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Abstract This paper deals with the existence, monotonicity, uniqueness, and asymp-
totic behaviour of travelling wavefronts for a class of temporally delayed, spatially
nonlocal diffusion equations.
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1 Introduction

Travelling wavefront solutions play an important role in the description of the long-
term behaviour of solutions to initial value problems in reaction–diffusion equations,
both in the spatially continuous case and in spatially discrete situations. Such solutions
are also of interest in their own right, for example to understand transitions between
different states of a physical system, propagation of patterns, and domain invasion
of species in population biology (see, e.g. [3,4,8,13,37]). In this paper, we study
the existence, uniqueness, and asymptotic stability of travelling wavefronts of the
equation:
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920 S. Guo, J. Zimmer

ut (x, t) = puxx (x, t) + d(J ∗ u − u)(x, t) + f (u(x, t), (h ∗ ∗u)(x, t)) , (1)

where x ∈ R, d ≥ 0, p ≥ 0, and

(J ∗ u)(x, t) :=
∫
R

J (x − y)u(y, t)dy,

(h ∗ ∗u)(x, t) :=
∫ t

−∞

∫
R

h(x − y, t − s)u(y, s)dyds.

Equation (1)mixes a continuous Laplacianwith a nonlocal diffusion d(J ∗u−u)(x, t),
which describes that the diffusion of density u at a point x and time t depends not
only on u(x, t) but also on all the values of u in a neighbourhood of x through the
convolution term J ∗ u. In population dynamics, the reaction term f (u, h ∗ ∗u) is
usually used to describe the recruits of population, and h ∗ ∗u represents a weighted
average of the population density in both past time and space [6,7]. The nonlinear
functions f (u, v) and h(u) satisfy the following hypotheses:

(F1) f ∈ C([0, K ] × [0, K ],R), f (0, 0) = f (K , K ) = 0, f (u, h ∗ ∗u) > 0 for
all u ∈ (0, K ), ∂2 f (u, v) ≥ 0 for all (u, v) ∈ [0, K ] × [0, K ], where K is a
positive constant.

(F2) There exist some M > 0 andσ ∈ (0, 1] such that 0 ≤ ∂1 f (0, 0)u+∂2 f (0, 0)v−
f (u, v) ≤ M(u + v)1+σ for all (u, v) ∈ [0, K ] × [0, K ] and ∂1 f (K , K ) +
∂2 f (K , K ) < 0.

(H1) Both J (·) andh(·, t) are nonnegative, even, integrable, and satisfies
∫
R

J (x)dx =
1 and

∫ ∞
0

∫
R

h(x, t)dxdt = 1.
(H2) There exists someλ0 > 0 (possibly equal to∞) such that

∫ ∞
0 J (x) exp{λx}dx <

∞ and
∫ ∞
0

∫ ∞
0 h(x, t) exp{λ(x − ct)}dxdt < ∞ for all c ≥ 0 and λ ∈ [0, λ0).

Assumptions (F1) and (F2) are standard. From (F1), we can see that (1) has two
equilibria 0 and K . Furthermore, condition (F2) together with (F1) and (H1) implies
that ∂1 f (0, 0) + ∂2 f (0, 0) ≥ 2

K f ( K
2 , K

2 ) = 2
K f ( K

2 , h ∗ ∗( K
2 )) > 0; hence, 0 is

unstable and K is stable. In this article, we will not require that ∂2 f (0, 0) > 0.
Since Eq. (1) involves a general diffusion kernel and delayed nonlinearity, it can

be reduced to some well-known equations if J, h, and f are chosen to take some spe-
cial form (see, e.g. [2,16,35,39,40,43,44]). In particular, special cases of (1) include
a host–vector disease model, a nonlocal population model with age structure, and
a nonlocal Nicholson’s blowflies model with delay; these cases are discussed in a
second paper investigating the stability of the system [20]. For example, choosing
d = 0, f (u, v) = −τu + τβve−v , Eq. (1) can be reduced to the following Nichol-
son’s Blowflies equation with spatiotemporal delays

ut (x, t) = puxx (x, t) − τu(x, t) + τβ(h ∗ ∗u)(x, t) exp{−(h ∗ ∗u)(x, t)},

which was studied by Li, Ruan, and Wang [26], and Lin [27]. If p = 0 and J (x) =
1
2 [δ(−1) + δ(1)] and h(x, t) = k(x)δ(t − τ), where δ(·) is the Dirac delta function,
then (1) reduces to the discrete reaction–diffusion equation
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ut (x, t) = d · �1u(x, t) + f (u(x, t), (k ∗ u)(x, t − τ)) , (2)

where �1u(x, t) = 1
2 [u(x + 1, t)− 2u(x, t)+ u(x − 1, t)]. If f (u, v) = −au + b(v)

and k(x) = δ(x), then (2) reduces to the local equation

ut (x, t) = d · �1u(x, t) − au(x, t) + b(u(x, t − τ)), x ∈ R, t ≥ 0, (3)

where b ∈ C1([0,∞],R). If f (u, v) = g(u) and g(u) denotes a Lipschitz continuous
function satisfying g(u) > 0 = g(0) = g(1) for all u ∈ (0, 1), Eq. (2) becomes

ut (x, t) = d · �1u(x, t) + g(u(x, t)). (4)

On the other hand,when d = 0 and h(x, t) = k(x)δ(t−τ), (1) reduces to the following
reaction–diffusion equation with discrete time delay

ut (x, t) = puxx (x, t) + f (u(x, t), (k ∗ u)(x, t − τ)) . (5)

Moreover, Eq. (2) is a spatially discrete version of (5) with p replaced by d. In recent
years, spatially nonlocal differential equations such as (5) have attracted significant
attention (see, e.g. [15,19,33,37–39]). Under some monostable assumption, Wang et
al. [39] investigated the existence, uniqueness, and global asymptotical stability of
travelling wavefronts. We also refer to So et al. [37] for more details and some specific
forms of f , obtained from integrating along characteristics of a structured population
model, an idea from the work of Smith and Thieme [36]. See also [37] for a similar
model and [18] for a survey on the history and the current status of the study of
reaction–diffusion equations with nonlocal delayed interactions. In particular, when
f (u, v) = v(1−u) and k(u) = δ(u), Eq. (5) is delayed Fisher’s equation [17] or KPP
equation [25], which arises in the study of gene development or population dynamics.
When f (u, v) = −au+b(v) and k(u) = δ(u), Eq. (5) is the localNicholson’s blowflies
equation and has been investigated in [19,21,28,32]. When f (u, v) = −au + b(1 −
u)v, Eq. (5) is called the vector disease model as proposed by Ruan and Xiao [34].

When f (u, v) = bv exp{−γ τ } − δu2 and k(u) = 1√
4πατ

exp{−y2

4ατ
}, Eq. (5) is the

age-structured reaction–diffusionmodel of a single species proposed byAl-Omari and
Gourley [1]. Existence and stability of travelling wavefronts for the reaction–diffusion
equation (5) and its special forms have been extensively studied in the literature.

We are interested in wave propagation phenomena. In particular, we are interested
in monotone travelling waves u(x, t) = φ(x + ct) for (1), with φ saturating at 0 and
K . We call c the travelling wave speed and φ the profile of the wavefront. In order to
address these questions, we need to find an increasing functionφ(ξ), where ξ = x+ct ,
which is a solution of the associated travelling wave equation

− cφ′(ξ) + pφ′′(ξ) + d(J ∗ φ − φ)(ξ) + f (φ(ξ), (h ∗ ∗φ)(ξ)) = 0, ξ ∈ R,

lim
ξ→−∞ φ(ξ) = 0, lim

ξ→∞ φ(ξ) = K ,

0 ≤ φ(ξ) ≤ K , ξ ∈ R,

(6)

123



922 S. Guo, J. Zimmer

where

(J ∗ φ)(ξ) =
∫
R

J (y)φ(ξ − y)dy,

(h ∗ ∗φ)(ξ) =
∫ ∞

0

∫
R

h(y, s)φ(ξ − y − cs)dyds.

For convenience, we write φ(−∞) and φ(∞) as abbreviations for limξ→−∞ φ(ξ) and
limξ→∞ φ(ξ), respectively. Travelling wavefronts of (3) have been intensively studied
in recent years, see, e.g. [8–13,22–24,29–31,42,45–47]. Zinner et al. [47] addressed
the existence and minimal speed of travelling wavefront for (4). Recently, based on
[11,12], Chen et al. [10] investigated the uniqueness and asymptotic behaviour of
travelling waves for (2) with d = 2. To the best of our knowledge, however, there are
no results regarding the existence, uniqueness, monotonicity, asymptotic behaviour,
and asymptotic stability of travelling waves for an equation as general as (1).

There is an enormous amount ofwork on related equationswhich is impossible even
to sketch. We only mention the work of Coville and coworkers, where the nonlinearity
is local, but general nonlocal expressions instead of the nonlocal diffusion equation
are considered (e.g. [14]). Some methods are similar, such as the use of super- and
subsolutions. For interestingwork on aFisher–KPPequationwith a nonlocal saturation
effect, where no maximum principle holds, we refer to [5].

We shall establish the existence, uniqueness, monotonicity, asymptotic behaviour
of travelling waves for (1) under the assumptions (F1), (F2), (H1), and (H2).

Theorem 1.1 Under assumptions (F1), (F2), (H1), and (H2), there exists a minimal
wave speed c∗ > 0 such that for each c ≥ c∗, Eq. (1) has a travelling wavefront
φ(x + ct) satisfying (6). Moreover,

1. the solution φ of (6) is unique up to a translation.
2. Every solution φ of (6) is strictly monotone, i.e. φ′(ξ) > 0 for all ξ ∈ R.
3. Every solution φ of (6) satisfies 0 < φ(·) < K on R.
4. Any solution of (6) satisfies limξ→−∞ φ′(ξ)/φ(ξ) = λ, with λ being the minimal

positive root of

cλ − pλ2 − d [H(λ) − 1] − ∂1 f (0, 0) − ∂2 f (0, 0)G(c, λ) = 0, (7)

where

H(λ) =
∫
R

J (y) exp{−λy}dy,

G(c, λ) =
∫ ∞

0

∫
R

h(y, s) exp{−λ(y + cs)}dyds.

for λ ∈ C with Reλ < λ0.
5. Any solution of (6) satisfies limξ→∞ φ′(ξ)/[K − φ(ξ)] = γ , with γ being the

unique positive root of

cγ + pγ 2 + d
[
H(−γ ) − 1

] + ∂1 f (K , K ) + ∂2 f (K , K )G(c,−γ ) = 0. (8)
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We remark that if c > c∗, Eq. (7) has exactly two real roots, both positive.
This paper is organised as follows. In Sect. 2, we provide some preliminary results;

in Sect. 3, we establish the existence of a travelling wavefront, using the monotone
iterationmethod developed byWu and Zou [42] with a pair of super- and subsolutions.
In particular, Theorems 3.1 and 3.2 establish the existence part of Theorem 1.1. To
derive the monotonicity and uniqueness of wave profiles (Sect. 5), we shall first apply
Ikehara’s theorem in Sect. 4 to study the asymptotic behaviour of wave profiles. This
idea originated in Carr and Chmaj’s paper [9], where the authors study the uniqueness
of waves for a nonlocal monostable equation. Theorem 5.1 establishes the monotonic-
ity part of Theorem 1.1, and uniqueness is discussed in Theorem 5.2, and nonexistence
of travelling waves for c < c∗ is the content of Theorem 5.3.

2 Notation and Auxiliary Results

Throughout this paper, C > 0 denotes a generic constant, while Ci (i = 1, 2, . . .)
represents a specific constant. Let I be an interval, typically I = R. Let T > 0 be
a real number and B be a Banach space. We denote by C([0, T ],B) the space of the
B-valued continuous functions on [0, T ], while L2([0, T ],B) is the space of the B-
valued L2-functions on [0, T ]. The corresponding spaces of the B-valued functions
on [0,∞) are defined similarly.

For a given travelling wave φ of (1) satisfying (6), define

G j (ξ) = ∂ j f

(
φ(ξ),

∫ ∞

0

∫
R

h(y, s)φ(ξ − y − cs)dyds

)
, j = 1, 2,

B(ξ) =
∫ ∞

0

∫
R

h(y, s)G2(ξ + y + cs)dyds.

(9)

Obviously, B(ξ) and G j (ξ), j = 1, 2 are nonincreasing and satisfy

G1(∞) = ∂1 f (K , K ), B(∞) = G2(∞) = ∂2 f (K , K ). (10)

Moreover, both G(c, λ) and H(λ) are twice differentiable in λ ∈ [0, λ0). Moreover,
G(c, 0) = 1, H(0) = 1, H ′(λ) > 0, Gλλ(c, λ) > 0, and H ′′(λ) > 0. Set

�(c, λ) = cλ − pλ2 − d[H(λ) − 1] − ∂1 f (0, 0) − ∂2 f (0, 0)G(c, λ) (11)

and

�̃(c, λ) = cλ + pλ2 + d[H(−λ) − 1] + ∂1 f (K , K ) + ∂2 f (K , K )G(c,−λ) (12)

for all c ∈ R and λ ∈ C with c ≥ 0 and Reλ < λ+, where λ+ = λ0 if ∂2 f (0, 0) > 0
and λ+ = +∞ if ∂2 f (0, 0) = 0.

We require two simple technical statements.

Lemma 2.1 There exist c∗ > 0 and λ∗ ∈ (0, λ+) such that �(c∗, λ∗) = 0 and
�λ(c∗, λ∗) = 0. Furthermore,
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924 S. Guo, J. Zimmer

(i) if 0 < c < c∗, then �(c, λ) < 0 for all λ ≥ 0;
(ii) if c > c∗, then the equation �(c, ·) = 0 has two positive real roots λ1(c) and λ2(c)

with 0 < λ1(c) < λ∗ < λ2(c) < λ+ such that λ′
1(c) < 0, λ′

2(c) > 0,�(c, λ) > 0
for all λ ∈ (λ1(c), λ2(c)), and �(c, λ) < 0 for all (−∞, λ+) \ [λ1(c), λ2(c)].

Proof Note that for all λ ∈ (0, λ+),

�λ(c, λ) = c − 2pλ − d H ′(λ) − ∂2 f (0, 0)Gλ(c, λ),

�λλ(c, λ) = −2p − dH ′′(λ) − ∂2 f (0, 0)Gλλ(c, λ) < 0,

�c(c, λ) = λ − ∂2 f (0, 0)Gc(c, λ) > 0,

�(c, 0) = −∂1 f (0, 0) − ∂2 f (0, 0) < 0,

�(0, λ) = −2pλ2 − d[H(λ) − 1] − ∂1 f (0, 0) − ∂2 f (0, 0)G(0, λ) < 0

and
lim

λ→λ+−0
�(c, λ) = −∞.

Then the conclusion of this lemma follows. 
�
Lemma 2.2 Under assumptions (F1) and (F2), for each fixed c ≥ 0, �̃(c, ·) has
exactly one positive zero υ(c).

Proof In view of (F1) and (F2), we have

�̃(c, 0) = ∂1 f (K , K ) + ∂2 f (K , K ) < 0

and
lim

λ→λ+−0
�̃(c, λ) = +∞.

Therefore, �̃(c, ·) has at least one positive zero. Note that

�̃λ(c, λ) = c + 2pλ − dH ′(−λ) − ∂2 f (K , K )Gλ(c,−λ)

and for λ > 0

Gλ(c,−λ) =
∫ ∞

0

∫ ∞

0
h(y, s)

[
(y − cs)e−λ(y+cs) − (y + cs)eλ(y−cs)

]
dyds < 0.

Thenwehave �̃λ(c, λ) > 0 for allλ ∈ (0, λ+). This implies that �̃λ(c, λ) is increasing
in λ and so it has exactly one positive zero. 
�

We now define the notion of super- and subsolutions. For any absolutely contin-
uous function ϕ : R → R satisfying that ϕ′ and ϕ′′ exist almost everywhere and are
essentially bounded on R, we set

Nc[ϕ](ξ) � cϕ′(ξ) − pϕ′′(ξ) − d(J ∗ φ − φ)(ξ) − f (ϕ(ξ), (h ∗ ∗ϕ)(ξ)).
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Given a positive constant c, a nondecreasing continuous function ϕ+ is called a super-
solution of (6) if ϕ+(−∞) = 0 and ϕ+ is differentiable almost everywhere in R such
that Nc[ϕ+](ξ) ≥ 0 for almost every ξ ∈ R. A continuous function ϕ− is called
a subsolution of (6) if ϕ−(−∞) = 0, ϕ−(ξ) is not identically equal to 0 and ϕ−
is differentiable almost everywhere in R such that Nc[ϕ−](ξ) ≤ 0 for almost every
ξ ∈ R.

Next, we introduce the operator Hμ : C(R) → C(R) by

Hμ(ϕ) = d(J ∗ ϕ − ϕ) + f (ϕ, h ∗ ∗ϕ) + μϕ.

It is easy to see that ϕ satisfies (6) if and only if ϕ satisfies

ϕ(ξ) = Tμ(ϕ)(ξ), (13)

where

Tμ(ϕ)(ξ) = 1

c

∫ ∞

0
exp

{
−μx

c

}
Hμ(ϕ)(ξ + x)dx

if p = 0, and

Tμ(ϕ)(ξ) = 1

p(ς2 − ς1)

[∫ ξ

−∞
eς1(ξ−x)Hμ(ϕ)(x)dx +

∫ ∞

ξ

eς2(ξ−x)Hμ(ϕ)(x)dx

]

if p > 0, and

ς1 = c − √
c2 + 4pμ

2p
< 0, ς2 = c + √

c2 + 4pμ

2p
> 0. (14)

Choose μ > 2d + max{|∂ j f (u, v)| : (u, v) ∈ [0, K ] × [0, K ], j = 1, 2}. Then the
operator Tμ is well defined for functions φ of a growth rate less than eμx . Furthermore,
since f is monotone in the second argument by (F1), we have for ϕ ≤ ψ

Hμ(ϕ) − Hμ(ψ) = μ[ϕ − ψ] + d[J ∗ (ϕ − ψ) − (ϕ − ψ)]
+ ∂1 f (ϕ̃, h ∗ ∗ϕ)[ϕ − ψ] ≤ 0,

where ϕ̃(y) lies between ϕ(y) and ψ(y). Then the choice of μ shows that Hμ(ϕ) is
monotone in ϕ,

Hμ(ϕ)(ξ) ≤ Hμ(ψ)(ξ) if 0 ≤ ϕ ≤ ψ ≤ K in R. (15)

Thus, we have the following result on the monotonic travelling waves.

Lemma 2.3 Under assumptions (F1) and (H1), assume that there exists a super-
solution ϕ+ and a subsolution ϕ− of (6) such that 0 ≤ ϕ− ≤ ϕ+ ≤ K on R. Then (6)
has a solution ϕ satisfying ϕ′(ξ) ≥ 0 for all ξ ∈ R.
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926 S. Guo, J. Zimmer

Proof Assume that there exist a super-solution ϕ+ and a subsolution ϕ− of (6) such
that 0 ≤ ϕ− ≤ ϕ+ ≤ K in R. Define ϕ1 = Tμ(ϕ+). Then ϕ1 is a well-defined C1

function. From the definition of super-solution, we have

ϕ+ ≥ Tμ(ϕ+) = ϕ1.

Also, by the definition of subsolution and the property (15) of Hμ, we get

ϕ− ≤ Tμ(ϕ−) ≤ Tμ(ϕ+) = ϕ1.

Hence ϕ−(ξ) ≤ ϕ1(ξ) ≤ ϕ+(ξ) for all ξ ∈ R. Moreover, using the fact that ϕ+
is nondecreasing and μ > 2d + max{|∂ j f (u, v)| : u, v ∈ [0, K ], j = 1, 2}, we
have Hμ(ϕ+)(s) ≥ Hμ(ϕ+)(ξ) for all s ≥ ξ and hence ϕ′

1(ξ) ≥ 0. Now define
ϕn+1 = Tμ(ϕn) for all n ∈ N. By induction, it is easy to see that 0 ≤ ϕ− ≤ ϕn+1 ≤
ϕn ≤ ϕ+ ≤ K and ϕ′

n+1 ≥ 0 onR for all n ∈ N. Then the limit ϕ(ξ) � limn→∞ ϕn(ξ)

exists for all ξ ∈ R and ϕ(ξ) is nondecreasing on R. By Lebesgue’s dominated
convergence theorem, ϕ satisfies (13) and hence satisfies (6). 
�

3 Existence

In this section, we shall establish the existence of travelling waves by constructing a
suitable pair of super- and subsolutions. First, we derive two properties of possible
solutions of (6).

Lemma 3.1 Under assumptions (F1) and (H1), every solution (c, ϕ) of (6) satisfies
0 < ϕ(ξ) < K for all ξ ∈ R.

Proof Let (c, ϕ) be a solution of (6). Suppose that there exists ξ0 ∈ R such that
ϕ(ξ0) = 0. In view of ϕ(∞) = K , without loss of generality, we may assume ξ0 is
the right-most point such that ϕ(ξ0) = 0. Since ϕ(ξ) ≥ 0 for all ξ ≥ ξ0, we have
ϕ′(ξ0) = ϕ′′(ξ0) = 0. It follows from (6) and (F1) that ϕ(ξ) ≡ 0 for all ξ ∈ R, which
contradicts the definition of ξ0. Therefore, ϕ > 0 on R. Similarly, ϕ < K on R. This
completes the proof. 
�
Lemma 3.2 Under assumptions (F1) and (H1), every solution (c, ϕ) of (6) satisfying
ϕ′ ≥ 0 on R satisfies ϕ′ > 0 on R.

Proof Suppose on the contrary that there exists ξ0 ∈ R such that ϕ′(ξ0) = 0. By
differentiating (13) with respect to ξ , we obtainHμ(ϕ)(s) = Hμ(ϕ)(ξ0) for all s ≥ ξ0.
Letting s → ∞, we obtainHμ(ϕ)(ξ0) = cμK . This, together withϕ′(ξ0) = 0 and (6),
implies that ϕ(ξ0) = K , which contradicts Lemma 3.1. Hence the lemma is proved. 
�
Lemma 3.3 Assume that (F1), (F2), (H1), and (H2) hold. Let c∗, λ1(c) and λ2(c)
be defined as in Lemma 2.1. Let c > c∗ be any number. Then for every γ ∈
(0,min{σλ1(c), λ2(c) − λ1(c)}), there exists Q(c, γ ) > 1 such that for every
q > Q(c, γ ), the functions φ± defined by

φ+(ξ) = min {K , exp{λ1(c)ξ}} , ξ ∈ R (16)
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and
φ−(ξ) = exp{λ1(c)ξ}max {0, 1 − q exp{γ ξ}} , ξ ∈ R (17)

are a super-solution and a subsolution to (6), respectively.

Proof We begin by proving that φ± are a pair of super- and subsolutions of (6). We
only consider the case ∂2 f (0, 0) > 0 because the proof of the case ∂2 f (0, 0) = 0 is
similar. It follows from (16) that φ+(ξ) ≤ exp{λ1(c)ξ} for all ξ ∈ R and hence

J ∗ φ+(ξ) ≤
∫
R

J (y) exp{λ1(c)(ξ − y)}dy = exp{λ1(c)ξ}H(λ1(c))

and

h ∗ ∗φ+(ξ)≤
∫ ∞

0

∫
R

h(y, s) exp{λ1(c)(ξ−y−cs)}dyds =exp{λ1(c)ξ}G(c, λ1(c)).

Moreover, there exists ξ∗ > 0 satisfying exp{λ1(c)ξ∗} = K , φ+(ξ) = K for ξ > ξ∗
and φ+(ξ) = exp{λ1(c)ξ} for ξ ≤ ξ∗. For ξ > ξ∗, we have

Nc[φ+](ξ) = −d[J ∗ φ+(ξ) − K ] − f (K , (h ∗ ∗φ+)(ξ) ≥ − f (K , K ) = 0.

For ξ ≤ ξ∗, we have

Nc[φ+](ξ) ≥ φ+(ξ){cλ1(c) − pλ21(c) − d[H(λ1(c)) − 1]}
− f (φ+(ξ), (h ∗ ∗φ+)(ξ))

= φ+(ξ)�(c, λ1(c)) − f (φ+(ξ), (h ∗ ∗φ+)(ξ)) + ∂1 f (0, 0)φ+(ξ)

+ φ+(ξ)∂2 f (0, 0)G(c, λ1(c))

≥ − f (φ+(ξ), (h ∗ ∗φ+)(ξ)) + ∂1 f (0, 0)φ+(ξ)

+ ∂2 f (0, 0)(h ∗ ∗φ+)(ξ) ≥ 0,

where we have used the condition (F2) in the last inequality. Therefore, φ+ is a super-
solution of (6).

It follows from (17) that exp{λ1(c)ξ} ≥ φ−(ξ) ≥ exp{λ1(c)ξ}(1− q exp{γ ξ}) for
all ξ ∈ R and hence

J ∗ φ−(ξ) ≥
∫
R

J (y) exp{λ1(c)(ξ − y)}(1 − q exp{γ (ξ − y)})dy

= exp{λ1(c)ξ}H(λ1(c)) − q exp{[γ + λ1(c)]ξ}H(γ + λ1(c)),

h ∗ ∗φ−(ξ) ≥
∫ ∞

0

∫
R

h(y, s) exp{λ1(c)(ξ − y − cs)}(1 − q exp{γ (ξ − y − cs)})dyds

= exp{λ1(c)ξ}G(c, λ1(c)) − q exp{[γ + λ1(c)]ξ}G(c, γ + λ1(c)).
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928 S. Guo, J. Zimmer

Let ξ0 = − 1
γ
ln q. Clearly, φ−(ξ) = 0 for ξ > ξ0 and φ−(ξ) = exp{λ1(c)ξ}(1 −

q exp{γ ξ}) for ξ ≤ ξ0. For ξ > ξ0, we have

Nc[φ−](ξ) = −dJ ∗ φ−(ξ) − f (0, (h ∗ ∗φ−)(ξ)) ≤ − f (0, 0) = 0.

For ξ ≤ ξ0, we have

Nc[φ−](ξ) ≤ exp{λ1(c)ξ}{cλ1(c) − pλ21(c) − d[H(λ1(c)) − 1]}
− q exp{[γ + λ1(c)]ξ}{c[γ + λ1(c)] − p[γ + λ1(c)]2
− d[H(γ + λ1(c)) − 1]}
− f (φ−(ξ), (h ∗ ∗φ−)(ξ))

= exp{λ1(c)ξ}�(c, λ1(c)) − q exp{[γ + λ1(c)]ξ}�(c, γ + λ1(c))

− f (φ−(ξ), (h ∗ ∗φ−)(ξ)) + ∂1 f (0, 0)φ−(ξ)

+ ∂2 f (0, 0) exp{λ1(c)ξ}G(c, λ1(c))

− q∂2(0, 0) exp{[γ + λ1(c)]ξ}G(c, γ + λ1(c))

≤ −q exp{[γ + λ1(c)]ξ}�(c, γ + λ1(c)) − f (φ−(ξ), (h ∗ ∗φ−)(ξ))

+ ∂1 f (0, 0)φ−(ξ) + ∂2 f (0, 0)(h ∗ ∗φ−)(ξ).

In view of (F2), we have

Nc[φ−](ξ) ≤ −q exp{[γ + λ1(c)]ξ}�(c, γ + λ1(c)) + M[φ−(ξ) + (h ∗ ∗φ−)(ξ)]1+σ

≤ −q exp{[γ + λ1(c)]ξ}�(c, γ + λ1(c))

+ M[1 + G(c, γ + λ1(c))]1+σ exp{(1 + σ)λ1(c)ξ}

≤ exp{[γ + λ1(c)]ξ}�(c, γ + λ1(c))

{
M[1 + G(c, γ + λ1(c))]1+σ

�(c, γ + λ1(c))
− q

}

≤ 0,

provided that

q ≥ Q(c, η) � max

{
1,

M[1 + G(c, γ + λ1(c))]1+σ

�(c, γ + λ1(c))

}
.

Therefore, φ− is a subsolution of (6). The proof is complete. 
�
As a consequence of Lemmas 3.1, 3.2, and 3.3, we have the following result on the

existence of increasing travelling waves.

Theorem 3.1 Under the conditions (F1), (F2), (H1), and (H2), let c∗, λ1(c) and λ2(c)
be defined as in Lemma2.1. Then for each c > c∗, (6)admits a solution (c, φ) satisfying
0 < φ(ξ) < K , φ′(ξ) > 0 for all ξ ∈ R, and

lim
ξ→−∞ φ(ξ) exp{−λξ} = 1, lim

ξ→−∞ φ′(ξ) exp{−λξ} = λ, (18)
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where λ = λ1(c) is the smallest positive zero of �(c, ·).
Proof It follows from Lemmas 2.3, 3.1, 3.2, and 3.3 that there exists a strictly increas-
ing solution φ(ξ) to (6), which will be denoted by (c, φ) and satisfies

exp{λ1(c)ξ} (1 − q exp{γ ξ}) ≤ φ(ξ) ≤ exp{λ1(c)ξ}, ξ ∈ R. (19)

It then follows from (19) that

lim
ξ→−∞ |φ(ξ) exp{−λ1(c)ξ} − 1| ≤ lim

ξ→−∞ q exp{γ ξ} = 0.

In view of condition (F2), we have

lim
ξ→−∞ | f (φ(ξ), (h ∗ ∗φ)(ξ)) − ∂1 f (0, 0)φ(ξ) − ∂2 f (0, 0)(h ∗ ∗φ)(ξ)| exp{−λ1(c)ξ}

≤ M lim
ξ→−∞ [φ(ξ) + (h ∗ ∗φ)(ξ)]1+σ exp{−λ1(c)ξ}

= M

[
lim

ξ→−∞ φ(ξ)e−λ1(c)ξ/(1+σ) + lim
ξ→−∞(h ∗ ∗φ)(ξ) exp{−λ1(c)ξ/(1 + σ)}

]1+σ

= M

[
lim

ξ→−∞(h ∗ ∗φ)(ξ)e−λ1(c)ξ/(1+σ)

]1+σ

≤ M

[
g′(0) lim

ξ→−∞(h ∗ ∗φ)(ξ)e−λ1(c)ξ/(1+σ)

]1+σ

and

lim
ξ→−∞(h ∗ ∗φ)(ξ) exp{−λ1(c)ξ/(1 + σ)}

= lim
ξ→−∞

∫ ∞

0

∫ ∞

−∞
h(y, t)φ(ξ − y − ct) exp{−λ1(c)ξ/(1 + σ)}dydt

=
∫ ∞

0

∫ ∞

−∞
h(y, t)

[
lim

ξ→−∞ φ(ξ − y − ct) exp{−λ1(c)ξ/(1 + σ)}
]
dydt = 0.

Hence, if p = 0 then for c > c∗, we have

c lim
ξ→−∞ φ′(ξ) exp{−λ1(c)ξ}
= lim

ξ→−∞ [d(J ∗ φ − φ)(ξ) + f (φ(ξ), (h ∗ ∗φ)(ξ))] exp{−λ1(c)ξ}
= d[H(λ1(c)) − 1] + lim

ξ→−∞ f (φ(ξ), (h ∗ ∗φ)(ξ)) exp{−λ1(c)ξ}
= d[H(λ1(c)) − 1] + lim

ξ→−∞ [∂1 f (0, 0)φ(ξ) + ∂2 f (0, 0)(h ∗ ∗φ)(ξ)] exp{−λ1(c)ξ}
= d[H(λ1(c)) − 1] + ∂1 f (0, 0) + ∂2 f (0, 0)G(c, λ1(c)) = cλ1(c).

123



930 S. Guo, J. Zimmer

If p = 0, then for c > c∗, using φ′(−∞) = 0 and integrating both sides of (6) from
−∞ to ξ , we have

lim
ξ→−∞ φ′(ξ) exp{−λ1(c)ξ}

= c

p
− 1

p
lim

ξ→−∞ exp{−λ1(c)ξ}
∫ ξ

−∞
[d(J ∗ φ − φ)(s) + f (φ(s), (h ∗ ∗φ)(s))] ds

= c

p
− lim

ξ→−∞
exp{−λ1(c)ξ} [d(J ∗ φ − φ)(ξ) + f (φ(ξ), (h ∗ ∗φ)(ξ))]

pλ1(c)

= c

p
− d[H(λ1(c)) − 1] + ∂1 f (0, 0) + ∂2 f (0, 0)G(c, λ1(c))

pλ1(c)
= λ1(c).

This completes the proof. 
�
Remark 3.1 In Theorem 3.1, by Lebesgue’s dominated convergence theorem, we also
have

lim
ξ→−∞(h ∗ ∗φ)(ξ) exp{−λ1(c)ξ} = G(c, λ1(c)).

Remark 3.2 Theorem 3.1 implies that the asymptotic behaviours of wave profiles of
the travelling waves obtained by super- and subsolutions satisfy (18) for c > c∗.
Furthermore, in the subsequent section, we shall show that the wave profile ϕ of every
travelling wave of (1) satisfying (6) has similar asymptotic behaviours.

Next, we prove that (6) has a solution (c, φ) with 0 < φ < K and φ′ > 0 on R for
c = c∗.

Theorem 3.2 Under the conditions (F1), (F2), (H1), and (H2), (6) has a solution
(c, φ) with 0 < φ < K and φ′ > 0 on R for c = c∗.

Proof We choose a sequence {c j } ⊆ (c∗,∞) such that lim j→∞ c j = c∗. Then for
each j , there exists a strictly increasing travelling wave (c j , φ j ) of (1) such that
φ j (−∞) = 0 and φ j (+∞) = K . Since φ j (· + ζ ), ζ ∈ R, is also a travelling wave,
we can assume that φ j (0) = α and φ j (x) ≤ K for a fixed α ∈ (0, K ) and all x ∈ R

and j ≥ 1. Note that φ j is a fixed point of operator Tμ in E with c = c j and Tμ(φ j )(ξ)

can be differentiated with respect to ξ , where E is the Banach space of bounded and
uniformly continuous functions on R equipped with the maximum norm. Moreover,
we differentiate both sides of (6) with respect to ξ to obtain

0 = − cφ′′
j (ξ) + pφ′′′

j (ξ) + d[J ∗ φ′
j − φ′

j ](ξ) + ∂1 f (φ j (ξ), (h ∗ ∗φ j )(ξ))φ′
j (ξ)

+ ∂2 f (φ j (ξ), (h ∗ ∗φ j )(ξ))h ∗ ∗φ′
j (ξ).

By the definition ofHμ, it follows that there exist three positive numbers N1, N2, and
N3 (if p = 0) such that

|φ′
j (ξ)| ≤ N1, |φ′′

j (ξ)| ≤ N2, |φ′′′
j (ξ)| ≤ N3
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for all n and ξ . Therefore, φ′
j , φ

′′
j and φ′′′

j (if p = 0) are uniformly bounded and equi-
continuous sequences of functions on R. Then the Arzelà-Ascoli theorem implies
that there exists a subsequence of {c j } (for simplicity, denoted again by {c j }), such
that lim j→∞ c j = c∗, and φ′

j , φ
′′
j and φ′′′

j (if p = 0) converge uniformly on every
bounded and closed subset of R. Thus, φ′

j , φ
′′
j and φ′′′

j (if p = 0) converge pointwise
onR to φ′∗, φ′′∗ and φ′′′∗ (if p = 0), respectively. By Lebesgue’s dominated convergence
theorem, letting j → ∞ in the equation φ j = Tμ(φ j ), we then get φ∗ = Tμ(φ∗).
Thus, φ∗ is a solution of (6) in the case where c = c∗. Clearly, φ∗ is monotonically
increasing on R, φ∗(0) = α and φ∗(x) ≤ K for all x ∈ R. One can easily verify that
φ∗(−∞) = 0 and φ∗(+∞) = K . Thus, (1) has a monotone travelling wave solution
connecting 0 and K with the wave speed c = c∗. This completes the proof. 
�

4 Asymptotic Behaviour

In this section, we always assume that (F1), (F2), (H1), and (H2) hold, and that c∗, λ∗,
andλ1(c) are defined as in Lemma 2.1.We shall follow amethod of Carr andChmaj [9]
andWang, Li, and Ruan [39] to establish the exact asymptotic behaviour of the profile
φ(ξ) as ξ → −∞. For this purpose, we need Ikehara’s theorem on the asymptotic
behaviour of a positive decreasing function whose Laplace is of a certain given shape.
The proof of Ikehara’s theorem can be found for example in [9,41].

Theorem 4.1 (Ikehara’s theorem) Let L[u](μ) = ∫ ∞
0 exp{−μξ}u(ξ)dξ be the

Laplace transform of u, with u being a positive nondecreasing function. Assume that
L[u] has the representation

L[u](μ) = E(μ)

(μ + α)k+1 ,

where k > −1 and E is analytic in the strip −α ≤ Reμ < 0. Then

lim
ξ→∞

u(ξ)

ξ ke−αξ
= E(−α)

�(α + 1)
,

where � is the Gamma function.

Lemma 4.1 Assume that (F1), (F2), (H1), and (H2) hold. Let (c, ϕ) be a solution of
(6). Then there exists γ > 0 such that

sup
ξ∈R

ϕ(ξ) exp{−γ ξ} < ∞ and sup
ξ∈R

�(ξ) exp{−γ ξ} < ∞, (20)

where �(ξ) �
∫ ξ

−∞ ϕ(s)ds.

Proof For each ξ ∈ R, define

ψ(ξ) �(h ∗ ∗ϕ)(ξ) =
∫ ∞

0

∫
R

h(y, τ )ϕ(ξ − y − cτ)dydτ.
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In view of ∂2 f (0, 0) + ∂1 f (0, 0) > 0, there exist δ0 ∈ (0, K ) such that

ε1 � [∂2 f (0, 0) + ∂1 f (0, 0)]/4 ≥ M(u + v)σ (21)

for all u, v ∈ [0, δ0]. In view of (22) and ϕ(−∞) = 0, there exists ξ0 < 0 such that
for all ξ < ξ0, both ϕ(ξ) and ψ(ξ) lie in the interval (0, δ0), where δ0 is defined as
(21). Thus, for every ξ < ξ0,

f (ϕ(ξ), ψ(x)) ≥ ∂1 f (0, 0)ϕ(ξ) + ∂2 f (0, 0)ψ(ξ) − M[ϕ(ξ) + ψ(ξ)]1+σ

≥ ∂1 f (0, 0)ϕ(ξ) + ∂2 f (0, 0)ψ(ξ) − ε1[ϕ(ξ) + ψ(ξ)]
= (ε1 − 2ε2)ϕ(ξ) + (ε1 + 2ε2)ψ(ξ)

(22)

for all u, v ∈ [0, δ0], where ε2 = [∂2 f (0, 0) − ∂1 f (0, 0)]/4. Therefore,

cϕ′(ξ) − pϕ′′(ξ) − d(J ∗ ϕ − ϕ)(ξ) ≥ (ε1 − 2ε2)ϕ(ξ) + (ε1 + 2ε2)ψ(ξ) (23)

for all ξ < ξ0. By using a similar argument as in the proof of Theorem 3.2, we can
prove that ϕ(ξ) and ψ(ξ) are both integrable on (−∞, 0].

By Fubini’s theorem and Lebesgue’s dominated convergence theorem

∫ ξ

−∞
ψ(s)ds =

∫ ξ

−∞

[∫ ∞

0

∫
R

h(y, τ )ϕ(s − y − cτ)dydτ

]
ds

= lim
z→−∞

∫ ξ

z

[∫ ∞

0

∫
R

h(y, τ )ϕ(s − y − cτ)dydτ

]
ds

= lim
z→−∞

∫ ∞

0

∫
R

h(y, τ )

[∫ ξ

z
ϕ(s − y − cτ)ds

]
dydτ

=
∫ ∞

0

∫
R

h(y, τ )

[∫ ξ

−∞
ϕ(s − y − cτ)ds

]
dydτ

=
∫ ∞

0

∫
R

h(y)�(ξ − y − cτ)dydτ.

Integrating (23) from −∞ to ξ with ξ < ξ0, we have (using again Fubini’s theorem)

cϕ(ξ) − pϕ′(ξ) − d(J ∗ � − �)(ξ)

≥ (ε1 − 2ε2)�(ξ) + (ε1 + 2ε2)
∫ ∞

0

∫
R

h(y, τ )�(ξ − y − cτ)dydτ

= ε1�(ξ) + ε1

∫ ∞

0

∫
R

h(y, τ )�(ξ − y − cτ)dydτ

+ 2ε2

∫ ∞

0

∫
R

h(y, τ ) [�(ξ − y − cτ) − �(ξ)] dydτ.

(24)
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Note that

∫ ξ

z

∫ ∞

0

∫
R

h(y, τ ) [�(s − y − cτ) − �(s)] dydτds

= −
∫ ∞

0

∫
R

(y + cτ)h(y, τ )

∫ 1

0
[�(ξ − t (y + cτ)) − �(z − t (y + cτ))] dtdydτ

→ −
∫ ∞

0

∫
R

(y + cτ)h(y, τ )

∫ 1

0
�(ξ − t (y + cτ))dtdydτ

as z → −∞. Thus, (24) means that �(ξ) and
∫ ∞
0

∫
R

h(y, τ )�(s − y − cτ)dydτ are
integrable on (−∞, ξ ]. Moreover,

c�(ξ) − pϕ(ξ) − d
∫ ξ

−∞
(J ∗ � − �)(s)ds

+2ε2

∫ ∞

0

∫
R

(y + cτ)h(y, τ )

∫ 1

0
�(ξ − t (y + cτ))dtdydτ

≥ ε1

∫ ξ

−∞
�(s)ds + ε1

∫ ξ

−∞

∫ ∞

0

∫
R

h(y, τ )�(s − y − cτ)dydτds. (25)

Since �(ξ) is increasing, for any y ∈ R we have

(y + cτ)h(y, τ )�(ξ) ≥ (y + cτ)h(y, τ )

∫ 1

0
�(ξ − t (y + cτ))dt.

If ε2 ≥ 0, then it follows from (25) that

c�(ξ) − pϕ(ξ) − d
∫ ξ

−∞
(J ∗ � − �)(s)ds+2ε2�(ξ)

∫ ∞

0

∫
R

(y + cτ)h(y, τ )dydτ

≥ ε1

∫ ξ

−∞
�(s)ds.

(26)
The mean value theorem for integrals implies that for each y > 0, there exist
ξ1(y) ∈ (ξ, ξ + y) and ξ2(y) ∈ (ξ − y, ξ) such that

∫ ξ+y
ξ

�(s)ds = y�(ξ1(y))

and
∫ ξ

ξ−y �(s)ds = y�(ξ2(y)). It follows from the monotonicity of � that

∫ ξ

−∞
(J ∗ � − �)(s)ds =

∫ ξ

−∞

∫
R

J (y)[�(x − y) − �(x)]dydx

=
∫
R

J (y)

∫ ξ−y

ξ

�(x)dxdy

=
∫ ∞

0
J (y)

∫ ξ−y

ξ

�(x)dxdy +
∫ 0

−∞
J (y)

∫ ξ−y

ξ

�(x)dxdy
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=
∫ ∞

0
J (y)

∫ ξ−y

ξ

�(x)dxdy +
∫ ∞

0
J (−y)

∫ ξ+y

ξ

�(x)dxdy

=
∫ ∞

0
J (y)

[∫ ξ+y

ξ

�(x)dx −
∫ ξ

ξ−y
�(x)dx

]
dy

=
∫ ∞

0
y J (y)[�(ξ1(y)) − �(ξ2(y))]dy > 0. (27)

This, together with (26), implies that

[
c + 2ε2

∫ ∞

0

∫
R

(y + cτ)h(y, τ )dydτ

]
�(ξ) ≥ ε1

∫ ξ

−∞
�(s)ds + pϕ(ξ). (28)

If ε2 < 0, that is, ∂1 f (0, 0) > ∂2 f (0, 0) ≥ 0, then there exists ξ ′
0 < ξ0 such that

cϕ′(ξ) − pϕ′′(ξ) − d(J ∗ ϕ − ϕ)(ξ) = f (ϕ(ξ), ψ(ξ)) ≥ f (ϕ(ξ), 0)

≥ 1

2
∂1 f (0, 0)ϕ(ξ) > ε1ϕ(ξ)

for all ξ < ξ ′
0. Thus

c�(ξ) ≥ ε1

∫ ξ

−∞
�(s)ds + pϕ(ξ). (29)

Combing (28) and (29), we have

[
c + 2|ε2|

∫ ∞

0

∫
R

|y + cτ |h(y, τ )dydτ

]
�(ξ) ≥ ε1

∫ 0

−∞
�(s + ξ)ds

≥ ε1

∫ 0

−r
�(s + ξ)ds ≥ ε1r�(ξ − r)

for all r > 0 and ξ < ξ ′
0. Thus there exists r0 > 0 and some θ ∈ (0, 1) such that

γ � 1

r0
ln

1

θ
∈ (λ1(c), λ0) (30)

and
�(ξ − r0) ≤ θ�(ξ)

uniformly in ξ . Thus

�(ξ − r0) exp{−γ (ξ − r0)} ≤ �(ξ) exp{−γ ξ}.

This, together with limξ→∞ �(ξ)e−γ ξ = 0, implies that

sup
ξ∈R

{�(ξ) exp{−γ ξ}} < ∞. (31)
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Moreover,

exp{−γ ξ}
∫ ξ

−∞
�(s)ds = exp{−γ ξ}

∫ 0

−∞
�(ξ + s)ds

=
∫ 0

−∞
�(ξ + s) exp{−γ (ξ + s)} exp{γ s}ds

≤ 1

γ
sup
ξ∈R

{�(ξ) exp{−γ ξ}}.

Thus, it follows from (28), (29), and (31) that

sup
ξ∈R

{ϕ(ξ) exp{−γ ξ}} < ∞. (32)

This completes the proof. 
�
Lemma 4.2 Assume that (F1), (F2), (H1), and (H2) hold. Let (c, ϕ) be a solution of
(6). Then limξ→−∞ ϕ(ξ) exp{−λ1(c)ξ} exists for each c > c∗.

Proof Define a bilateral Laplace transform of ϕ(ξ) by

L[ϕ](λ) =
∫
R

exp{−λξ}ϕ(ξ)dξ.

By Lemma 4.1 and Fubini’s theorem, we have

∫
R

e−λξψ(ξ)dξ =
∫
R

[
e−λξ

∫ ∞

0

∫
R

h(y, τ )ϕ(ξ − y − cτ)dy

]
dξdτ

=
∫ ∞

0

∫
R

h(y, τ )

[∫
R

e−λξϕ(ξ − y − cτ)dξ

]
dydτ

= L(λ)

∫ ∞

0

∫
R

h(y, τ )e−λ(y+cτ)dydτ = L(λ)G(c, λ).

Take the bilateral Laplace transform of (6) with respect to ξ , we have (with �(c, λ)

defined in (11))
�(c, λ)L[ϕ](λ) = R(λ), (33)

whereR(λ) is the Laplace transform of the function f (ϕ(ξ), ψ(ξ))−∂1 f (0, 0)ϕ(ξ)−
∂2 f (0, 0)ψ(ξ). It is not difficult to see thatR(λ) is defined for λ with 0 < Reλ < γ .
In addition, it is easy to see that �(c, ·) has no zero λ with Reλ = λ1(c) other than
λ = λ1(c). This implies that (λ − λ1(c))/�(c, λ) is analytic in the strip 0 < Reλ ≤
λ1(c). If there exists some ξ0 > 0 such that ϕ(ξ) is increasing for all ξ ∈ (−∞,−ξ0),
then u(ξ) = ϕ(−ξ) is a positive decreasing function on (ξ0,∞). Moreover, it follows
from (33) that

∫ ∞

ξ0

eλξ u(ξ)dξ =
∫ −ξ0

−∞
e−λξϕ(ξ)dξ = E(λ)

λ − λ1(c)
(34)
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with

E(λ) = (λ − λ1(c))R(λ)

�(c, λ)
− (λ − λ1(c))

∫ ∞

−ξ0

e−λξϕ(ξ)dξ,

which is analytic in the strip 0 < Reλ ≤ λ1(c) because
∫ ∞
−ξ0

exp{−λξ}ϕ(ξ)dξ is
analytic for all Reλ > 0. Bymeans of Theorem 4.1, limξ→∞ u(ξ) exp{λ1(c)ξ}, which
is equal to limξ→−∞ ϕ(ξ) exp{−λ1(c)ξ}, exists.

If ϕ(ξ) is not monotone on any interval (−∞, ξ0) with |ξ0| sufficiently large, let
χ(ξ) = exp{qξ}ϕ(ξ), where q = d/c if p = 0 and

q = −c + √
c2 + 4pd

2p

if p > 0. Then

(c + 2pq)χ ′(ξ) − pχ ′′(ξ) = exp{qξ} [d J ∗ ϕ(ξ) + f (ϕ(ξ), ψ(ξ))] ≥ 0.

Suppose that there exists ξ1 < ξ2 such that χ(ξ1) > χ(ξ2). Note that limξ→∞ χ(ξ) =
+∞; thus, there exists ξ3 > ξ1 such thatχ ′(ξ3) = 0 andχ ′′(ξ2) ≥ 0,which contradicts
the equation above. Thus, we have χ ′(ξ) ≥ 0. Then for the bilateral Laplace transform
of χ(ξ), L[χ ](λ) = L(λ − q). It follows from (33) that

�(c, λ − q)L1(λ) = R(λ − q).

Using a similar argument as above, we see that

lim
ξ→−∞ ϕ(ξ) exp{−λ1(c)ξ} = lim

ξ→−∞ χ(ξ) exp{−[q + λ1(c)]ξ}

exists. This completes the proof. 
�
Using a similar argument as in the proof of the previous lemma, we can verify the

following result.

Lemma 4.3 Assume that (F1), (F2), (H1), and (H2) hold. Let (c∗, ϕ) be a solution of
(6). Then limξ→−∞ ϕ(ξ)ξ−1 exp{−λ∗ξ} exists.

Now we are ready to summarise the asymptotic behaviour of wave profile ϕ as
follows.

Theorem 4.2 Under assumptions (F1), (F2), (H1) and (H2), for each solution of
(c, ϕ) of (6), there exists η = η(ϕ) such that

lim
ξ→−∞

ϕ(ξ + η)

exp{λ1(c)ξ} = 1 for c > c∗ (35)

and

lim
ξ→−∞

ϕ(ξ + η)

ξ exp{λ1(c)ξ} = 1 for c = c∗. (36)
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Moreover,

lim
ξ→−∞

ϕ′(ξ)

ϕ(ξ)
= λ1(c) for c ≥ c∗. (37)

Proof Both (35) and (36) follow easily from Lemmas 4.2 and 4.3. It follows from (6)
that

lim
ξ→−∞

cϕ′(ξ)

ϕ(ξ)
= p lim

ξ→−∞
ϕ′′(ξ)

ϕ(ξ)
+d lim

ξ→−∞

[
J ∗ ϕ(ξ)

ϕ(ξ)
− 1

]
+ lim

ξ→−∞
f (ϕ(ξ), ψ(ξ))

ϕ(ξ)

= pλ21(c) + d [H(λ1(c)) − 1] + ∂1 f (0, 0) + ∂2 f (0, 0) lim
ξ→−∞

ψ(ξ)

ϕ(ξ)

= pλ21(c) + d [H(λ1(c)) − 1] + ∂1 f (0, 0)

+ ∂2 f (0, 0) lim
ξ→−∞

∫ ∞

0

∫
R

h(y, τ )
ϕ(ξ − y − cτ)

ϕ(ξ)
dydτ

= pλ21(c) + d [H(λ1(c)) − 1] + ∂1 f (0, 0) + ∂2 f (0, 0)G(c, λ1(c))

= cλ1(c).

This completes the proof. 
�

Theorem 4.3 Under assumptions (F1), (F2), (H1), and (H2), for each solution of
(c, ϕ) of (6), there exists η = η(ϕ) such that

lim
ξ→∞

K − ϕ(ξ + η)

exp{−υ(c)ξ} = 1, (38)

where υ(c) is the unique positive zero of �̃(c, ·), according to Lemma 2.2. Moreover,

lim
ξ→∞

ϕ′(ξ)

K − ϕ(ξ)
= υ(c). (39)

Proof Define �(ξ) � K − ϕ(−ξ) and �(ξ) � K − (h ∗ ∗ϕ)(−ξ). Obviously, �(ξ)

satisfies that �(−∞) = 0,�(∞) = K , 0 < �(ξ) < K , and

c�′(ξ) = −p�′′(ξ) + f (K − �(ξ), K − �(ξ)) − d(J ∗ � − �)(ξ). (40)

Then for any μ > 2d +max{|∂1 f (u, v)| : u, v ∈ [0, K ]}, we have [
�(ξ)e−μξ

]′
< 0

for all ξ . Then, using the bilateral Laplace transform L[�] of �(ξ), we have, using
Fubini’s theorem again,
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∫
R

e−λξ�(ξ)dξ =
∫
R

e−λξ

[
K −

∫ ∞

0

∫
R

h(y, τ )ϕ(−ξ − y − cτ)dydτ

]
dξ

=
∫
R

[
e−λξ

∫ ∞

0

∫
R

h(y, τ )�(ξ + y + cτ)dydτ

]
dξ

=
∫ ∞

0

∫
R

h(y, τ )

[∫
R

e−λξ�(ξ + y + cτ)dξ

]
dydτ

= L[�](λ)

∫ ∞

0

∫
R

h(y, τ )eλ(y+cτ)dydτ = L[�](λ)G(c,−λ).

Take Laplace transform of (40) with respect to ξ , we have

�̃(c, λ)L̃(λ) = R̃(λ), (41)

where R̃(λ) is the Laplace transform of the function f (K − �(ξ), K − �(ξ)) −
∂1 f (K , K )�(ξ)− ∂2 f (K , K )�(ξ). Using a similar arguments as that in the proof of
Lemma 4.2, we see that there exists η = η(ϕ) such that

lim
ξ→−∞

�(ξ + η)

exp{υ(c)ξ} = 1 and lim
ξ→−∞

�′(ξ)

�(ξ)
= λ1(c), (42)

from which (38) and (39) follow. The proof is completed. 
�

5 Monotonicity and Uniqueness

In this section, we investigate the monotonicity and uniqueness (up to a translation)
of the travelling wavefront of (6) by using the sliding method developed in Chen and
Guo [12].

Theorem 5.1 Under assumptions (F1), (F2), (H1), and (H2), every solution (c, ϕ) of
(6) satisfies ϕ′(ξ) > 0 for all ξ ∈ R.

Proof It follows from Lemma 3.1 and Theorems 4.2 and 4.3 that there exists M > 0
such that ϕ′(ξ) > 0 for all |ξ | ≥ M . It thus suffices to show that ϕ′(ξ) > 0 for all
ξ ∈ [−M, M]. Suppose on the contrary that ϕ′(ξ) ≤ 0 for some ξ0 ∈ [−M, M]. By
continuity of ϕ′(ξ), there exists ξ1 ∈ [−M, M] such that ϕ′(ξ1) = 0. Then, using
the similar arguments as in the proof of Lemma 3.2, we obtain a contradiction. This
completes the proof. 
�

In order to prove the uniqueness up to a translation, we shall need the following
strong comparison principle.

Lemma 5.1 Let (c, φ1) and (c, φ2) be solutions of (6) with φ1 ≥ φ2 on R. Then either
φ1 ≡ φ2 or φ1 > φ2 on R.

Proof Suppose that there exists some ξ0 ∈ R such that φ1(ξ0) = φ2(ξ0). In view of
φ1 ≥ φ2 onR, it follows thatHμ(φ1)(x) = Hμ(φ2)(x) for all x ≥ ξ0. It follows from
the monotonicity of Hμ that φ1 ≡ φ2 on R. 
�
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Lemma 5.2 Under assumptions (F1) and (F2), there exists ε0 ∈ (0, K ) such that

f ((1 + s)u, (1 + s)v) − (1 + s) f (u, v) < 0 (43)

for all s ∈ (0, ε0) and (u, v) ∈ R
2 satisfying |K − u| < ε0 and |K − v| < ε0.

Proof For each s ≥ 0, define

F(s, u, v) = f ((1 + s)u, (1 + s)v) − (1 + s) f (u, v).

Then F(0, u, v) = 0 and Fs(0, u, v) = u∂1 f (u, v) + v∂2 f (u, v) − f (u, v) for all
(u, v) ∈ R

2. In view of assumption (F2), we have Fs(0, K , K ) = K∂1 f (K , K ) +
K∂2 f (K , K ) < 0. Therefore, there exists ε0 > 0 such that F(s, u, v) < 0 for all
s ∈ (0, ε0) and (u, v) ∈ R

2 satisfying |K − u| < ε0 and |K − v| < ε0. 
�
Lemma 5.3 Assume that (F1), (F2), (H1), and (H2) hold. Let (c, φ1) and (c, φ2) be
solutions of (6). Suppose there exists a constant ε ∈ (0, ε0] such that (1 + ε)φ1(x −
κε) ≥ φ2(x) on R, where

κ = sup

{
φ1(x)

φ′
1(x)

: φ1(x) ≤ K − ε0

}
.

Then φ1 ≥ φ2 on R.

Proof DefineW (ε, x) = (1+ε)φ1(x−κε)−φ2(x) and ε∗ = inf{ε ≥ 0 : W (ε, x) ≥ 0
for all x ∈ R}. By continuity of W, W (ε∗, x) ≥ 0 for all x ∈ R. We claim ε∗ = 0.
Suppose on the contrary that ε ∈ (0, ε0]. Then, by the definition of κ ,

Wε(ε, x) = φ1(x − κε) − κ(1 + ε)φ′
1(x − κε) < 0

on {x ∈ R : φ1(x − κε) ≤ K − ε0}. Noting that W (ε∗,∞) = ε∗K > 0, we can find
x0 with φ1(x0 − κε∗) > K − ε0 such that

0 = W (ε∗, x0) = Wx (ε
∗, x0) = Wxx (ε

∗, x0).

Thus, (1 + ε∗)φ1(ξ0) = φ2(x0), (1 + ε∗)φ′
1(ξ0) = φ′

2(x0), and (1 + ε∗)φ′′
1 (ξ0) =

φ′′
2 (x0), where ξ0 = x0 − κε∗. This, together with (43), implies

0 = −cφ′
2(x0) + pφ′′

2 (x0) + d(J ∗ φ2 − φ2)(x0) + f (φ2(x0), (h ∗ ∗φ2)(x0))

≤ −c(1 + ε∗)φ′
1(ξ0) + p(1 + ε∗)φ′′

1 (ξ0) + d(1 + ε∗)(J ∗ φ1 − φ1)(ξ0)

+ f ((1 + ε∗)φ1(ξ0), {h ∗ ∗[(1 + ε∗)φ1]}(ξ0))
= f ((1 + ε∗)φ1(ξ0), (1 + ε∗)(h ∗ ∗φ1)(ξ0)) − (1 + ε∗) f (φ1(ξ0), (h ∗ ∗φ1)(ξ0))

< 0,

a contradiction. Hence ε∗ = 0 and so φ1 ≥ φ2 on R.

123



940 S. Guo, J. Zimmer

Theorem 5.2 Assume that (F1), (F2), (H1), and (H2) hold. For each c ≥ c∗, let (c, φ1)

and (c, φ2) be two solutions to (6). Then there exists γ ∈ R such that φ1(·) = φ2(·+γ ),
i.e. travelling waves are unique up to a translation.

Proof By translating φ2 if necessary, we can assume that 0 < φ1(0) = φ2(0) < K .
By Theorem 4.2, we have

lim
x→−∞

φ2(x)

φ1(x)
= eλ1(c)θ

for some θ ∈ R. Without loss of generality, we assume that eλ1(c)θ ≤ 1, for otherwise
we can exchange φ1 and φ2. Then

W (ξ) = lim
x→−∞

φ2(x)

φ1(x + ξ)
< 1

for all ξ > 0. Fix ξ = 1; then there exists x1 > 0 such that

φ1(x + 1) > φ2(x) for all x ∈ (−∞,−x1). (44)

Since φ1(∞) = K , there exists x2 � 1 such that φ1(x) ≥ K/(1+ ε0) for all x > x2.
It follows that

(1 + ε0)φ1(x) ≥ K ≥ φ2(x) for all x > x2. (45)

Let η = max{φ2(x) : x ∈ [−x1, x2]} ∈ (0, K ). In view of φ1(∞) = K , there
exists x3 � 1 such that φ1(x) ≥ η for all x > x3. Thus, for x ∈ [−x1, x2], we have
x + x1 + x3 ∈ [x3, x1 + x2 + x3] and hence

φ1(x + x1 + x3) ≥ η ≥ φ2(x). (46)

Set z = 1 + x1 + x3 + κε0. It follows from (44)–(46) that

(1 + ε0)φ1(x + z − κε0) ≥ φ2(x) for all x ∈ R. (47)

By monotonicity of ϕ1 and Lemma 5.3, φ1(x + z) ≥ φ2(x) for all x ∈ R. Set

ξ∗ = inf{z > 0 : φ1(x + z) ≥ φ2(x) for all x ∈ R}.

We claim that ξ∗ = 0. If not, then ξ∗ > 0 and so we have φ1(x + ξ∗) ≥ φ2(x) for all
x ∈ R. It follows from W (ξ∗/2) < 1 that there exists x4 > 0 such that

φ1(x + ξ∗/2) ≥ φ2(x)for x ≤ −x4.

Consider the function (1 + ε)φ1(x + ξ∗ − 2κε). Since φ1(∞) = K and φ′
1(∞) = 0,

there exists x5 � 1 such that

d

dε

{
(1 + ε)φ1(x + ξ∗ − 2κε)

} = φ1(x +ξ∗−2κε)−2κ(1+ε)φ′
1(x +ξ∗−2κε) > 0
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for all x ≥ x5 and ε ∈ [0, 1]. That is, for all x ≥ x5 and ε ∈ [0, 1],

(1 + ε)φ1(x + ξ∗ − 2κε) ≥ φ1(x + ξ∗) ≥ φ2(x).

Now we consider the interval [−x4, x5], since φ1(· + ξ∗) ≥ φ2(·), by Lemma 5.1,
φ1(· + ξ∗) > φ2(·) in [−x4, x5]. Thus, there exists ε ∈ (0,min{ε0, ξ∗/(4κ)}) such
that φ1(· + ξ∗ − 2κε) ≥ φ2(·) on [−x4, x5]. Therefore, combining the estimates on
(−∞,−x4], [−x4, x5], and [x5,∞), we conclude that (1+ε)φ1(·+ξ∗−2κε) ≥ φ2(·)
on R. It follows from Lemma 5.3 that φ1(· + ξ∗ − κε) ≥ φ2(·) on R. This contradicts
the definition of ξ∗. Hence, ξ∗ = 0, i.e. φ1(·) ≥ φ2(·). Since φ1(0) = φ2(0), we have
φ1 ≡ φ2 on R. 
�

Finally, we show that no travelling wave solution of speed c < c∗ exists. The usual
approach is to combine the comparison method and the finite time-delay approxima-
tion to establish the existence of the spreading speed c∗ for the solutions with initial
functions having compact supports. In fact, c∗ coincides with the minimal wave speed
for monotone travelling waves of (1). Thus, the nonexistence of travelling waves with
thewave speed c < c∗ is a straightforward consequence of the spreading speed. Inwhat
follows, however, we shall employ a different method to investigate the nonexistence
of travelling waves with the wave speed c < c∗.

Theorem 5.3 Assume that (F1), (F2), (H1), and (H2) hold. Let c∗ be defined as in
Lemma 2.1. Then for every c ∈ (0, c∗), (1) has no travelling wavefront with (c, ϕ)

satisfying (6).

Proof In view of Theorem 5.1, every solution (c, ϕ) of (6) satisfies ϕ′(ξ) > 0 for
all ξ ∈ R. Take a sequence ξn → −∞ such that ϕ(ξn) → 0 and set vn(ξ) =
ϕ(ξ + ξn)/ϕ(ξn). As ϕ is bounded and satisfies (6), the Harnack’s inequality implies
that the sequence vn is locally uniformly bounded. This function vn satisfies

−cv′
n(ξ) + pv′′

n (ξ) + d(J ∗ vn − vn)(ξ) + ∂1 f (0, 0)vn(ξ)

+∂2 f (0, 0)0(h ∗ ∗vn)(ξ) + Rn(ξ) = 0 (48)

for ξ ∈ R, where

Rn(ξ) = f (ϕ(ξ + ξn), (h ∗ ∗ϕ)(ξ + ξn)) − ∂1 f (0, 0)ϕ(ξ + ξn) − ∂2 f (0, 0)(h ∗ ∗ϕ)(ξ + ξn)

ϕ(ξn)
.

The Harnack’s inequality implies that the shifted functions Rn(ξ) converge to zero
locally uniformly in ξ . Thus one may assume, up to extraction of a subsequence, that
the sequence vn converges to a function v that satisfies:

− cv′(ξ) + pv′′(ξ) + d(J ∗ v − v)(ξ) + ∂1 f (0, 0)v(ξ) + ∂2 f (0, 0)(h ∗ ∗v)(ξ) = 0, ξ ∈ R,

(49)

Moreover, v is positive since it is nonnegative and v(0) = 1. Equation (49) admits
such a solution if and only if c ≥ c∗. Therefore, for every c ∈ (0, c∗), (1) has no
travelling wavefront with (c, ϕ) satisfying (6). This completes the proof. 
�
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