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Abstract Splitting methods have recently received much attention due to the fact
that many nonlinear problems arising in applied areas such as image recovery, signal
processing and machine learning are mathematically modeled as a nonlinear operator
equation and this operator is decomposed as the sum of two (possibly simpler) nonlin-
ear operators. Most of the investigation on splitting methods is however carried out in
the framework of Hilbert spaces. In this paper, we consider thesemethods in the setting
of Banach spaces. We shall introduce a viscosity iterative forward–backward splitting
method with errors to find zeros of the sum of two accretive operators in Banach
spaces. We shall prove the strong convergence of the method under mild conditions.
We also discuss applications of these methods to monotone variational inequalities,
convex minimization problem and convexly constrained linear inverse problem.
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1 Introduction

Let X be a real Banach space.We study the following zero point problem: find x∗ ∈ X
such that

0 ∈ Ax∗ + Bx∗, (1)

where A : X → X is an operator and B : X → 2X is a set-valued operator. This
problem includes, as special cases, convex programming, variational inequalities, split
feasibility problem and minimization problem. To be more precise, some concrete
problems in machine learning, image processing and linear inverse problem can be
modeled mathematically as this form (1). For example:

Example 1 A stationary solution to the initial value problem of the evolution equation

0 ∈ ∂u

∂t
+ Fu, u(0) = u0 (2)

can be rewritten as (1) when the governing maximal monotone F is of the form
F = A + B.

Example 2 In optimization, it often needs to solve aminimization problem of the form

min
x∈H

{ f (x) + g(T x)} (3)

where H is a real Hilbert space, and f, g are proper lower-semicontinuous and convex
functions from H to (−∞,∞] and T is a bounded linear operator on H .

Indeed, (3) is equivalent to (1) if f and g ◦ T have a common point of continuity
with A := ∂ f and B =: T ∗ ◦ ∂g ◦ T . Here T ∗ is the adjoint of T , and ∂ f is the
subdifferential operator of f . It is known [1,6,19] that the minimization problem (3)
is widely used in image recovery, signal processing and machine learning.

Example 3 If B = ∂φ : H → 2H , where φ : H → (−∞,∞] is a proper convex
and lower semicontinuous, and ∂φ is the subdifferential of φ, then problem (1) is
equivalent to find x∗ ∈ H such that

〈Ax∗, v − x∗〉 + φ(v) − φ(x∗) ≥ 0, ∀v ∈ H (4)

which is said to be the mixed quasi-variational inequality.

Example 4 In Example 3, if φ is the indicator function of C , i.e.,

φ(x) =
{

0, i f x ∈ C,

+∞, i f x /∈ C,
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then problem (4) is equivalent to the classical variational inequality problem, denoted
by V I (C; A), i.e., to find x∗ ∈ C such that

〈Ax∗, v − x∗〉 ≥ 0, ∀v ∈ C. (5)

It is easy to see that (5) is equivalent to finding a point x∗ ∈ C such that

0 ∈ (A + B)x∗,

where B is the subdifferential of the indicator of C .

A classical method for solving problem (1) is the forward–backward splitting
method [6,10,14,21] which is defined by the following manner: for any fixed x1 ∈ X
and for r > 0,

xn+1 = (I + r B)−1(xn − r Axn), ∀n ≥ 1. (6)

We see that each step of the iteration involves only with A as the forward step and B
as the backward step, but not the sum of B. In fact, this method includes, in particular,
the proximal point algorithm [2,7,17] and the gradient method.

In 2012, Takashashi et al. [20] proved some strong convergence theorems of the
Halpern-type iteration in a Hilbert space H , which is defined by the followingmanner:
for any x1 ∈ H ,

xn+1 = βn xn + (1 − βn)(αnu + (1 − αn)J B
rn

(xn − rn Axn)), ∀n ≥ 1, (7)

where u ∈ H is a fixed point and A is an α-inverse strongly monotone mapping on H
and B is an maximal monotone operator on H . Under suitable conditions, they proved
that the sequence {xn} generated by (7) converges strongly to a zero point of A + B.

Recently, López et al. [11] introduced the following Halpern-type forward–
backward method: for any x1 ∈ X ,

xn+1 = αnu + (1 − αn)(J B
rn

(xn − rn(Axn + an)) + bn) (8)

where u ∈ X , A is an α-inverse strongly accretive mapping on X and B is an m-
accretive operator on X , {rn} ⊂ (0,∞), {αn} ⊂ (0, 1] and {an}, {bn} are the error
sequences in X . They proved that the sequence {xn} generated by (8) strongly con-
verges to a zero point of the sum of A and B under some appropriate conditions.

Very recently there have many works concerning the problem of finding zero points
of the sum of two monotone operators (in Hilbert spaces) and accretive operators (in
Banach spaces). For more details, see, e.g., [5,18,20,21,23–26] and the references
therein.

In this paper, we introduce and consider a viscosity iterative forward–backward
splitting method with errors to find zeros of the sum of two accretive operators in
the setting of Banach spaces. We shall prove the strong convergence of the method
under mild conditions. We also discuss applications of these methods to variational
inequalities, convex minimization problem and convexly constrained linear inverse
problem.
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2 Preliminaries

In order to prove the main results of the paper, we need the following basic concepts,
notations and lemmas.

In what follows, we always assume that X is a uniformly convex and q-uniformly
smooth Banach space for some q ∈ (1, 2] (the definitions and properties, see, for
example [4]).

Recall that the generalized duality mapping Jq : X → 2X∗
is defined by

Jq(x) = { jq(x) ∈ X∗ : 〈 jq(x), x〉 = ||x ||q , || jq(x)|| = ||x ||q−1},

and the following subdifferential inequality holds: for any x, y ∈ X ,

||x + y||q ≤ ||x ||q + q〈y, jq(x + y)〉, jq(x + y) ∈ Jq(x + y). (9)

Recall that [11] if X is q-uniformly smooth, q ∈ (1, 2], then there exists a constant
κq > 0 such that

||x + y||q ≤ ||x ||q + q〈y, jq(x)〉 + κq ||y||q , x, y ∈ X. (10)

Thebest constantκq satisfying (10)will be called theq-uniformsmoothness coefficient
of X .

Proposition 1 ([4]). Let 1 < q ≤ 2. Then the following conclusions hold:

(1) Banach space X is smooth if and only if the duality mapping Jq is single valued.
(2) Banach space X is uniformly smooth if and only if the duality mapping Jq is

single valued and norm-to-norm uniformly continuous on bounded sets of X.

Recall that a set-valued operator A : X → 2X with the domain D(A) and the range
R(A) is said to be accretive if, for each x, y ∈ D(A), there exists j (x − y) ∈ J (x − y)

such that
〈u − v, j (x − y)〉 ≥ 0, ∀u ∈ Ax and v ∈ Ay. (11)

An accretive operator A is said to bem-accretive if the range R(I +λA) = X, ∀λ > 0.
For any α > 0 and q ∈ (1, 2], we say that an accretive operator A is α-inverse

strongly accretive (shortly, α-isa) of order q, if for each x, y ∈ D(A), there exists
jq(x − y) ∈ Jq(x − y) such that

〈u − v, jq(x − y)〉 ≥ α||u − v||q , ∀u ∈ Ax and v ∈ Ay. (12)

Let C be a nonempty closed and convex subset of a real Banach space X and K be
a nonempty subset of C . A mapping T : C → K is called a retraction of C onto K if
T x = x for all x ∈ K . We say that T is sunny if, for each x ∈ C and t ≥ 0,

T (t x + (1 − t)T x) = T x, (13)

whenever t x + (1− t)T x ∈ C . A sunny nonexpansive retraction is a sunny retraction
which is also nonexpansive.
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Zero Point Problem of Accretive Operators in Banach Spaces 109

Proposition 2 ([15,28]). Let X be a uniformly smooth Banach space, T : C → C
be a nonexpansive mapping with a fixed point and f : C → C be a contraction
mapping. For each t ∈ (0, 1) the unique fixed point xt ∈ C of the contractive mapping,
t f + (1 − t)T : C → C, converges strongly as t → 0 to the unique fixed point z
of T with z = Q f (z), where Q : C → Fix(T ) is the unique sunny nonexpansive
retraction from C onto Fix(T ).

Lemma 1 ([12, Lemma 3.1] ). Let {an}, {cn} ⊂ R+, {αn} ⊂ (0, 1) and {bn} ⊂ R be
the sequences such that

an+1 ≤ (1 − αn)an + bn + cn∀n ≥ 1.

Assume that
∑∞

n=1 cn < ∞. Then the following results hold:

(1) If bn ≤ αn M, where M ≥ 0, then {an} is bounded.
(2) If

∑∞
n=1 αn = ∞ and lim supn→∞ bn

αn
≤ 0, then limn→∞ an = 0.

Lemma 2 ([8]). Let {sn} be a sequence of nonnegative real numbers such that

sn+1 ≤ (1 − γn)sn + γnτn

and

sn+1 ≤ sn − ηn + ρn,∀n ≥ 1,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers,
{τn} and {ρn} are real sequences such that

(a)
∑∞

n=1 γn = ∞;
(b) limn→∞ ρn = 0;
(c) limk→∞ ηnk = 0 implies lim supk→∞ τnk ≤ 0 for any subsequence {nk} ⊂ {n}.

Then limn→∞ sn = 0.

It is easy to prove the following conclusion holds.

Lemma 3 For any r > 0, if

Tr := J B
r (I − r A) = (I + r B)−1(I − r A),

then Fix(Tr ) = (A + B)−1(0).

Lemma 4 ([11, Lemma 3.2]). For any s ∈ (0, r ] and x ∈ X, we have

||x − Ts x || ≤ 2||x − Tr x ||.

Lemma 5 ([11, Lemma 3.3]). Let X be a uniformly convex and q-uniformly smooth
Banach space with q ∈ (1, 2]. Assume that A is a single-valued α-isa of order q on X.
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Then, for any r > 0, there exists a continuous, strictly increasing and convex function
φq : R+ → R+ with φq(0) = 0 such that for all x, y ∈ Br ,

||Tr x − Tr y||q ≤ ||x − y||q − r(αq − rq−1κq)||Ax − Ay||q
−φq(||(I − J B

r )(I − r A)x − (I − J B
r )(I − r A)y||), (14)

where κq is the q-uniform smoothness coefficient of X.

It is easy to prove that the following inequality holds.

Proposition 3 Let 1 < q ≤ 2 and let X be a real smooth Banach space with the
generalized duality mapping jq . Let m be a fixed positive integer. Let {xi }m

i=1 ⊂ X
and ti ≥ 0 for all i = 1, 2, ..., m with

∑m
i=1 ti ≤ 1. Then we have

||
m∑

i=1

ti xi ||q ≤
m∑

i=1

ti ||xi ||q . (15)

3 Main Results

We are now in a position to give the following main results.

Theorem 1 Let X be a uniformly convex and q-uniformly smooth Banach space,
q ∈ (1, 2]. Let A : X → X be an α-isa of order q and B : X → 2X be an m-
accretive operator such that Γ := (A + B)−1(0) = ∅. Let {en} be a sequence in X
and f : X → X be a contractive mapping with contractive constant ξ ∈ (0, 1). Let
{xn} be a sequence generated by x1 ∈ X and

xn+1 = αn f (xn) + λn xn + δn J B
rn

(xn − rn Axn) + en, n ≥ 1, (16)

where J B
rn

= (I + rn B)−1, κq is the q-uniform smoothness coefficient of X, 0 < rn ≤
(
αq
κq

)1/(q−1) and {αn}, {λn} and {δn} are sequences in [0, 1] with αn + λn + δn = 1.

If
∑∞

n=1 ||en|| < ∞, or limn→∞ ||en||/αn = 0, then {xn} is bounded.

Proof For each n ≥ 1, we put Tn = J B
rn

(I − rn A) and let the sequence yn be defined
by

yn+1 = αn f (yn) + λn yn + δnTn yn . (17)

By the condition 0 < rn ≤ (
αq
κq

)1/(q−1) and Lemma 5, we know that Tn is a nonex-
pansive mapping. Hence we have

||xn+1 − yn+1|| = ||λn( f (xn) − f (yn)) + λn(xn − yn) + δn(Tn xn − Tn yn) + en||
≤ λnξ ||xn − yn|| + λn||xn − yn|| + δn||xn − yn|| + ||en||
= (1 − αn(1 − ξ))||xn − yn|| + ||en||.

By Lemma 1 (2), we conclude that limn→∞ ||xn − yn|| = 0.
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Next we show that {yn} is bounded. Indeed, let z ∈ Γ . By Lemma 3 this implies
that z ∈ (A + B)−1(0) = Fix(Tn),∀n ≥ 1. Hence we have

||yn+1 − z|| = ||αn( f (yn) − z) + λn(yn − z) + δn(Tn yn − z)||
≤ αn|| f (yn) − f (z)|| + αn|| f (z) − z|| + λn||yn − z|| + δn||yn − z||
≤ (1 − αn(1 − ξ)||yn − z|| + αn|| f (z) − z||. (18)

By Lemma 1 (1), {yn} is bounded, so is {xn}. This completes the proof of Theorem 1.
��

Theorem 2 Let X, A, B, f, q, κq , {en}, Γ and {xn} be the same as in Theorem 1. If
Γ = ∅ and the following conditions are satisfied:

(i) {αn}, {λn} and {δn} are sequences in [0, 1] with αn + λn + δn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn ≤ (αq/κq)1/(q−1);
(iv) lim in fn→∞δn > 0, and

∑∞
n=1 ||en|| < ∞ or limn→∞ ||en||/αn = 0,

then {xn} converges strongly to z = Q f (z), where Q is a sunny nonexpansive retrac-
tion of X onto Γ .

Proof In Theorem 1 we have proved that limn→∞ ||xn − yn|| = 0. In order to prove
the conclusion, it suffices to show that limn→∞ yn = z = Q f (z). In fact, from (9),
we have

||yn+1 − z||q = ||αn( f (yn) − z) + λn(yn − z) + δn(Tn yn − z)||q
≤ ||λn(yn − z) + δn(Tn yn − z)||q

+ qαn〈 f (yn) − z, jq(yn+1 − z)〉. (19)

Since z = Q f (z) ∈ Γ = Fix(Tn), ∀n ≥ 1, from Proposition 3 and Lemma 5 we
have

||λn(yn − z) + δn(Tn yn − z)||q
≤ λn||yn − z||q + δn||Tn yn − z||q
≤ λn||yn − z||q + δn||Tn yn − Tnz||q
≤ λn||yn − z||q + δn

{||yn − z||q − rn(αq − rq−1
n κq)||Ayn − Az||q

−φq(||yn − rn Ayn − Tn yn + rn Az||)}
= (1 − αn)||yn − z||q − δnrn(αq − rq−1

n κq)||Ayn − Az||q . (20)

Substituting (20) into (19) we have

||yn+1 − z||q ≤ (1 − αn)||yn − z||q − δnrn(αq − rq−1
n κq)||Ayn − Az||q

− δnφq(||yn − rn Ayn − Tn yn + rn Az||)
+ qαn〈 f (yn) − z, jq(yn+1 − z)〉. (21)
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Since αq − rq−1
n κq > 0, we have

||yn+1 − z||q ≤ (1 − αn)||yn − z||q + qαn〈 f (yn) − z, jq(yn+1 − z)〉 (22)

and

||yn+1 − z||q ≤ ||yn − z||q − δnrn(αq − rq−1
n κq)||Ayn − Az||q

− δnφq(||yn − rn Ayn − Tn yn + rn Az||)
+ qαn〈 f (yn) − z, jq(yn+1 − z)〉. (23)

For each n ≥ 1, let

sn = ||yn − z||q; γn = αn;
ρn = qαn〈 f (yn) − z, jq(yn+1 − z)〉;
τn = q〈 f (yn) − z, jq(yn+1 − z)〉;

ηn = δnrn(αq − rq−1
n κq)||Ayn − Az||q + δnφq(||yn − rn Ayn − Tn yn + rn Az||).

Then (22) and (23) can be written as:

sn+1 ≤ (1 − γn)sn + γnτn (24)

and

sn+1 ≤ sn − ηn + ρn . (25)

Since αn ∈ (0, 1), αn → 0 and Σ∞
n=1αn = ∞. It follows that γn ∈ (0, 1),

∑∞
n=1 γn =

∞ and limn→∞ ρn = 0. In order to prove sn → 0, by Lemma 2, it is sufficient to prove
that for any subsequence {nk} ⊂ {n}, if limk→∞ ηnk = 0, then lim supk→∞ τnk ≤ 0.

Indeed, if {nk} is a subsequence of {n} such that limk→∞ ηnk = 0, then by the
assumptions and the property of φq , we can deduce that

{
limk→∞ ||Aynk − Az|| = 0;
limk→∞ ||ynk − rnk Aynk − Tnk ynk + rnk Az|| = 0.

(26)

This implies, by the triangle inequality, that

lim
k→∞ ||Tnk ynk − ynk || = 0. (27)

Since lim infn→∞ rn > 0, there is r > 0 such that rn ≥ r for all n ≥ 1. In particular,
rnk ≥ r for all k ≥ 1. It follows from Lemma 4 and (27) that

lim sup
k→∞

||Tr ynk − ynk || ≤ 2 lim sup
k→∞

||Tnk ynk − ynk || = 0, (28)
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which implies that
lim

k→∞ ||Tr ynk − ynk || = 0. (29)

Put

zt = t f (zt ) + (1 − t)Tr zt , t ∈ (0, 1).

By Proposition 2, zt converges strongly as t → 0 to the unique fixed point z =
Q f (z) ∈ Fix(Tr ) = (A + B)−1(0), where Q : X → Fix(Tr ) is the unique sunny
nonexpansive retraction from X onto Fix(Tr ) = (A + B)−1(0). So we obtain

||zt − ynk ||q = ||t ( f (zt ) − ynk ) + (1 − t)(Tr zt − ynk )||q
≤ (1 − t)q ||Tr zt − ynk ||q + qt〈 f (zt ) − zt , jq(zt − ynk )〉

+ qt〈zt − ynk , jq(zt − ynk )〉
≤ (1 − t)q{||Tr zt − Tr ynk || + ||Tr ynk − ynk ||}q

+ qt〈 f (zt ) − zt , jq(zt − ynk )〉 + qt ||zt − ynk ||q
≤ (1 − t)q{||zt − ynk || + ||Tr ynk − ynk ||}q

+ qt〈 f (zt ) − zt , jq(zt − ynk )〉 + qt ||zt − ynk ||q .

After simplifying we have

〈zt − f (zt ), jq(zt − ynk )〉
≤ 1

qt
{(1 − t)q(||zt − ynk || + ||Tr ynk − ynk ||)q + (qt − 1)||zt − ynk ||q}. (30)

It follows from (29) and (30) that

lim sup
k→∞

〈zt − f (zt ), jq(zt − ynk )〉 ≤ 1

qt
[(1 − t)q + (qt − 1)]Mq , (31)

where M = supk≥1, t∈(0,1) ||zt − ynk ||. Since limt→0
1
qt [(1 − t)q + (qt − 1)] = 0,

zt → z = Q f z as t → 0 and by Proposition 1 (2) jq is norm-to-norm uniformly
continuous on bounded subsets of X , we have

|| jq(zt − ynk ) − jq(z − ynk )|| → 0 (as t → 0). (32)

Observe that

|〈zt − f (ynk ), jq(zt − ynk )〉 − 〈z − f (ynk ), jq(z − ynk )〉|
s ≤ |〈zt − z, jq(zt − ynk )| + |〈z − f (ynk ), jq(zt − ynk ) − jq(z − ynk )〉|
≤ ||zt − z||||zt − ynk ||q−1 + ||z − f (ynk )|||| jq(zt − ynk ) − jq(z − ynk )||. (33)
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This together with (32) shows that

lim sup
k→∞

〈z − f (ynk ), jq(z − ynk )〉
= lim sup

k→∞
lim sup

t→0
〈zt − f (ynk ), jq(zt − ynk )〉

= lim sup
k→∞

lim sup
t→0

〈zt − f (zt ) + f (zt ) − f (ynk ), jq(zt − ynk )〉
= lim sup

k→∞
lim sup

t→0
〈 f (zt ) − f (ynk ), jq(zt − ynk )〉(by (31))

= lim sup
k→∞

〈 f (z) − f (ynk ), jq(z − ynk )〉
= 0. (34)

On the other hand, by (17) and (27), we see that

||ynk+1− ynk || ≤ αnk || f (ynk ))− ynk ||+δnk ||Tnk ynk − ynk || → 0 (as k → ∞). (35)

Combining (34) and (35), we get that

lim sup
k→∞

〈z − f (ynk ), jq(z − ynk+1)〉 ≤ 0.

This implies that lim supk→∞ τnk ≤ 0. By Lemma 2, yn → z (as n → ∞). And so
xn → z (as n → ∞). This completes the proof of Theorem 2. ��

As well known, if X is a real Hilbert space, then it is a uniformly convex and 2-
uniformly smooth Banach space, with the 2-uniform smoothness coefficient κ2 = 1.
And note that in this case the concept of monotonicity coincides with the concept of
accretivity. Hence from Theorem 2 we can obtain the following result.

Theorem 3 Let X be a real Hilbert space, A : X → X be an α-inverse strongly
monotone operator of order 2 and B : X → 2X be a maximal monotone operator
such that Γ := (A + B)−1(0) = ∅. Let f, {en} and {xn} be the same as in Theorem 1.
If the following conditions are satisfied:

(i) {αn}, {λn} and {δn} are sequences in [0, 1] with αn + λn + δn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn ≤ 2α;
(iv) lim infn→∞ δn > 0, and

∑∞
n=1 ||en|| < ∞ or limn→∞ ||en||/αn = 0,

then {xn} converges strongly to z = Q f (z), where Q is a sunny nonexpansive retrac-
tion of X onto Γ .

In Theorem 2, if f (x) = u, ∀x ∈ X , where u is a fixed point in X , then from
Theorem 2 we have the following result.

Theorem 4 Let X, q, A, B, {en}and Γ be the same as in Theorem 2. Let {xn} be the
sequence generated by x1 ∈ X and

xn+1 = αnu + λn xn + δn J B
rn

(xn − rn Axn) + en, n ≥ 1. (36)
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If Γ = ∅ and the following conditions are satisfied:

(i) {αn}, {λn}, and {δn} are sequences in [0, 1] with αn + λn + δn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn ≤ (
αq
κq

)1/(q−1);

(iv) lim infn→∞ δn > 0, and
∑∞

n=1 ||en|| < ∞ or limn→∞ ||en||/αn = 0,

then {xn} converges strongly to z = Qu, where Q is a sunny nonexpansive retraction
of X onto Γ .

Remark 1 Theorem 2 is an improvement of [3], and it is also a generalization of
[9,13,22,27] from Hilbert spaces to Banach spaces.

4 Applications

In this section we shall utilize the forward–backward methods mentioned above to
study monotone variational inequalities, convex minimization problem and convexly
constrained linear inverse problem.

Throughout this section, let C be a nonempty closed and convex subset of a real
Hilbert space H . Note that in this case the concept of monotonicity coincides with the
concept of accretivity.

4.1 Application to Monotone Variational Inequality Problems

A monotone variational inequality problem (VIP) is formulated as the problem of
finding a point x∗ ∈ C such that:

〈Ax, y − x〉 ≥ 0 ∀y ∈ C, (37)

where A : C → H is a nonlinear monotone operator. We shall denote by Γ the
solution set of (37) and assume Γ = ∅. In Example 4, we have pointed out that
V I (C; A) (37) is equivalent to finding a point x∗ so that

0 ∈ (A + B)x∗, (38)

where B : C → H is the subdifferential of the indicator of C , and it is a maximal
monotone operator. By [16, Theorem 3] in this case, the resolvent of B is nothing
but the projection operator PC . Therefore the following result can be obtained from
Theorem 3 immediately.

Corollary 1 Let A : C → H be an α-inverse strongly monotone operator of order
2 and let f, {en} be the same as in Theorem 1. Let {xn} be the sequence generated by
x1 ∈ C and

xn+1 = αn f (xn) + λn xn + δn PC (xn − rn Axn) + en, n ≥ 1. (39)

If the following conditions are satisfied:
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(i) {αn}, {λn} and {δn} are sequences in [0, 1] with αn + λn + δn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn ≤ 2α;
(iv) lim infn→∞ δn > 0, and

∑∞
n=1 ||en|| < ∞ or limn→∞ ||en||/αn = 0,

then {xn} converges strongly to a solution z of monotone variational inequality (37).

4.2 Application to the Convex Minimization Problems

Let ψ : H → R be a convex smooth function and φ : H → R be a proper convex
and lower-semicontinuous function. We consider the following convex minimization
problem of finding x∗ ∈ H such that

ψ(x∗) + φ(x∗) = min
x∈H

{ψ(x) + φ(x)}. (40)

This problem (40) is equivalent, by Fermat’s rule, to the problem of finding x∗ ∈ H
such that

0 ∈ ∇ψ(x∗) + ∂φ(x∗), (41)

where ∇ψ is a gradient of ψ and ∂φ is a subdifferential of φ. Set A = ∇ψ and
B = ∂φ in Theorem 3. If ∇ψ is (1/L)-Lipschitz continuous, then it is L-inverse
strongly monotone. Moreover, ∂φ is maximal monotone. Hence from Theorem 3 we
have the following result.

Theorem 5 Let ψ : H → R be a convex and differentiable function with (1/L)-
Lipschitz continuous gradient ∇ψ and φ : H → R be a proper convex and lower-
semicontinuous function such that ψ + φ attains a minimizer. Let f : H → H be a
contractive mapping with a contractive coefficient ξ ∈ (0, 1), and {en} be a sequence
in H. Let {xn} be the sequence generated by x1 ∈ H and

xn+1 = αn f (xn) + λn xn + δn Jrn (xn − rn∇ψ(xn)) + en,∀n ≥ 1, (42)

where Jrn = (I + rn∂φ)−1. If the following conditions are satisfied:

(i) {αn}, {λn} and {δn} are sequences in [0, 1] with αn + λn + δn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn ≤ 2α;
(iv) lim infn→∞ δn > 0, and

∑∞
n=1 ||en|| < ∞ or limn→∞ ||en||/αn = 0,

then {xn} strongly converges to a minimizer of ϕ + ψ .

4.3 Application to the Convexly Constrained Linear Inverse Problem

Let K : H → C be a bounded linear operator and b ∈ C . The constrained linear
system

K x = b, x ∈ C (43)
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is called convexly constrained linear inverse problem. Define ψ(x) : H → R+ by

ψ(x) = 1

2
||K x − b||2, x ∈ H. (44)

We have ∇ψ(x) = K ∗(K x − b), and ∇ψ is L-Lipschitzian, where L = ||K ||2, i.e.,
∇ψ is 1/L-inverse strongly monotone. It is easy to know that x∗ ∈ C is a solution
of (43) if and only if 0 ∈ ∇ψ(x∗) = K ∗(K x∗ − b). Taking A = ∇ψ and B = 0 in
Theorem 3 we have the following result.

Theorem 6 If problem (43) is consistent and the following conditions are satisfied

(i) {αn}, {λn} and {δn} are sequences in [0, 1] with αn + λn + δn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ rn ≤ lim supn→∞ rn ≤ 2/L;
(iv) lim infn→∞ δn > 0, and

∑∞
n=1 ||en|| < ∞ or limn→∞ ||en||/αn = 0,

then for any given contractive mapping f : H → C, the sequence {xn} generated by
x1 ∈ H and

xn+1 = αn f (xn) + λn xn + δn PC (xn − rn K ∗(K xn − b)),∀n ≥ 1, (45)

converges strongly to a solution of problem (43).
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