u2. If G contains no (3, 2)(x2,u3)-path, let (uu2, uu3) →
(5, 3). Otherwise,G contains a (3, 2)(x2,u3)-pathwhich does not pass through v and 2 ∈
C(x2). If {4, 6}\C(xi ) �= ∅ for some i ∈ {1, 2}, let (uu2, uu3, uv) → (5, c(u1xi ), 2)
and uu1 → α ∈ {4, 6}\C(xi ). Otherwise, C(x1) = {1, 2, 4, 6}, C(x2) = {3, 2, 4, 6},
we let (u1x1, u1x2, uu3, uv) → (3, 1, 1, 5). Obviously, no (1, 2)(u,u1)-cycle exists by
Lemma 1.

Case 1.1.3 C(u1) = {2, 5, 1, 4} and C(u3) = {5, 2, 3, 6} with c(u1x2) = 4.
By Claim 1, we see that 2 ∈ C(x1)∩C(x2), and G contains a (1, 2)(u1,u3)-path and

a (4, 2)(u1,u3)-path. Assume that 3 /∈ C(x2). Let (uu1, uv) → (3, 2). If G contains
no (3, 5)(u1,u3)-path, we are done. Otherwise, we let (uu2, uu3) → (5, 4). So assume
that 3 ∈ C(x2) and 6 ∈ C(x2) similarly. Hence, C(x2) = {4, 2, 3, 6}. Assume that
3 /∈ C(x1). Let uu1 → 3. If G contains no (3, 4)(u1,u2)-path, let (uu3, uv) → (1, 2);
otherwise, let (uu2, uu3) → (2, 4). Now assume that 3, 6 ∈ C(x1) and C(x1) =
{1, 2, 3, 6}. Let (u1x1, u1x2, uu3, uv) → (4, 1, 1, 5). Clearly, no (1, 2)(u,u1)-cycle
exists by Lemma 1.

Case 1.2 C(u2) = {1, 4, 2, 6}.
If C(v2) = {1, 4, 2, 5}, the proof can be reduced to Case 1.1. If G contains no

(i, 2)(u1,u3)-path for some i ∈ {1, 3}\C(u3), then let (uu3, uv) → (i, 5). Otherwise,
we may do the following assumption.

Claim 2 (a) {2, 5}\C(v2) �= ∅.
(b) 1, 3 ∈ C(u3), or G contains a (i, 2)(u1,u3)-path for any i ∈ {1, 3}\C(u3).
(c) 1, 3 ∈ C(u3) ∪ C(u1), and 2 ∈ C(u3) if {1, 3}\C(u3) �= ∅.
Case 1.2.1 G contains no (2, 3)(u1,u2)-path.

If G contains no (1, 3)(u2,v1)-path, let uu2 → 3. Otherwise, G contains a
(1, 3)(u2,v1)-path and 1 ∈ C(v1). If C(v1) = {3, 1, 2, 5}, then by Case 1.1, we can
destroy that (1, 3)(u,v)-cycle by setting uu2 → 3 and hence destroy B such that no
new bichromatic cycles are produced. Thus, {2, 5}\C(v1) �= ∅.

If there exists a ∈ {2, 5}\(C(v1) ∪ C(v2)), then let (vv1, uv) → (a, 3) if G
contains no (6, a)(v1,v3)-path, and let (vv2, uu2, uv) → (a, 3, 4) otherwise. Thus,
assume that 2, 5 ∈ C(v1)∪C(v2). Recall that {2, 5}\C(vi ) �= ∅ for any i ∈ {1, 2}, say
2 ∈ C(v1)\C(v2) and 5 ∈ C(v2)\C(v1) (if 5 ∈ C(v1)\C(v2) and 2 ∈ C(v2)\C(v1),
we let uu2 → 3 to give a similar discussion).

If G contains neither (2, 3)(v1,v2)-path nor (2, 6)(v2,v3)-path, let (vv2, uu2, uv) →
(2, 3, 4). If G contains neither (5, 4)(v1,v2)-path nor (5, 6)(v1,v3)-path, let (vv1, uv) →
(5, 3). Otherwise, assume that G contains either a (2, 3)(v1,v2)-path or a (2, 6)(v2,v3)
path, and at the same time, either a (5, 4)(v1,v2)-path or a (5, 6)(v1,v3)-path.

• Assume that G contains a (2, 3)(v1,v2)-path so that C(v2) = {4, 1, 5, 3}.
If {1, 2}\ C(v3) �= ∅, let uv → 6 and vv3 → α ∈ {1, 2}\C(v3). So 1, 2 ∈ C(v3).

Assume that 5 /∈ C(v3). Then G contains a (5, 4)(v1,v2)-path. Let (vv3, uv) → (5, 6)
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and we are done by Lemma 1. Otherwise, C(v3) = {6, 1, 2, 5}. If 6 /∈ C(v1), let
(vv1, vv2, vv3, uv) → (6, 2, 4, 3). Otherwise, let (vv1, vv3, uv) → (5, 3, 6) and we
are done since G contains a (5, 6)(v1,v3)-path.

• Assume that G contains a (2, 6)(v2,v3)-path so that C(v2) = {4, 1, 5, 6}.
Then 2 ∈ C(v3). Since G contains either a (5, 4)(v1,v2)-path or a (5, 6)(v1,v3)-path,

we have to consider the following two possibilities:

(1) G contains a (5, 6)(v1,v3)-path, i.e., C(v1) = {3, 1, 2, 6} and 5 ∈ C(v3). If
4 /∈ C(v3), let (vv2, vv3, uv) → (2, 4, 6). Otherwise, C(v3) = {6, 2, 5, 4} and
let uv → 6. If G contains no (4, 6)(u2,v2)-path, let vv3 → 1; Otherwise, let
(vv1, vv2, vv3) → (4, 2, 3).

(2) G contains a (5, 4)(v1,v2)-path, i.e., C(v1) = {3, 1, 2, 4}. If 4 /∈ C(v3), let
(vv1, vv2, vv3) → (6, 3, 4). If 5 /∈ C(v3), let (vv3, uu2, uv) → (5, 3, 6). Oth-
erwise, C(v3) = {6, 2, 4, 5} and let vv3 → 1. Furthermore, if G contains no
(4, 6)(u2,v2)-path, let uv → 6; otherwise, let (vv1, uv) → (6, 3).

By Lemma 1, no new bichromatic cycles are produced.

Case 1.2.2 G contains a (2, 3)(u1,u2)-path and 3 ∈ C(u1).
If 3 /∈ C(u3), let (uu3, uu) → (3, 5), so we are done by Lemma 1. Hence, 3 ∈

C(u3).
• 2 /∈ C(u3).
Then 1 ∈ C(u3) by Claim 2. If 4 /∈ C(u1), let (uu1, uu2, uu3) → (4, 5, 2).

Otherwise, 4 ∈ C(u1). If 1 /∈ C(u1) and G contains no (4, 2)(u2,u3)-path, let
(uu1, uu3, uv) → (1, 2, 5). Otherwise, 1 ∈ C(u1) or G contains a (4, 2)(u2,u3)
path. Note that if G contains no (4, 2)(u2,u3)-path, then it follows that 1 ∈ C(u1).
If C(u3) = {5, 1, 3, 6}, then C(u1) = {2, 3, 4, 1} and let (uu2, uu3) → (5, 4). Other-
wise, C(u3) = {5, 1, 3, 4}. If G contains no (4, 6)(u2,u3)-path, let (uu3, uv) → (6, 5).
Otherwise,G contains a (4, 6)(u2,u3)-path. If 1, 5 /∈ C(u1), let (uu1, uv) → (1, 2) and
we are done because G contains a (4, 2)(u2,u3)-path. Otherwise, {1, 5} ∩ C(u1) �= ∅.
Hence, 6 /∈ C(u1) and let uu1 → 6. If G contains no (2, 4)(u2,v2)-path, let uv → 2.
Otherwise,G contains a (2, 4)(u2,v2)-path and thus 1 ∈ C(u1). Let (uu3, uv) → (2, 5),
and we are done by Lemma 1.

• 2 ∈ C(u3).
Then 1 ∈ C(u1)∪C(u3) by Claim 2. Assume that 6 /∈ C(u1)∪C(u3). IfG contains

no (4, 6)(u2,u3)-path, let (uu3, uv) → (6, 5); otherwise,G contains a (4, 6)(u2,u3)-path
and C(u3) = {5, 2, 3, 4}. If G contains no (5, 6)(u3,v1)-path, let (uu1, uu3, uv) →
(6, 1, 5); otherwise, let (uu1, uu2, uu3, uv) → (6, 5, 1, 2). Thus, 6 ∈ C(u1)∪C(u3).

If 4 /∈ C(u1) and G contains no (4, 5)(u1,u3)-path, let (uu1, uu2, uv) → (4, 3, 2).
Otherwise, 4 ∈ C(u1), or G contains a (4, 5)(u1,u3)-path. Since 1, 6 ∈ C(u1)∪C(u3),
we derive that 4 ∈ C(u1), and the proof splits into the following two subcases:

(1) C(u3) = {5, 2, 3, 1} and C(u1) = {2, 3, 4, 6}. First, let uv → 2. Next, if G
contains no (4, 2)(u2,v2)-path, then let uu1 → 1; otherwise (uu1, uu2, uu3) →
(5, 3, 4).

(2) C(u3) = {5, 2, 3, 6} and C(u1) = {2, 3, 4, 1}. Let (uu1, uv) → (5, 2). If G
contains no (4, 2)(u2,v2)-path, then let uu3 → 1; otherwise, let (uu2, uu3) →
(3, 4).
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Case 1.3 C(u2) = {1, 4, 2, 5}.
ByCases 1.1 and1.2, assume thatC(v2) = {1, 4, 3, 6}. IfG contains no (5, i)(u1,u3)-

path for some i ∈ {1, 3, 6}\C(u1), let (uu1, uv) → (i, 2). If G contains no
(2, i)(u1,u3)-path for some i ∈ {1, 3, 6}\C(u3), let (uu3, uv) → (i, 5). Otherwise,
we give the following assumption.

Claim 3 (a) 1, 3, 6 ∈ C(u1), or G contains a (5, i)(u1,u3)-path for each i ∈
{1, 3, 6}\C(u1).

(b) 1, 3, 6 ∈ C(u3), or G contains a (2, i)(u1,u3)-path for each i ∈ {1, 3, 6}\C(u3).
(c) 1, 2, 5 ∈ C(v3), or G contains a (3, i)(v1,v3)-path for each i ∈ {1, 2, 5}\C(v3).
(d) 1, 2, 5 ∈ C(v1) or G contains a (6, i)(v1,v3)-path for each i ∈ {1, 2, 5}\C(v1).
(e) 1, 3, 6 ∈ C(u1) ∪ C(u3) and 1, 2, 5 ∈ C(v1) ∪ C(v3).
(f) 5 ∈ C(u1) if {1, 3, 6}\C(u1) �= ∅, 2 ∈ C(u3) if {1, 3, 6}\C(u3) �= ∅, 6 ∈ C(v1)

if {1, 2, 5}\C(v1) �= ∅, and 3 ∈ C(v3) if {1, 2, 5}\C(v3) �= ∅.
Case 1.3.1 5 /∈ C(u1).

It is easy to see that C(u1) = {2, 1, 3, 6} by Claim 3. If {1, 3, 6}\C(u3) �= ∅, let
(uu1, uv) → (5, 2), uu3 → α ∈ {1, 3, 6}\C(u3), so the proof is complete by Claim 3
and Lemma 1. Otherwise, C(u3) = {5, 1, 3, 6}. If G contains neither (2, 3)(v1,v2)-
path nor (2, 6)(v2,v3)-path, let vv2 → 2. If G contains no (1, 2)(u1,v2)-path, we are
done. Otherwise, let (uu1, uu3) → (5, 2). Or else, assume, w.l.o.g., that G contains
a (2, 3)(v1,v2)-path. Let (uu2, uv) → (3, 2). If G contain no (3, 5)(u2,u3)-path, let
uu1 → 4; otherwise, let (uu1, uu3) → (5, 4).

Case 1.3.2 5 ∈ C(u1).
Furthermore, assume that 2 ∈ C(u3), 3 ∈ C(v3), and 6 ∈ C(v1). Since 1, 3, 6 ∈

C(u1)∪C(u3) by Claim 3, we may suppose that 1 ∈ C(u1), 6 /∈ C(u1), and it suffices
to consider the following two subcases. Note that G contains a (5, 6)(u1,u3)-path in
this case.

• C(u1) = {2, 5, 1, 3}, 6 ∈ C(u3) and 4 /∈ C(u3).
Let uu2 → 6. If {1, 2}\C(v3) �= ∅, let uu1 → 4 and uv → α ∈ {1, 2}\C(v3).

Otherwise, C(v3) = {3, 6, 1, 2} and let (uu3, uv) → (4, 5).
• C(u1) = {2, 5, 1, 3} and C(u3) = {5, 2, 6, 4}; or C(u1) = {2, 5, 1, 4}

and C(u3) = {5, 2, 3, 6}. By Claim 3, G contains a (2, 3)(u1,u3)-path if C(u1) =
{2, 5, 1, 3} and a (5, 3)(u1,u3)-path if C(u1) = {2, 5, 1, 4}. If 1 /∈ C(v1), let uu2 → 3.
If 1 /∈ C(v3), let uu2 → 6. Otherwise, it follows that 1 ∈ C(v1) ∩ C(v3). Since
2, 5 ∈ C(v1) ∪ C(v3), we have to handle two possibilities: If C(v1) = {3, 6, 1, 2}
and C(v3) = {3, 6, 1, 5}, let (vv2, vv3) → (5, 4). Otherwise, C(v1) = {3, 6, 1, 5},
C(v3) = {3, 6, 1, 2}, and let (vv1, vv2) → (4, 5).

Case 2 |C(u) ∩ C(v)| = 3, say (uu1, uu3)c = (2, 5) and (vv1, vv3)c = (3, 5).
If C(u2) = {1, 4, 3, 6} or C(v2) = {1, 4, 2, 6}, then the proof can be reduced to

Case 1. If G contains neither (4, 6)(u2,v2)-path nor (5, 6)(u3,v3)-path, let uv → 6.
Suppose that we can recolor some edges such that C(u) ∩ C(v) = {i, j} and no new
bichromatic cycles are produced in G − uv. If G contains an (i, j)(u,v)-cycle, then by
Case 1, we can destroy this (i, j)(u,v)-cycle as well as B such that no new bichromatic
cycles are produced. Thus, we have the following claim.
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Claim 4 (a) C(u2) �= {1, 4, 3, 6} and C(v2) �= {1, 4, 2, 6}.
(b) G contains either (4, 6)(u2,v2)-path or a (5, 6)(u3,v3)-path.
(c) If we can recolor some edges of G such that |C(u) ∩ C(v)| = 2, and no new

bichromatic cycles are produced in G − uv, then we are done.
If 6 /∈ C(u3) andG contains no (2, 6)(u1,u3)-path, let uu3 → 6; if 1 /∈ C(u3) andG

contains no (1, 2)(u1,u3)-path, let (uu3, uv) → (1, 6). Clearly, |C(u)∩C(v)| = 2 and
no new bichromatic cycles are produced in G−uv. By Claim 4, we are done. Assume
that 6 /∈ C(u2). If G contains no (2, 6)(u1,u2)-path, let uu2 → 6; If 4 /∈ C(u1) and G
contains no (4, 5)(u1,u3)-path, let (uu1, uu2) → (4, 6) and we are done by Lemma 1.
Hence, we have the following:

Claim 5 (a) 1, 6 ∈ C(u3), or G contains a (2, i)(u1,u3)-path for i ∈ {1, 6}\C(u3),
2 ∈ C(u3).

(b) 1, 6 ∈ C(u1) ∪ C(u3) and if 2 /∈ C(u3), then 1, 6 ∈ C(u3).
(c) 1, 6 ∈ C(v3), or G contains a (3, i)(v1,v3)-path for i ∈ {1, 6}\C(v3), 3 ∈ C(v3).
(d) 1, 6 ∈ C(v1) ∪ C(v3) and if 3 /∈ C(v3), then 1, 6 ∈ C(v3).
(e) If 6 /∈ C(u2)∩C(v2), then G contains a (5, 6)(u3,v3)-path and 6 ∈ C(u3)∩C(v3).
(f) {2, 6} ∩ C(u2) �= ∅, and 6 ∈ C(u2), or (i) G contains a (2, 6)(u1,u2)-path, 2 ∈

C(u2), 6 ∈ C(u1) and (ii) 4 ∈ C(u1), or G contains a (4, 5)(u1,u3)-path and
5 ∈ C(u1), 4 ∈ C(u3).

(g) {3, 6}∩C(v2) �= ∅, and6 ∈ C(v2), or (i)G contains a (3, 6)(v1,v2)-path, 3 ∈ C(v2),
6 ∈ C(v1) and (ii) 4 ∈ C(v1), or G contains a (4, 5)(v1,v3)-path and 5 ∈ C(v1),
4 ∈ C(v3).

We only need to suppose that C(u2)\{1, 4} ∈ {{2, 3}, {2, 5}, {2, 6}, {5, 6}} and C(v2)

\{1, 4} ∈ {{2, 3}, {3, 5}, {3, 6}, {5, 6}}.
Case 2.1 C(u2)\{1, 4} ∈ {{2, 3}, {2, 5}}, and 2 /∈ C(v2) if C(u2) = {4, 1, 2, 5}.

Note that 6 /∈ C(u2). By Claim 5, G contains a (5, 6)(u3,v3)-path with 6 ∈ C(u3) ∩
C(v3), and G contains a (2, 6)(u1,u2)-path with 6 ∈ C(u1), and 4 ∈ C(u1), or G
contains a (4, 5)(u1,u3)-path with 5 ∈ C(u1), 4 ∈ C(u3). Thus, we need to consider
the following two subcases.

Case 2.1.1 4 /∈ C(u1), and {2, 5, 6} ⊆ C(u1), {5, 4, 6} ⊆ C(u3).
If 2 /∈ C(u3), let (uu1, uu2, uu3) → (4, 6, 2). Otherwise, C(u3) = {5, 6, 4, 2}

and then C(u1) = {2, 6, 5, 1} since 1 ∈ C(u1) ∪ C(u3) by Claim 5. If 2 /∈ C(v2),
let (uu1, uu3, uv) → (3, 1, 2). Otherwise, 2 ∈ C(v2) and 6 /∈ C(v2). Recall that G
contains a (3, 6)(v1,v2)-path by Claim 5. Let (uu1, uu3, uv) → (3, 1, 6) and then we
are done by Lemma 1.

Case 2.1.2 4 ∈ C(u1) and {2, 6, 4} ⊆ C(u1), {5, 6} ⊆ C(u3)
Assume that 1 /∈ C(u3). Then C(u1) = {2, 6, 1, 4} by Claim 5. If 5 /∈ C(u2), let

(uu1, uu3, uv) → (5, 1, 6) and no (5, 6)(u,u1)-cycle exists by Claim 5 and Lemma
1. Otherwise, C(u2) = {4, 1, 2, 5} and 2 /∈ C(v2). If G contains no (1, 3)(u1,u3)
path, let (uu1, uu3, uv) → (3, 1, 2); otherwise, G contains a (1, 3)(u1,u3)-path and let
(uu1, uu2, uu3, uv) → (5, 3, 1, 6). Now assume that 1 ∈ C(u3) and 5, 6, 1 ∈ C(u3).

• Assume that C(u2) = {4, 1, 2, 3}.
If 2 /∈ C(u3) and G contains no (2, 4)(u2,u3)-path, let (uu3, uv) → (2, 6) and

uu1 → α ∈ {1, 5}\C(u1). By Claim 5 and Lemma 1, no new bichromatic cycles are
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produced.Otherwise, 2 ∈ C(u3) orG contains a (2, 4)(u2,u3)-path and 4 ∈ C(u3). First
assume thatC(u3) = {5, 1, 6, 4}. ThenG contains a (2, 4)(u2,u3)-path. If 1, 5 /∈ C(u1),
let (uu1, uv) → (1, 2). Otherwise, {1, 5} ∩ C(u1) �= ∅ and 3 /∈ C(u1). Then let
uv → 2, and let uu1 → 3 if G contains no (4, 3)(u1,u2)-path, or let uu3 → 3,
uu1 → β ∈ {1, 5}\C(u1) otherwise.

Next assume that C(u3) = {5, 1, 6, 2}. If C(u1) = {2, 6, 4, 3}, let (uu1, uu2, uu3)
→ (5, 6, 4). Otherwise, 3 /∈ C(u1). IfG contains no (3, 6)(u3,v1)-path, let (uu3, uv) →
(3, 6). Otherwise, G contains a (3, 6)(u3,v1)-path. Note that G contains a (3, 6)(v1,v2)
path if 6 /∈ C(v2) by Claim 5. Hence, 6 ∈ C(v2) and then 2 /∈ C(v2) by
Claim 4. If C(u1) = {2, 6, 4, 1}, let (uu1, uu2, uu3, uv) → (5, 6, 4, 2). Other-
wise, C(u1) = {2, 6, 4, 5}. If G contains no (2, 3)(u3,v1)-path, let (uu1, uu3, uv) →
(1, 3, 2). Otherwise, G contains a (2, 3)(u3,v1)-path and 2 ∈ C(v1). If G contains
no (2, 5)(v2,v3)-path, let vv2 → 2. Otherwise, G contains a (2, 5)(v2,v3)-path and
2 ∈ C(v3), C(v2) = {4, 1, 6, 5}. By Claim 5, we have C(v3) = {5, 6, 2, 1}, or
C(v3) = {5, 6, 2, 3} and C(v1) = {3, 2, 6, 1}. Then let (vv2, vv3) → (2, 4) and we
are done.

• Assume that C(u2) = {4, 1, 2, 5} and 2 /∈ C(v2).
First assume that 3 /∈ C(u1). If G contains no (3, 5)(u1,u3)-path and 2 /∈ C(u3),

let (uu1, uv) → (3, 2). Otherwise, G contains a (3, 5)(u1,u3)-path or 2 ∈ C(u3). If
C(u3) = {5, 6, 1, 2}, let (uu1, uu2, uu3, uv) → (3, 6, 4, 2). Otherwise, C(u1) =
{2, 6, 4, 5}, C(u3) = {5, 6, 1, 3} and let (uu1, uu3, uv) → (1, 2, 6). Next assume that
C(u1) = {2, 6, 4, 3}.

If G contains no (2, 5)(u3,v3)-path, let (uu1, uv) → (1, 2). So G contains a
(2, 5)(u3,v3)-path and 2 ∈ C(u3) ∩ C(v3). If G contains no (2, 3)(v1,v2)-path, let
vv2 → 2. Thus, G contains a (2, 3)(v1,v2)-path and 2 ∈ C(v1), 3 ∈ C(v2). Note
that {1, 3} ∩ C(v3) �= ∅ by Claim 5 and hence 4 /∈ C(v3). If 4 /∈ C(v1), let
(vv1, vv2) → (4, 2). Otherwise, 4 ∈ C(v1). If 1 /∈ C(v1), then C(v3) = {5, 6, 2, 1}
and let (vv1, vv3, uv) → (1, 3, 6). Now assume that C(v1) = {3, 2, 4, 1}. If
6 /∈ C(v2), let vv2 → 6.Otherwise,C(v2) = {4, 1, 3, 6}. Then let (vv1, uv) → (5, 6),
vv3 → α ∈ {1, 3}\C(v3) and we are done since 4 /∈ C(v3).

Case 2.2 C(u2)\{1, 4} ∈ {{2, 6}, {5, 6}} and C(v2)\{1, 4} ∈ {{3, 6}, {5, 6}}.
Case 2.2.1 G contains no (2, 3)(u1,u2)-path and (5, 3)(u2,u3)-path.

First, we let uu2 → 3. If G contains no (1, 3)(u2,v1)-path, then we are done. Oth-
erwise, G contains a (1, 3)(u2,v1)-path and 1 ∈ C(v3) by Claim 5. If 6 /∈ C(v3),
then G contains a (4, 6)(u2,v2)-path and a (3, 6)(v1,v3)-path by Claims 4 and 5, and let
uv → 6. Otherwise, 6 ∈ C(v3). If C(v1)\{1, 3} /∈ {{4, 6}, {5, 6}}, then by Case 1,
Case 2.1 or Case 2.2, we can destroy this (1, 3)(u,v)-cycle as well as B so that no new
bichromatic cycles are produced. Thus, assume that C(v1)\{1, 3} ∈ {{4, 6}, {5, 6}}
and then 2 /∈ C(v1) ∪ C(v2). If G contains no (5, 2)(v2,v3)-path and 4 /∈ C(v3), let
(vv2, uv) → (2, 4). Otherwise,G contains a (5, 2)(v2,v3)-path orC(v3) = {5, 1, 6, 4}.
Let (uu2, vv1, uv) → (4, 2, 3) so that (5, 2)(v1,v3) exists by Lemma 1 even if
2 ∈ C(v3).

Case 2.2.2 G contains a (2, 3)(u1,u2)-path or a (5, 3)(u2,u3)-path.

(2.2.2.1) G contains a (2, 3)(u1,u2)-path and C(u2) = {4, 1, 2, 6}, 3 ∈ C(u1).
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Suppose that we can recolor some edges in {vv1, vv2, vv3} such that C(v) =
{2, 1, 3, 5}, or C(v) = {2, 1, 3, 4} with c(vv2) �= 4, and no new bichromatic cycles
are produced inG−uv. By Lemma 1, B does not exist even if 4 ∈ C(v). IfG contains
a (1, 2)(u,v)-cycle, then we can destroy this (1, 2)(u,v)-cycle by Cases 1 or 2.1 since
3 ∈ C(u1). Next, we may give the following assertion.
(∗2) If we can recolor some edges in {vv1, vv2, vv3} such that C(v) = {2, 1, 3, 5},
or C(v) = {2, 1, 3, 4} with c(vv2) �= 4, and no new bichromatic cycles, other than
(1, 2)(u,v)-cycle, are produced, then we are done.

• C(v2) = {4, 1, 5, 6}.
By Case 2.2.1, we may further assume that G contains a (2, 5)(v2,v3)-path and

2 ∈ C(v3). Assume that 2 /∈ C(v1). Let vv1 → 2. If G contains no (5, 3)(u3,v3)-
path, let uv → 3; otherwise, let vv2 → 3 and we are done by (∗2). So assume
that 2 ∈ C(v1). If 4 /∈ C(v3) and G contains no (3, 4)(v1,v3)-path, let (vv3, vv2) →
(4, 2) and we are done by (∗2). Otherwise, 4 ∈ C(v3) or G contains a (3, 4)(v1,v3)-
path. Together with Claim 5, we have 3 ∈ C(v3), 1, 6, 4 ∈ C(v1) ∪ C(v3) and then
{1, 6}\C(v3) �= ∅, 5 /∈ C(v1). Choose α ∈ {1, 6}\C(v3) and β ∈ {1, 6}\{α}. Then let
(vv1, vv2, vv3, uv) → (5, 3, α, β) and we are done by Claims 4 and 5 and Lemma 1.

• C(v2) = {4, 1, 3, 6}.
By Case 2.2.1, assume that G contains a (2, 3)(v1,v2)-path and 2 ∈ C(v1). If 3 /∈

C(u3) and 2 /∈ C(v3), let (uu3, vv3, uv) → (3, 2, 5). Otherwise, 3 ∈ C(u3) or
2 ∈ C(v3), and assume, w.l.o.g., that 2 ∈ C(v3). If 4 /∈ C(v3) and 5 /∈ C(v1), let
(vv1, vv2, vv3, uv) → (5, 2, 4, 3). Otherwise, 4 ∈ C(v3) or 5 ∈ C(v1). Then there
are the following two possibilities:

(1) 4 ∈ C(v3). By Claim 5, we may assume that C(v3) = {5, 2, 4, 3} and C(v1) =
{3, 2, 1, 6}. It suffices to let (vv1, vv3, uv) → (5, 1, 3).

(2) 4 /∈ C(v3) and 5 ∈ C(v1). If 4 /∈ C(v1) and G contains no (5, 3)(u3,v3)-path, let
(vv1, vv2, uv) → (4, 2, 3). Otherwise, 4 ∈ C(v1) or G contains a (5, 3)(u3,v3)-
path. If 4 ∈ C(v1), then C(v1) = {3, 2, 5, 4}, C(v3) = {5, 2, 1, 6} and let
(vv1, vv3, uv) → (1, 3, 6). Otherwise, 4 /∈ C(v1) and G contains a (5, 3)(u3,v3)-
path. Then let (vv1, vv2, uv) → (4, 5, 3) and vv3 → α ∈ {1, 6}\C(v3). By
Claims 4 and 5 and Lemma 1, no bichromatic cycles are produced.

(2.2.2.2) G contains a (3, 5)(u2,u3)-path and C(u2) = {4, 1, 5, 6}, 3 ∈ C(u3).
By the previous discussion, we may further assume thatC(v2) = {4, 1, 5, 6} and G

contains a (2, 5)(v2,v3)-path with 2 ∈ C(v3). If 2 /∈ C(v1), let (vv1, uv) → (2, 3). Oth-
erwise, 2 ∈ C(v1). Note that G contains a (3, i)(v1,v3)-path for any i ∈ {1, 6}\C(v3)

and 1, 6 ∈ C(v1) ∪ C(v3) by Claim 5. First assume that 3 /∈ C(v3) and thus
C(v3) = {5, 2, 1, 6}. If 4 /∈ C(v1), let (vv1, vv2) → (4, 3); if 1 /∈ C(v1), let
(vv1, vv3, uv) → (1, 3, 6); otherwise, C(v1) = {3, 2, 4, 1} and let (vv1, vv2) →
(6, 3). Next assume that 3 ∈ C(v3). Choose α ∈ {1, 6}\C(v3) and β ∈ {1, 6}\{α},
and then let (vv3, vv2, uv) → (α, 3, β). If 5 /∈ C(v1), let vv1 → 5. Otherwise,
5 ∈ C(v1) and it follows that 4 /∈ C(v1) ∪ C(v3) from 1, 6 ∈ C(v1) ∪ C(v3). Let
vv1 → 4. By Claims 4 and 5 and Lemma 1, we are done in each step.

Case 3 |C(u) ∩ C(v)| = 4, say (uu1, uu3)c = (2, 5) and (vv1, vv3)c = (2, 5).
By Cases 1 and 2, we may assume thatC(u2) = C(v2) = {1, 2, 4, 5}. IfG contains

neither (2, j)(u,v)-path nor (5, j)(u,v)-path for some j ∈ {3, 6}, letuv → j . Otherwise,
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for any j ∈ {3, 6}, G contains an (i, j)(u,v)-path for some i ∈ {2, 5}. W.l.o.g., assume
that G contains a (2, 3)(u,v)-path with 3 ∈ C(u1). If G contains no (3, 5)(u2,u3)-
path, let uu2 → 3; if G contains no (3, 5)(v2,v3)-path, let vv2 → 3. Otherwise, G
contains a (3, 5)(v2,v3)-path and a (3, 5)(u2,u3)-path with 3 ∈ C(u3). Similarly, assume
that 6 ∈ C(u1) ∩ C(u3). If 1 /∈ C(u1) and G contains no (1, 5)(u1,u3)-path, let
(uu1, uv) → (1, 3). Otherwise, 1 ∈ C(u1) or G contains a (1, 5)(u1,u3)-path. Note
that 1 ∈ C(u3) and 5 ∈ C(u1) if 1 /∈ C(u1). Thus, {1, 5} ∩ C(u1) �= ∅ and 4 /∈
C(u1). Then if 4 /∈ C(u3), let (uu2, uu3) → (3, 4); otherwise, C(u3) = {5, 3, 6, 4},
C(u1) = {2, 3, 6, 1}, and let (uu1, uu3, uv) → (5, 1, 3). 
�
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